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Abstract

We present a new method for inferring hidden Markov models from noisy time sequences without the necessity of
assuming a model architecture, thus allowing for the detection of degenerate states. This is based on the statistical
prediction techniques developed by Crutchfield et al. and generates so called causal state models, equivalent in structure to
hidden Markov models. The new method is applicable to any continuous data which clusters around discrete values and
exhibits multiple transitions between these values such as tethered particle motion data or Fluorescence Resonance Energy
Transfer (FRET) spectra. The algorithms developed have been shown to perform well on simulated data, demonstrating the
ability to recover the model used to generate the data under high noise, sparse data conditions and the ability to infer the
existence of degenerate states. They have also been applied to new experimental FRET data of Holliday Junction dynamics,
extracting the expected two state model and providing values for the transition rates in good agreement with previous
results and with results obtained using existing maximum likelihood based methods. The method differs markedly from
previous Markov-model reconstructions in being able to uncover truly hidden states.
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Introduction

Recent advances in experimental techniques have given new

insight into many molecular systems, often on the single molecule

level [1–5]. However, the data yielded from experiments at this

cutting edge are frequently beset by noise which makes

quantitative analysis difficult. The analysis of Fluorescence

Resonance Energy Transfer (FRET) spectra is a typical example

of this problem.

FRET spectroscopy is a powerful method for investigating

systems such as DNA molecules since it is unique in its sensitivity

to molecular conformation, association, and separation in the 1–

10 nm range. It allows the dynamics of single molecules to be

observed, avoiding the averaging inherent in ensemble measure-

ments. In FRET spectroscopy, energy is transferred non-

radiatively via a long range dipole-dipole interaction from one

fluorophore to another, strategically attached to different parts of

the molecule(s) under study. The efficiency of this energy transfer

is strongly modulated by the separation, R, of the fluorophores,

with a 1=R6 dependence and so is highly sensitive to changes in

conformation or association. For a more detailed description of the

principles and techniques of FRET spectroscopy see, for example,

Jares-Erijman et al. [6] and Ha et al. [7] and references therein.

Since transitions between different conformational states

typically take a time shorter than the resolution of the

measurement, one might expect FRET spectra to exhibit jumps

between discrete values (FRET efficiency levels). However, there

are many sources of instrumental noise and also photophysical

effects and temporal coarse graining. These result in the

distribution of the data around some mean value, obscuring the

underlying dynamics, especially in systems with many FRET

levels. The sources of noise have been discussed by a number of

groups [8–10]. As the systems investigated via FRET spectroscopy

have become more complicated, a need for objective data analysis

methods has been recognised. Hidden Markov Models (HMMs)

are a good choice for modeling the conformational dynamics of

systems. Methods of inference are well understood and the states

can be interpreted as conformational states of molecules or

particular associations between molecules.

However, establishing the correct model architecture (the

number of states in the model and the transitions between them)

is a challenge. In choosing a model architecture, we must

compromise between maximising the likelihood of the observa-

tions given the model and minimising the model size. It can be

done using the Bayesian or Akaike Information Criteria. This is

the approach taken by McKinney et al [11] in prior work

addressing this very problem. In their work, efficient algorithms

were developed for finding model parameters which maximised

the model likelihood. Then the number of states in the model was

adjusted based on the average occupancy of each state, with states

which were rarely visited being removed to simplify the model

with only small reductions in model likelihood. These algorithms,

however, can only infer Markov chains of varying order and are

not able to detect hidden states.

We present here an alternative method, based on statistical

prediction techniques, which can detect hidden states. It uses the
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same principles of maximising model likelihood and parsimony

and is applicable not only to FRET spectra but to any noisy time

sequence displaying the following properties. Firstly the data must

be clustered around discrete values. Secondly these discrete values

must be sufficiently separated relative to the variance and quantity

of the data (this will be explained in more detail below). Thirdly,

there must be sufficient examples of switching (transitions) between

these discrete values. Finally, the statistics of these transitions must

be stationary, that is, the transition probabilities and the dis-

tribution of the observations must be constant with time. (We note

that existing methods of analysis implicitly make the same

assumption of stationarity. This assumption is discussed in the

supporting information (S.I.), Text S1, Section 4 and Figs. S5, S6,

S7, along with suggested methods to check its validity).

This method has the advantage that it is capable of inferring the

existence of degenerate states, states associated with the same

discrete value. In the context of FRET spectra, it is not necessary

to associate one state with one FRET efficiency level (as is done by

McKinney et al.), degenerate levels may also be discovered if

revealed by the structure of the transitions between levels. In

addition, the methods offer comparable performance in terms of

speed and ease of use to existing model inference methods and

remove the potential source of subjectivity of the selection of

model architecture.

First, we will outline the theory of causal state models and the

challenges to be overcome in applying such techniques to noisy

time sequences. Then we shall describe the new method and the

results of its application to simulated FRET spectra. Finally, we

will illustrate the use of the method on the study of Holliday

Junction conformational dynamics and compare this with the

method of McKinney et al.

Causal State Models
Causal state models [12] are equivalent to HMMs in their

structure; they both consist of a number of states connected by

transitions described by a transition probability matrix and have

some output (such as a real number sampled from a distribution)

associated with each transition.

However, causal state models differ from HMMs in that the

states represent the structure or regularities present in the data.

These states are so-called causal states; equivalence classes which

group together past subsequences which share the same

conditional distribution of future subsequences. In this way, if

one knows what causal state a process is in, one can make as

informed an estimate of the future of the process as is possible. The

set of causal states is a sufficient statistic, encapsulating the same

amount of information relevant to the future of the process as the

entire past data sequence.

To put this in more mathematical terms, let us define a bi-

infinite sequence of discrete random variables representing a

stationary data sequence, Xz?
{? ~ . . . ,X{1,X0,X1, . . ., and a

particular realisation as xz?
{?. Then the past and future at time

t~0 are denoted X{1
{?~ . . . ,X{2,X{1 and X?

0 ~X0,X1, . . .
respectively and their realisations x{1

{? and x?
0 .

The condition of the equivalence relation, E, is then expressed as

E(x{1
{?)~f~xx{1

{? : P(X?
0 ~x?

0 jX{1
{?~x{1

{?)~P(X?
0 ~x?

0 jX{1
{?~~xx{1

{?)g: ð1Þ

Note that the stationarity assumption is an important one, since

the future distributions of past subsequences must be constant if we

are to be able to use them for prediction.

Let S be the set of causal states generated from these

equivalence classes. The Excess Entropy, E, is defined as the

mutual information between the past and future of the sequence,

where mutual information has its usual definition, see, for

example, Cover and Thomas [13]. Due to the sufficiency of the

causal states the following is true [14]

E~I ½X{1
{?; X?

0 �~I ½S; X?
0 �: ð2Þ

In the case of infinite data, a model based on causal states is

provably a unique, minimal, optimal, statistical predictor of the

future of the data sequence [12,14–16]. The proofs of the

uniqueness, minimality and optimality of this statistic are outside

of the scope of the current work but the interested reader is

referred to the original papers.

In reality, data is finite and so we must estimate the causal states

based on available data. This necessitates two compromises.

Firstly, the length of the past subsequences comprising the causal

states must be limited such that the frequency with which the

longest past subsequences are observed is sufficient to estimate the

distribution of future subsequences with reasonable confidence.

Secondly, the distributions of future subsequences conditioned on

different pasts (e.g. P(X0jX{1
{L~x{1

{L) and P(X0jX{1
{L~~xx{1

{L)
where x{1

{L=~xx{1
{L) which would be equal in the limit of infinite

data (if drawn from the same underlying distribution) will be so no

longer and so a statistical test is required to determine equivalence

at some chosen significance level. These practical constraints mean

that there are two parameters which must be chosen, the

maximum length of subsequence examined, L, and the test

significance level, a. However the size of the data set, N , and the

significance level together allow the maximum reasonable length

of subsequence to be determined given the sensitivity of the

statistical test.

Once the estimated causal states have been determined they

may be linked to form an HMM by appending each of the past

subsequences in the causal states with each symbol from the

alphabet. The transition is determined by finding the causal state

containing the resulting subsequence, with the transition proba-

bilities determined by the relative frequencies of the new

subsequences. Since the HMM must be deterministic (the

observation of a symbol when occupying a certain state must

uniquely determine which state is transited to) the causal states

may be split until a deterministic HMM is found. This procedure

has been implemented as the Causal State Splitting Reconstruc-

tion (CSSR) algorithm by Shalizi and Shalizi [17].

Causal State models have been successfully applied to many

systems including spin systems [18], crystal growth [19], molecular

dynamics [20], atmospheric turbulence [21], population dynamics

[22,23], and neural spike sequences [24].

Application to FRET Spectra
Data in the real world is rarely discrete. The discrete data upon

which these causal state methods are based is assumed to have

been observed via some measurement channel with a finite

resolution. Obviously, the HMM obtained is strongly dependent

on this resolution. If we are to apply these methods to FRET

spectroscopy, we wish our resulting HMM to be independent of

the discretisation scheme used to obtain it, since for the model to

be useful it should be determined by the underlying system, not by

the particulars of the method used to obtain it.

FRET spectra would ideally be discrete since the system

undergoes transitions between conformational states correspond-

ing to certain FRET efficiencies on a timescale shorter than that of

observations, resulting in discrete jumps between FRET levels. It is

(1)
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a natural choice, therefore, to base any discretisation scheme on

these FRET levels.

However, there are many experimental sources of noise which

result in data being b-distributed (or to a reasonable approxima-

tion normally distributed) around the idealised FRET levels with

distributions typically overlapping [25]. This noise in spectra

makes it impossible to determine with certainty to which FRET

level each data point should belong. Misassignment of FRET

levels distorts distributions and introduces fallacious structure

which, in the case of simulated data, leads to inferred HMMs

varying from the models used to generate the data.

The methods presented in the next section address this problem,

allowing the identification of a minimal representation of the

dynamical structure hidden within the data.

Methods

In contrast to conventional methods (which typically ignore

uncertainty in assignments), explicitly recognising uncertainty in

the discretisation allows the problem of noise to be circumvented.

By assigning a special null symbol to any data point which could

not be reliably assigned to a FRET level and then disregarding

these symbols when determining causal states, the underlying

model architecture (that used to generate the data in the case of

simulated spectra) can be inferred.

The procedure (illustrated in Fig. 1) is as follows;

1. Construct a histogram of FRET efficiencies.

2. Fit Gaussian mixture models with varying numbers of

components. (Note that Gaussian mixture models are used

since FRET levels are believed to be well approximated by

Gaussian distributions, as mentioned above.)

3. Select a mixture model using the Akaike Information Criterion.

(As pointed out by a referee, the Akaike information criterion

has been known to overfit in certain circumstances [26]. We

found it performed satisfactorily for this application but users

should be aware of the issue. The Bayesian information

criterion could equally well be used.)

4. Partition the space. For a model with n components there will

be 2n partition boundaries, located where the probability of

observing a data point generated by each model component

reaches some small, user defined limit (i.e. the permille

quantiles). There will be 2n{1 bounded regions defined by

these boundaries.

The partition boundaries associated with each model compo-

nent may or may not overlap with partitions associated with other

model components depending on the separation of the means

relative to the variances. In either case the odd numbered regions

correspond to certain assignment of data points to one model

component. The even numbered regions in between correspond to

regions of uncertainty. Here there is a non-negligible probability of

a data point being generated by more than one model component,

either because model components overlap or because the

probability of a data point being generated by any component is

very low.

Note that this partitioning assumes that the partitions associated

with any one model component do not both fall in between the

partitions associated with another, an unlikely circumstance which

could only occur with FRET levels extremely close together or

with very different variances. If this does occur, appropriate

partitions cannot be found.

5. For each model component, part of it lies within one partition

(associated with certain assignment of data to that model

component) and the remaining portion lies within another

partition (associated with uncertainty). Calculate the fraction of

the probability mass associated with certain assignment for

each model component. Find the minimum of these and adjust

the other partition boundaries in order to equalise them. For an

example of this see the S.I., Text S1, Section 1 (Figs. S1, S2,

S3, S4).

The reason for this is that this partitioning effectively discards a

proportion of the occurrences of each possible subsequence in the

discretised data. If we discard more of one subsequence than

another we skew their relative frequencies and, as a result, alter the

transition probabilities of the HMM. By maintaining the original

ratios between model components in the partitioning we avoid this

source of bias. A proof of this is included in the S.I., Text S1,

Section 2.

6. Assign each data point a symbol based on the partition in

which it lies. Points which were generated by one component of

the mixture model with high probability (w0:999) are assigned

the symbol corresponding to this component. Points located

where there is any overlap of components are assigned the null

symbol.

7. Determine the causal states of the model using an adapted

version of the CSSR algorithm. The adaptation is to only

append symbols which are certain to existing subsequences

(starting with the empty subsequence) so subsequences

containing the null symbol are never considered. The CSSR

algorithm is described in detail by way of an example in the

S.I., Text S1, Section 3 (Tables S1, S2, S3, S4).

Since the distribution of FRET efficiencies is such that there is a

non-zero probability of observing a data point far from the mean,

there is still a small probability of misassignment of data points. If

this occurs there may be extra transitions present in the inferred

HMM, however the probability of these transitions is generally

very small relative to other transitions present and as such may be

easily identified. There is necessarily a compromise between

obtaining a sufficient proportion of non-null symbols to be able

to determine the causal states and avoiding misassignment. The

Figure 1. Illustration of partition scheme. On the vertical axis the
histogram of the spectrum is shown, along with the fitted Gaussian
mixture model. The resulting partitions are shown with solid horizontal
lines where the upper component’s probability reaches 0.001 and
dashed lines for the lower component. A short section of the spectrum
is also shown with the corresponding symbol sequence. Here H and L
correspond to the high and low FRET levels respectively and U indicates
uncertainty.
doi:10.1371/journal.pone.0029703.g001
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location of the partitions with regards to this compromise will be

dictated by the data; it is easier to avoid misassignments where the

FRET levels are widely spaced. These methods have been im-

plemented in Matlab (available online at http://www.mathworks.

com/matlabcentral/fileexchange/33217).

Results

Simulated Data
We demonstrate the algorithm with simulated FRET data. A

typical FRET system was simulated using the HMM shown in

Fig. 2. Rather than outputting a particular symbol on each

transition, a Gaussian function, f0 or f1, was sampled. The means

of the two functions were 0.3 and 0.7 and the standard deviation

was 0.1 for both. The length of the data series was 1500. The fit of

the Gaussian mixture model to the histogram is shown in Fig. 1

along with the partitions and a small portion of the spectrum to

demonstrate the symbolisation.

A typical example of a HMM inferred from the symbolised data

is shown in Fig. 2. As can be seen, the generating and inferred

model are very similar, with the correct architecture being

inferred. To quantify this let us define the model distance,

following Rabiner [27], as the difference in the log probabilities of

the observed data, O(2), being generated by the generating model

and the inferred model, designated l2 and l1 respectively,

normalised for the length of the data, N:

D(l1,l2)~
1

N
( log P(O(2)jl1){ log P(O(2)jl2)) ð3Þ

This measure is equal to zero for models with the same

statistical properties. In our example the model distance is close to

zero, 0.016, averaged over 5 repetitions, with a standard deviation

of 0.009. The small error is due to the difficulty in estimating the

exact distributions with data sets of this size. The methods are,

therefore, capable of inferring accurate models under conditions

typical to real data.

Degenerate systems
To demonstrate the ability of the methods to identify structure

in data where different hidden states are associated with the same

observable - degenerate systems - we also simulated data using the

model shown in Fig. 3. Since this system is more complicated the

data requirements to infer the correct architecture are compar-

atively higher; the result (also shown in Fig. 3) was obtained for

5000 data points. The Gaussian functions sampled on the

transitions had means of 0.1, 0.5 and 0.9 and standard deviations

of 0.09. In comparison, existing methods for inferring hidden

Markov models from FRET data such as HaMMy, described in

more detail below, may only hope to extract a 3 state model due to

the constraint of associating each FRET level with one state. The

‘HaMMy’ programme was also run on this spectrum obtaining the

3 state model shown in Fig. 4. Note that one could identify states

that had multiple transition rates associated with them by plotting

histograms of the dwell times in each state as in the work by

Laurens et al. [28]. The more recent method of Bronson et al. [29]

is also capable of inferring degenerate models. We note however

that, while it has fewer requirements of the data, it is more

computationally intensive than the causal state methods, requiring

O(K2N) calculations as opposed to O(N) where K is the number

of states and N the number of observations.

Experimental Data
Holliday Junctions are cross shaped, four way junctions of DNA

and important intermediates in DNA recombination. As such they

have been studied extensively [11,30–32]. In the presence of

divalent metal ions such as Mg2z they have two stable

conformations known as ‘stacked X’ conformers. Junctions will

Figure 2. Comparison of generating and inferred HMMs. A) The
HMM used to generate the data and B) the HMM inferred from the data.
For the generating model the transitions are labelled with the function
sampled to generate a data point and its probability. For the inferred
model the transitions are labelled with the symbol output on the
transition and its probability.
doi:10.1371/journal.pone.0029703.g002

Figure 3. Comparison of generating and inferred HMMs with
degenerate states. A) Model used to generate the data. This 4 state
model has two states associated with the FRET level centred at 0.1
(denoted f0) but with different probabilities of remaining in each state.
B) The model inferred from the data. It has the correct architecture and
the transition probabilities are close to those of the generating model.
The model distance between the two is 20.42.
doi:10.1371/journal.pone.0029703.g003

Inferring Hidden Markov Models from Noisy Data
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switch stochastically between the two conformations at a rate

determined by the concentration of magnesium ions. If fluorescent

probes are attached to the arms of the junction then these

conformational changes may be observed by a change in FRET

efficiency. Prior work has identified DNA sequences which form

Holliday junctions with an approximately equal occupation of

each conformer and characterised the dependency of the

transition rate on the concentration of magnesium ions [33]. In

order to test the methods on experimental data, these experiments

were repeated and causal state models were successfully con-

structed from the resulting data.

Experimental Methods
Biotin-labelled Holliday junctions (identical to ‘Junction 7’) were

assembled and purified essentially according to published methods

[33]. Equivalent junctions without donor and/or acceptor

fluorophores were prepared in the same manner for use as

controls. The junctions with only one fluorophore are used for

collecting data with which to correct the FRET efficiency for

overlap of the emission spectra of the two fluorophores. The

junctions with no fluorophores are used to confirm a low level of

background fluorescent contaminants. The junctions were bound

to a cover glass (Menzel Glaser Nr 1.5) with a BSA-biotin

streptavidin bridge using a modification of the method of

McKinney et al. Briefly, the cover glass was cleaned with an

argon plasma, then treated with biotinylated BSA (1 mg/ml,

Sigma) for 5 minutes before washing extensively with T50 buffer

(10 mM Tris-HCL [pH 7.5], 50 mM NaCl). Streptavidin

(0.2 mg/ml, Invitrogen) was applied for 2 minutes before washing

as before. A four channel imaging cell was constructed by

sandwiching appropriately cut double-sided tape between the

modified cover glass and a plasma-cleaned microscope slide.

Holliday junctions (50 pM molecules) were added to the channel

and incubated for 5 minutes before washing with T50 buffer

supplemented with MgCl2 (as stated), an oxygen scavenger system

(1 mg/ml glucose oxidase, 0.04 mg/ml catalase, and 0.8 mg/ml

dextrose, Sigma) and anti-photobleaching reagents (1 mM

methylviologen, 1 mM Ascorbic Acid, Sigma) [34].

FRET spectra were obtained using a custom built objective-

based total-internal-reflection fluorescence (TIRF) microscope

which is very similar in design to one described in detail elsewhere

[35]. A schematic is shown in Fig. 5. Excitation was achieved using

a 100 mW 532 nm laser (Laser Quantum, Ventus) attenuated by

neutral-density filters. Emission light passed through a 532 nm

notch filter (Semrock, StopLine) to remove scattered laser light

and then a commercial dual-view system (Optosplit II, Cairn) to

produce two images corresponding to the fluorescence from Cy3

(bandpass filter centred at 580 nm, width 60 nm) and Cy5

(bandpass filter centred at 655 nm, width 65 nm). Images were

recorded using an electron-multiplied charge-coupled device (EM-

CCD, iXon Du 897, Andor Technologies) with the Solis software

package (Andor Technologies). For each dataset, the brightest

objects were identified in each channel, matched between

channels and the intensity time series extracted. Where these time

series showed anticorrelation over a long period, FRET efficien-

cies were calculated according to methods in Ha [7] which

includes a correction for leakage of the Cy3 emission into the Cy5

channel. Each FRET spectrum was then discretised using the

methods described above and passed to the CSSR algorithm to

construct causal state models. The models were then used with the

transition probabilities to calculate the average transition rate for

the junctions for each concentration. The spectra were also

analysed using the ‘HaMMy’ programme as described [36]. Thirty

nine spectra of varying lengths were obtained for a range of

different magnesium ion concentrations.

HaMMy Results. Briefly, the HaMMY programme works in

the following way, for more detail the reader is referred to the

original paper [11] and references therein. First the user specifies

the number of states (FRET levels) they wish to fit to the data. This

determines the number of parameters in the model. These

parameters are then varied in order to maximise the likelihood

of observing the data using Brent’s algorithm, a multi-dimensional

optimisation algorithm. At each step in Brent’s algorithm, i.e. for

each set of parameter values, the likelihood of the data is

calculated using the Viterbi algorithm (an efficient method,

guaranteed to find the most probable state sequence). Providing

the procedure does not converge to a local maximum rather than

the global maximum it should infer the model with maximum

likelihood of generating the data. Then one can examine the fitted

Figure 4. Model inferred with HaMMy. HaMMy cannot distinguish
between the two degenerate states (A and D in Fig. 3A) resulting in a
model with a state (labelled A) averaging the degenerate states’
transition probabilities.
doi:10.1371/journal.pone.0029703.g004

Figure 5. Schematic of the optical design for TIRF illumination.
doi:10.1371/journal.pone.0029703.g005
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spectrum and identify and eliminate extraneous states if they are

never, or very infrequently, visited. Since we may identify and

remove extraneous states but not add more, it is prudent when

initially specifying the number of states to overestimate (by two as

a rule of thumb).

Following this, the programme was run first of all with four

states. Frequently this resulted in three FRET levels being visited

in the idealised spectrum, two FRET levels very close together

where one would assume there was only one, a case of the

algorithm converging to a local maximum since the initial

conditions were such that two FRET levels were equidistant from

the actual FRET level and so both converged upon it. To

circumvent this problem, initial guesses were supplied to the

algorithm close to the actual FRET levels. The remaining spectra

were fitted in this way. The HaMMy programme was able to infer

a two state model for all of the spectra; extra states were hardly

ever visited and for the most part had unphysical FRET values

greater than one.
Causal State Modelling Results. The Causal State

Modelling algorithms were also run on the data. It was found

that although the requirements of the data for these methods were

more stringent they could be successfully applied in the majority of

cases.

The parameters of the inference algorithm were determined as

follows. The significance level for the statistical test was set at 0.05.

Then entropic considerations as to the likelihood of statistical

fluctuations significant at this level guide an appropriate choice of

maximum subsequence length. Since in these spectra data are

relatively scarce, especially if the spacing of the FRET levels means

a low percentage of the data are used, the maximum subsequence

length was typically low, specifically 2. For longer spectra this was

increased where possible.

Two-state models were inferred for thirty of the thirty nine

spectra. Of those that failed seven were due to the FRET levels

being too close together. In these cases, there were insufficient

‘certain’ data after the discretisation to be able to infer a model. Of

these seven, in two borderline cases a model was inferred but the

transition architecture was incorrect. In the remaining two cases

the failure was due to the FRET levels changing monotonically

with time so as to cross the partitions meaning no transitions

between ‘certain’ symbols could be observed and hence no model

inferred.

It was also found that, due to the high level of noise and the

slight changes of FRET level with time leading to a higher weight

between the two peaks, the routine often inferred a mixture model

with more than two components despite the histogram of the

FRET efficiencies clearly having two peaks. This may also have

been due in part to the integration time of the camera averaging

over transitions between states. In these cases, where two

components were a more appropriate representation, the routine

was constrained to fit the mixture model as such. Note that this

constraint has no bearing on the number of states in the HMM

which is still unconstrained.

Despite the problems outlined above, the methods performed

well for the less noisy spectra of reasonable length. In Fig. 6 some

example spectra are shown along with the resultant causal state

models in Fig. 7.

Figure 6. Example sections of FRET spectra. Mg2z concentrations
are A) 30 mM, B) 40 mM, C) 50 mM and D) 60 mM. The shaded region
corresponds to the uncertain partition.
doi:10.1371/journal.pone.0029703.g006

Figure 7. Causal state machines corresponding to the 4 spectra
shown in Fig. 6. Mg2z concentrations are A) 30 mM, B) 40 mM, C)
50 mM and D) 60 mM. Note that the actual transition rates are given by
dividing transition probabilities by the sampling rate of the data, these
were 41 ms per point for 30–50 mM and 71 ms per point for 60 mM.
doi:10.1371/journal.pone.0029703.g007
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Discussion

Method Comparison
The two methods are both capable of inferring models in

agreement with our understanding of the physical system

generating the data, but make different assumptions and have

different requirements of the data and different model spaces

(HaMMy’s model space is contained in our method’s model

space). The speed of the two methods is comparable. Run time is

typically less than 30 s on a desktop computer for both methods.

HaMMy requires as an input the number of FRET levels the

user believes are present in the spectrum (overestimated to ensure

the procedure is not constrained to fit a sub-optimal model)

and assumes a model architecture with a state corresponding to

each FRET level. Additional inputs specifying initial parameter

values close to true values may improve the performance of the

algorithm.

The causal state methods require (in the case of noisy data) the

number of FRET levels the user believes are present, and a

significance level at which to test whether or not distributions are

equivalent. This significance level along with the quantity of data

determines the remaining parameter, the maximum length of

subsequence examined. The causal state methods make no

assumptions regarding the model architecture but increase the

number of states in the model if the current model cannot

adequately account for structure in the data. They also allow for

degeneracy, more than one state associated with the same FRET

level. Both methods assume stationarity. As seen from the results

above, the causal state methods have more stringent requirements

regarding the quantity and quality of data. However, if a hidden

state is suspected, this method is required.

The transition rates as a function of Mg2z concentration are

shown in Fig. 8 for both analysis methods. Note that these values

are average results for multiple spectra, obtained by taking logs,

calculating the mean and standard deviation for these transformed

values, then exponentiating [11]. These values are in good

agreement with previous work [33], exhibiting the same trend and

being of the same order of magnitude; exact values for transition

rates may vary with temperature. The values from the two

different methods are consistent with each other in that the

differences between them are within the error tolerances, however,

we observe that the results from CSSR are consistently lower than

those from HaMMY. We believe this is due to the causal state

modelling underestimating the transition probabilities for the

following reason. Since the data are time binned, all transitions

must occur within an integration period resulting in a value of

FRET efficiency for that bin which has been averaged to some

extent. Due to the partitioning and discretisation scheme, these

time averaged bins are more likely to be discounted by the causal

state inference algorithm since they are more likely to fall in the

ambiguous region between the two peaks in FRET efficiency. This

introduces a bias into the statistics since time bins containing no

transitions are less likely to be discounted in this way. For high

data sampling rates relative to the time scale upon which the

transitions occur this bias will be negligible, however, if the

sampling rate is too low then the bias will become significant, as is

the case for the rate inferred for the 30 mM magnesium ion

concentration data. Since the simulated data was not subjected to

further sampling or coarse graining this biasing was not observed

and the correct transition probabilities were inferred.

Conclusions
This paper presents a new method for inferring hidden Markov

models from noisy time series, demonstrating the ability to infer

the correct model architecture with minimal initial assumptions.

We emphasise that the method is not only applicable to FRET

spectra, but to any data source with a natural tendency to cluster

such as that reported by other groups [37,38]. It will generate

unique, optimal and minimal predictors with only 2 input

parameters. Application to the conformational dynamics of

Holliday Junctions has demonstrated the ability of the methods

to extract models from experimental data which agree with

previous work in both model architecture and transition rates. The

method provides a complementary alternative to existing methods

of fitting HMMs to FRET spectra. Comparison between the new

method and an existing maximum likelihood method shows that

the requirements for the new method are more stringent; requiring

a sufficient spacing of FRET levels, a sufficient quantity of data

and a high sampling rate relative to the timescale of the dynamics

of interest. However, since this new technique extends the model

space and is able to directly discern multiple states with the same

FRET distribution it holds a considerable advantage over its

predecessor.

Supporting Information

Figure S1 A short section of the spectrum simulated
using the model shown in Fig. 3 of the main paper and
the Gaussian functions there described.

(TIF)

Figure 8. Average transition rates as a function of magnesium
ion concentration. A) shows transition rate from the high FRET state
to the low FRET state and B) the low FRET state to the high FRET state,
with rates calculated using HaMMy (circles) and the causal state method
(crosses). The error bars indicate the standard deviation.
doi:10.1371/journal.pone.0029703.g008

Inferring Hidden Markov Models from Noisy Data

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e29703



Figure S2 A (normalised) histogram of the FRET
efficiencies of the simulated spectrum with the fitted
mixture model overlaid.

(TIF)

Figure S3 The partition boundary locations and the
numbering of the partitions used to discretise the data.
The distributions are labelled g0,g1::: from left to right, the

partitions are labelled 0,1::: from left to right and the partition

boundaries are labelled p{1,0, p0,1::: from left to right.

(TIF)

Figure S4 The shaded regions show the fraction of each
model component which is associated with the certain
region. The smallest is found (in this case the central component)

and then the partition boundary locations are adjusted in order to

equalise them. The original partition boundary locations are

indicated with solid black lines. The adjusted locations are

indicated with dashed red lines.

(TIF)

Figure S5 A short section of a FRET spectrum with
calculated most probable trajectory.

(TIF)

Figure S6 Histogram showing the frequencies of dwell
times for the low FRET state and a fitted exponential
distribution.

(TIF)

Figure S7 Histogram showing the frequencies of dwell
times for the high FRET state and a fitted exponential
distribution.
(TIF)

Table S1 Word frequencies.
(PDF)

Table S2 The causal states and their assigned strings
for l = 1.
(PDF)

Table S3 The causal states and their assigned strings
for l = 2.
(PDF)

Table S4 The causal states and their assigned strings
for l = 3.
(PDF)

Text S1 Supporting Information providing an example
demonstrating the discretisation methods, the proof of
unbiased sampling, a walk through of the CSSR algo-
rithm and a discussion of the stationarity assumption.
(PDF)
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