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Abstract: Peptide receptor radionuclide therapy (PRRT) has been in clinical use for 15 years to
treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the
administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is
essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion
of positively charged amino acids is the standard method of kidney protection. Other methods,
such as administration of amifostine, are still under evaluation and show promising results.
α1-microglobulin (A1M) is a reductase and radical scavenging protein ubiquitously present in
plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown
to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It
has recently been shown in mice that exogenously infused A1M and the somatostatin analogue
octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this
review we describe the current situation of kidney protection during PRRT, discuss the necessity
and implications of more precise dosimetry and present A1M as a new, potential candidate for renal
protection during PRRT and related targeted radionuclide therapies.
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1. Peptide Receptor Radionuclide Therapy (PRRT)

1.1. Background

Neuroendocrine tumors (NETs) are a large group of neoplasms derived from the neuroendocrine
system. Common sites for primary tumors are the gastrointestinal tract, the lungs, and other
neuroendocrine tissues [1,2]. In the 1980s it was discovered that some tumors overexpress peptide
receptors. The somatostatin receptor family consists of five receptor subtypes, sstr1-5 [3]. A majority
of NETs has a strong over-expression of somatostatin receptors, mainly subtype 2 (sstr2), which is the
key target for therapy using stable somatostatin analogues (SSA) [3]. Peptide receptor radionuclide
therapy (PRRT) using somatostatin analogues such as octreotide chelated to β-emitting radionuclides
(177Lu, 90Y) have been successfully used to target inoperable or metastatic NETs for the past 15 years.
A large body of evidence describes the effectiveness and clinical safety of these procedures [3]. PRRT
as a therapeutic option, has proven ideal for patients expressing well or moderately differentiated
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neuroendocrine carcinomas of grade 1 or 2, since these tumors often have metastasized and are
inoperable. The first attempt to evaluate the diagnostic compound 111In-octreotide as a potential
radiopharmaceutical took place in the 1990s, with patients receiving cumulative activities of at least
20 and up to 160 gigabecquerel (GBq; activity unit for radioactivity 1 Bq equal to one decay per
second). Therapeutic effects could be demonstrated: partial and minor remission and stabilization
of progressive tumors in half of the patients [4]. Side effects consisted of mild bone marrow toxicity
and leukemia with absorbed doses to the bone marrow in the order of 3 Gray (Gy). However, the
failure of the therapy in many patients can be explained by the short range of the emitted electrons
(mainly Auger electrons) in combination with heterogeneous receptor expression (equal to activity
distribution) in the NETs. Because of this, 111In-based therapy is generally not recommended for
PRRT [5]. Although 111In-octreotide infusion to this day remains a therapeutic option for NETs, it has
been replaced by conjugates with β-emitters such as 90Y and 177Lu.

PRRT utilizing the two radiopharmaceuticals 90Y-[DOTA0, Tyr3]-octreotide (DOTATOC) and
177Lu-[DOTA0, Tyr3]-octreotate (DOTATATE) has proven to be an effective and safe alternative
treatment for patients with metastatic NETs [6,7]. Both peptides are derivatized somatostatin
analogues that show high affinity for sstr2. DOTATATE has a higher affinity for sstr2 (1.5 ˘ 0.4 nM)
when compared to DOTATOC (14 ˘ 2.6 nM), but does not display any affinity for other subtype
receptors such as sstr3 and sstr5 [8]. DOTATOC has a weak, but non-negligible affinity, for sstr3 and
sstr5 (393 ˘ 84 nM and 880 ˘ 324 nM respectively) [9].

DOTATATE has been shown to perform favorably compared to alternative treatment modalities
in terms of tumor response rate and progression-free survival with a survival benefit of 40–72 months
when compared to controls [10]. A recent large international multi-center trial [11] has shown marked
improvement in progression-free survival rate and overall survival in patients undergoing PRRT
with DOTATATE.

1.2. Diagnostic Assessment

The WHO recently published a three-tiered classification system for NETs based on their mitotic
rate and Ki-67 index: NET Grade 1, NET Grade 2, and neuroendocrine carcinoma [12]. Patients with
NET grade 1 or 2 (low grade carcinomas) are ideal candidates for PRRT. The sstr2-expressing NETs
in the bronchial and gastroenteropancreatic tract are the most common NETs considered for PRRT
with radiolabeled somatostatin analogues [3]. Other NETs, such as medullary thyroid carcinoma,
phaeochromocytoma, paraganglioma and neuroblastoma, are also highly suitable candidates for
PRRT [13–18].

In order to select viable candidates that would benefit from PRRT it is important to assess
sstr-status. Functional imaging with single photon emission computed tomography (SPECT)
using 111In-pentetreotide and positron emission tomography (PET) with 68Ga-labaled SSA are
well established methods to assess sstr status and collect essential information for staging and
re-staging [19,20]. In particular, PET has proven superior to SPECT, providing a more accurate,
personalized treatment [21]. A detailed anatomical imaging of the primary tumor and its metastases
can be obtained utilizing computed tomography (CT), ultrasonography and magnetic resonance
imaging (MRI) and is important to evaluate treatment response [3].

Contraindications for PRRT treatment include pregnancy, acute concomitant diseases, and
psychiatric disorders [3]. Other considerations are compromised bone marrow or severely
compromised renal function, although patients with the latter can still be considered for treatment.

1.3. Dose-Limiting Organs

The bone marrow and the kidneys are both dose-limiting organs in PRRT-therapy, and the
latter is considered to be the major dose-limiting organ [22,23]. As there is physiological renal
retention of radiolabeled somatostatin analogues, the cumulative kidney absorbed dose limits the
possible activity to administer. If one can reduce the toxicity to normal tissues (mainly the kidneys),
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the therapeutic window can be enlarged. Radiolabeled somatostatin analogues are filtered by the
glomeruli and reabsorbed in the proximal tubules. The megalin/cubulin system plays an essential
role in the reabsorption of octreotide. Reduction of the renal uptake can be achieved during PRRT by
infusion of the positively charged amino acids L-lysine and L-arginine [3].

2. Dosimetry

Because of the unwanted uptake in the kidneys and other non-target tissues, precise and reliable
dosimetry is needed to optimize PRRT. Absorbed dose is defined as imparted energy per mass unit
(1 J/kg equals 1 Gy). The imparted energy causes ionizations and excitations inducing damage to
biological molecules due to direct or indirect effects. The latter process include reactions with free
radicals that are generated as a result of interaction with water molecules. Examples of direct and
indirect effects of the deposited energy in biological tissue are oxidations and radical formations of
cellular molecules, causing single strand (SSB) and double strand breaks (DSB) of nuclear DNA.

In vivo dosimetry requires knowledge of the kinetics of the radiopharmaceutical. However, the
determination accuracy of the radioactivity distribution in imaging techniques such as SPECT and
PET becomes limited. For example, the quantitative uncertainty is 2% or more using SPECT [24].

In conventional external radiotherapy, an absorbed dose of 23 Gy to the whole kidney gives
an expected risk of 5% of nephrotoxicity within five years [25]. This cannot be applied directly to
PRRT due to the lower dose rate where absorbed doses of 27–29 Gy are tolerated. For the bone
marrow a maximal absorbed dose of 2 Gy is generally acceptable. This emphasizes the importance of
individualized kidney and bone marrow dosimetry, in order to predict and circumvent toxicity and
maximize the absorbed dose to the tumor. A threshold biological effective dose (BED) to the kidneys
for patients with no risk factors has been evaluated by Bodei et al. [22] to 40 Gy. While a maximum
BED of 28 Gy to the kidneys is recommended, the same author states that further investigation is
needed to determine a more definite threshold BED.

The varying activity distributions within the kidney affect the absorbed dose distribution.
High-energy β emission from 90Y results in a fairly homogeneous absorbed dose distribution,
whereas low-energy electron (Auger electron) and medium energy β emitters as 111In and 177Lu give
more inhomogeneous absorbed dose distributions. As a consequence in PRRT, a higher absorbed
dose can be seen in cortical nephrons and in the juxtamedullary zone.

Guidelines on how individualized patient dosimetry in radionuclide therapy can be performed
are found in the literature [26,27]. The relative activity distribution in vivo is quantifiable by SPECT
and PET. With a pure, low energy β emitter this activity concentration can simply be transformed
to an absorbed dose rate by multiplying with an absorbed dose conversion factor. If a substantial
fraction of the decay energy is released as photons or high energy β particles, radiation cross-fire has
to be considered.

In most cases dosimetry is performed using the Medical Internal Radiation Dose (MIRD)-concept
calculating mean absorbed dose D, with standardized human anatomy. The MIRD scheme is in a
simplified way written as

D “ Ã ˆ S “ A0 ˆ τ ˆ S (1)

where Ã is the cumulated activity and S is the mean absorbed dose per cumulated activity (or
S-factor), which depends on the properties of target organs and the radionuclide used. Several
numerical or compartment models are used to calculate Ã and dedicated software such as OLINDA
is then used to calculate the absorbed dose [28,29]. Patients with known risk factors can benefit
from patient specific dosimetry, where the cumulated dose is determined from a series of scintillation
camera measurements using either planar scintigraphy or SPECT. Reported absorbed dose range per
unit activity to the kidneys for 90Y-DOTATOC and 177Lu-DOTATATE treatments are 2.55–2.84 Gy/GBq
and 0.62–0.9 Gy/GBq, respectively (Table 1) [3].
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Table 1. Three examples of reported absorbed doses in kidneys per unit activity (Gy/GBq) with
mean ˘ SD or median range (marked with an asterisk) following PRRT utilizing 90Y-DOTATOC and
177Lu-DOTATATE.

90Y-DOTATOC (Gy/GBq) 177Lu-DOTATATE (Gy/GBq)

Absorbed dose per unit
administered activity

2.84 ˘ 0.64 0.88 ˘ 0.19
2.44 (1.12–4.5) * 0.62 (0.45–17.74) *

2.73 ˘ 1.41 0.9 ˘ 0.3

* median (range).

Based on the kidney anatomy, a detailed dosimetry model has been developed by the Committee
on Medical Internal Radiation Dose (MIRD). Here, regional S-factors can be derived and used in the
case of heterogeneous activity distribution [30].

It has been reported that high energy β emitters as 90Y can be accurately described by the
MIRD kidney dosimetry approach whereas low energy emitters as 111In and 177Lu need dosimetry
calculations based on autoradiography activity distributions [25].

2.1. PRRT—Side Effects and Protective Measures

Acute side effects, such as headaches, nausea, and vomiting occur in the majority of patients [31].
These side effects can be ameliorated with hydration and antiemetic treatment. Delayed side effects
are closely related to the dose limiting organs and include loss of renal function, especially in patients
with severe hypertension, diabetes mellitus, and bone marrow toxicity [18].

Most of the radiolabeled somatostatin analogs are cleared by the kidneys and the majority of the
activity is excreted via the urine. However, a small amount (about 2%) is reabsorbed and retained
in the proximal tubuli and prolonged irradiation of the kidneys follows. To inhibit the uptake in
the proximal tubule protective measures are taken by infusing positively charged amino acids such
as L-lysine and/or L-arginine. These countermeasures have proven to significantly reduce the renal
absorbed dose and are widely used today.

Despite protective measurements, loss of renal function has been observed in patients
undergoing PRRT. It has been observed that patients with NETs treated with 177Lu-DOTATATE or
90Y-DOTATOC suffered a creatinine clearance loss of 3.8% and 7.3%, respectively, per year [3]. The
infusion of basic amino acids has also been reported to potentially cause acute hyperkalemia as well
as being a potential catalyst for hormonal crisis in patients undergoing PRRT [32,33].

The search for methods that could reduce renal uptake and mitigate radiation induced damage
requires extensive knowledge of uptake mechanisms, kinetic properties of the protective agents, and
their distribution in target organs and other tissues.

The cytoprotective agent amifostine has demonstrated protective properties. In vivo experiments
with rats showed a significant decrease in renal uptake [34]. To further increase protection, the
combined infusion of amifostine and L-lysine has been suggested in order to cover both long and
short-term effects.

2.2. Kidney Activity Distributions

Autoradiography of resected kidneys from patients administered 111In-DTPA-Octreotide has
revealed irregular distribution of activity in the cortex with highest uptake around the juxtamedullary
cortex region [25]. It was also reported that the medulla showed heterogeneous activity distribution
with highest activities in the central parts.

To fully understand the biological effect of the heterogeneous activity distribution and
corresponding absorbed dose distribution, the cellular and subcellular pattern need to be revealed.
In the study from Ahlstedt et al. [35] it was shown that a fluorescence-labeled octreotide-derivate was
localized preferentially to the kidney cortex in tubular epithelial cells (See Figure 1 for more details).
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Figure 1. Visualizing the distribution of 125I-labelled A1M 20 minutes post-injection at different 
magnification using SPECT/CT (A) and digital autoradiography (B) at the organ-level and 
fluorescence imaging showing both A1M (green), octreotide (red) and cell nuclei (blue) (C,D) at 
cellular and sub-cellular levels. The arrow in (D) indicates one single cell. The figure is modified from 
reference 35 with permission from the publisher. 

Assuming a mean absorbed dose to the cortex of 27 Gy, local maximum absorbed doses for 
177Lu, 111In, and 90Y have been reported to be 47, 40, and 25 Gy respectively [25]. Furthermore, the JM 
complex has been reported to receive absorbed doses of 39 Gy for 111In-DTPA-octreotide and 32 Gy 
for DOTATOC with an average kidney absorbed dose of 27 Gy. For DOTATATE an average kidney 
absorbed dose of 23 Gy can result in an absorbed dose of 40 Gy to the JM complex [25]. 

3. Oxidative Stress 

3.1. Oxidation and Antioxidation 

The term “oxidative stress” is used to describe physiological conditions with an abnormally 
high production of redox active compounds and/or impaired antioxidative tissue defense systems 
[36]. Mediators of oxidative stress are reactive oxygen species (ROS) including free radicals, which 
are highly reactive due to the presence of unpaired electrons. ROS and radicals react with proteins, 
DNA, membranes etc, which can lead to unwanted modifications of the target molecules and loss of 
their functions. Endogenous generators of oxidative stress are hemoglobin (Hb) and heme, released 
during hemolysis [37] and other heme-proteins such as cytochrome c and myoglobin, released 
during inflammation and tissue necrosis. Mitochondrial respiration also generates ROS, and is a 
source of oxidative stress during inflammation and tissue necrosis. 

Physiological defense systems have evolved to counteract the chemical threat of oxidative 
stress to exposed tissues and macromolecules. ROS and other oxidative compounds are inhibited 
and eliminated by antioxidation enzymes such as superoxide dismutase (SOD), glutathione 
peroxidase (Gpx), and catalase [38–40]. Free Hb and heme in blood are bound by haptoglobin and 
hemopexin, and cleared by specific receptors in macrophages and liver [41]. Intracellular heme is 
bound and degraded by heme oxygenase (HO) [42]. 

3.2. Radiation and Oxidative Stress 

Irradiation of biological tissues, such as in PRRT, leads to induction of oxidative stress. Thus, 
as described above, ROS and free radicals are generated by (1) direct interactions between the 
irradiation particles and molecules of the targeted biological tissue; and (2) secondary interactions 
between components released from the directly irradiated dead cells and surrounding cells and 
matrix molecules. The latter, secondary, response is also referred to as the “bystander effect”, i.e., 
the irradiation causes damage to cells and tissues which are surrounding the targeted areas, but are 
not directly hit [43–45]. 

3.3. α1-Microglobulin (A1M) 

3.3.1. Structure, Expression, and Distribution 

α1-Microglobulin (A1M) is a recently discovered physiological antioxidant, active both inside 
cells and in the extracellular compartments [46,47]. It is conserved in evolution and found in all 

Figure 1. Visualizing the distribution of 125I-labelled A1M 20 minutes post-injection at different
magnification using SPECT/CT (A) and digital autoradiography (B) at the organ-level and
fluorescence imaging showing both A1M (green), octreotide (red) and cell nuclei (blue) (C,D) at
cellular and sub-cellular levels. The arrow in (D) indicates one single cell. The figure is modified
from reference 35 with permission from the publisher.

Assuming a mean absorbed dose to the cortex of 27 Gy, local maximum absorbed doses for
177Lu, 111In, and 90Y have been reported to be 47, 40, and 25 Gy respectively [25]. Furthermore, the
JM complex has been reported to receive absorbed doses of 39 Gy for 111In-DTPA-octreotide and
32 Gy for DOTATOC with an average kidney absorbed dose of 27 Gy. For DOTATATE an average
kidney absorbed dose of 23 Gy can result in an absorbed dose of 40 Gy to the JM complex [25].

3. Oxidative Stress

3.1. Oxidation and Antioxidation

The term “oxidative stress” is used to describe physiological conditions with an abnormally high
production of redox active compounds and/or impaired antioxidative tissue defense systems [36].
Mediators of oxidative stress are reactive oxygen species (ROS) including free radicals, which are
highly reactive due to the presence of unpaired electrons. ROS and radicals react with proteins,
DNA, membranes etc, which can lead to unwanted modifications of the target molecules and loss of
their functions. Endogenous generators of oxidative stress are hemoglobin (Hb) and heme, released
during hemolysis [37] and other heme-proteins such as cytochrome c and myoglobin, released during
inflammation and tissue necrosis. Mitochondrial respiration also generates ROS, and is a source of
oxidative stress during inflammation and tissue necrosis.

Physiological defense systems have evolved to counteract the chemical threat of oxidative stress
to exposed tissues and macromolecules. ROS and other oxidative compounds are inhibited and
eliminated by antioxidation enzymes such as superoxide dismutase (SOD), glutathione peroxidase
(Gpx), and catalase [38–40]. Free Hb and heme in blood are bound by haptoglobin and hemopexin,
and cleared by specific receptors in macrophages and liver [41]. Intracellular heme is bound and
degraded by heme oxygenase (HO) [42].

3.2. Radiation and Oxidative Stress

Irradiation of biological tissues, such as in PRRT, leads to induction of oxidative stress. Thus,
as described above, ROS and free radicals are generated by (1) direct interactions between the
irradiation particles and molecules of the targeted biological tissue; and (2) secondary interactions
between components released from the directly irradiated dead cells and surrounding cells and
matrix molecules. The latter, secondary, response is also referred to as the “bystander effect”, i.e.,
the irradiation causes damage to cells and tissues which are surrounding the targeted areas, but are
not directly hit [43–45].
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3.3. α1-Microglobulin (A1M)

3.3.1. Structure, Expression, and Distribution

α1-Microglobulin (A1M) is a recently discovered physiological antioxidant, active both inside
cells and in the extracellular compartments [46,47]. It is conserved in evolution and found in all
vertebrates including birds and fish. A1M is a 26 kDa glycoprotein that belongs to Lipocalin protein
family [48,49]. The Lipocalins are a group of >50 structurally related proteins in bacteria, plants, and
animals, and are believed to originate from a common ancestor. They are one-domain proteins with a
150–190 amino acid-polypeptide and a common fold that consists of an eight-stranded β-barrel with
a closed bottom and an open end at the top. The interior of the barrel usually serves as a binding site
for mostly hydrophobic low molecular weight ligands [48]. The archetype lipocalin is retinol-binding
protein (RBP) which transports vitamin A (retinol) in blood [50]. The structure of the major part of
A1M was recently reported [51] and is shown in Figure 2.

Int. J. Mol. Sci. 2015, 16, page–page 

6 

vertebrates including birds and fish. A1M is a 26 kDa glycoprotein that belongs to Lipocalin protein 
family [48,49]. The Lipocalins are a group of >50 structurally related proteins in bacteria, plants, and 
animals, and are believed to originate from a common ancestor. They are one-domain proteins with 
a 150–190 amino acid-polypeptide and a common fold that consists of an eight-stranded β-barrel 
with a closed bottom and an open end at the top. The interior of the barrel usually serves as a 
binding site for mostly hydrophobic low molecular weight ligands [48]. The archetype lipocalin is 
retinol-binding protein (RBP) which transports vitamin A (retinol) in blood [50]. The structure of 
the major part of A1M was recently reported [51] and is shown in Figure 2. 

  
Figure 2. Three-dimensional rendering of A1M based on the published crystal structure [51]. The 
position of the C34 group (mutated to serine in the crystal structure) is highlighted in red. This is the 
critical site for the reductase, heme binding, and radical scavenging properties of A1M. 

The major site of synthesis of A1M is the liver [52], but all other investigated organs and cells 
express the protein although at a lower rate. The gene of A1M is denoted the α1-Microglobulin-
Bikunin Precursor (AMBP) gene and encodes a continuous precursor protein consisting of A1M and 
bikunin, which are linked together during translation and in the ER lumen, but cleaved in the Golgi 
and secreted as two separate proteins with different functions [53,54]. Bikunin is a protease 
inhibitor and matrix component [55]. The co-synthesis is conserved in all cells and all species and 
the functional significance of the peculiar expression arrangement is yet unknown. 

After secretion to the blood, A1M is rapidly extravasated and found in the extravascular 
compartment in most organs. Thus, a rapid equilibrium between intra- and extravascular 
compartments (T1/2 in blood = 2–3 min) is established [56] and a steady state concentration of 1–2 
µM A1M in the plasma is achieved [57]. A1M is found both in a monomeric form and complex-
bound to IgA, albumin, and prothrombin [58]. Being a small protein, A1M is equally quickly 
filtrated by the glomeruli of the kidneys and reabsorbed by the proximal tubule epithelial cells. 
Small amounts, however, escape this route and are excreted into the urine, amounting to 
approximately 5 mg/24 h [59]. 

3.3.2. Biochemical Properties, Physiological Function, and Therapeutic Applications 

A1M has been shown to have heme-binding, radical scavenging, and reductase properties [47] 
that suggest a physiological role as an antioxidant. Heme-groups can be bound by A1M [60,61] and 
proteolytic removal of a C-terminal tetrapeptide induces a pseudoenzymatic heme-degradation 
activity [60]. The free thiol group in amino acid position C34 (Figure 2) is the active site of a 
reductase/dehydrogenase activity of A1M [62]. Enzymatic reduction of free iron, heme proteins, 

Figure 2. Three-dimensional rendering of A1M based on the published crystal structure [51]. The
position of the C34 group (mutated to serine in the crystal structure) is highlighted in red. This is the
critical site for the reductase, heme binding, and radical scavenging properties of A1M.

The major site of synthesis of A1M is the liver [52], but all other investigated organs
and cells express the protein although at a lower rate. The gene of A1M is denoted the
α1-Microglobulin-Bikunin Precursor (AMBP) gene and encodes a continuous precursor protein
consisting of A1M and bikunin, which are linked together during translation and in the ER lumen, but
cleaved in the Golgi and secreted as two separate proteins with different functions [53,54]. Bikunin
is a protease inhibitor and matrix component [55]. The co-synthesis is conserved in all cells and all
species and the functional significance of the peculiar expression arrangement is yet unknown.

After secretion to the blood, A1M is rapidly extravasated and found in the extravascular
compartment in most organs. Thus, a rapid equilibrium between intra- and extravascular
compartments (T1/2 in blood = 2–3 min) is established [56] and a steady state concentration of
1–2 µM A1M in the plasma is achieved [57]. A1M is found both in a monomeric form and
complex-bound to IgA, albumin, and prothrombin [58]. Being a small protein, A1M is equally quickly
filtrated by the glomeruli of the kidneys and reabsorbed by the proximal tubule epithelial cells. Small
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amounts, however, escape this route and are excreted into the urine, amounting to approximately
5 mg/24 h [59].

3.3.2. Biochemical Properties, Physiological Function, and Therapeutic Applications

A1M has been shown to have heme-binding, radical scavenging, and reductase properties [47]
that suggest a physiological role as an antioxidant. Heme-groups can be bound by A1M [60,61]
and proteolytic removal of a C-terminal tetrapeptide induces a pseudoenzymatic heme-degradation
activity [60]. The free thiol group in amino acid position C34 (Figure 2) is the active site of a
reductase/dehydrogenase activity of A1M [62]. Enzymatic reduction of free iron, heme proteins,
and oxidized matrix and cytosolic proteins have been shown [62–64]. The reduction potential of the
C34 thiol group also constitutes the structural and enzymatic basis of a radical binding mechanism
that leads to covalent trapping of free radicals to lysyl and tyrosyl side-chains of A1M [65]. In
line with this, human urine and amniotic A1M were shown to be yellow-brown due to covalent
modifications [46,66,67].

As suggested by these biochemical properties of A1M, the protein has an antioxidant function
in physiological situations with elevated oxidative stress. This has been verified in several reports
that demonstrate that A1M can protect in vitro cell and organ cultures against oxidative damage
from Hb, heme, and ROS [63,68,69]. Adding to the antioxidation potential in vivo, A1M was shown
to accumulate in mitochondria via binding to mitochondrial Complex I stabilizing mitochondrial
structure and maintaining ATP production during oxidative stress [70]. Also, upregulation of the
AMBP-gene by elevated concentrations of ROS, hemoglobin and heme was reported in vitro and
in vivo, suggesting an increased antioxidative protection potential during physiological oxidative
stress [71,72].

A probable role as a radical- and hemescavenging antioxidant has led to the proposal of A1M
as a therapeutic drug in diseases where elevated levels of Hb, heme and ROS constitute the major
pathological insult [47]. Thus, infusion of A1M was shown to successfully treat placenta and kidney
damage in the oxidative stress-related disease preeclampsia in vivo in sheep and rabbit models [73,74].
A1M could also inhibit glomerular damage induced by Hb-infusion in rats [75].

4. A1M in PRRT

4.1. A1M Protects against Radiation-Induced Tissue Damage

Two previous publications from our group demonstrate that A1M can protect bystander cells
against irradiation-induced damage in vitro [64,76]. Using an experimental setup that allowed
irradiation of a minor fraction of a human hepatoma monolayer, leaving the major part as bystander
cells, it was shown that alpha-particle irradiation induced significant oxidative stress, cell death,
apoptosis, and cell cycle arrest in the bystander cells. Addition of A1M to the culture medium
reduced the cell death and inhibited apoptosis, oxidation biomarker formation, and upregulation
of stress-response genes.

4.2. Infused A1M Is Localized to Kidneys in Vivo

To allow protection of radiation-exposed tissue-components in the kidneys during PRRT, a
method to increase the concentration of A1M in kidney tissues should be developed. It was
demonstrated several years ago that a large part (27%) of A1M was localized to the kidneys in
rats in vivo 45 min. after intravenous (iv) infusion [56]. It was recently demonstrated in mice that
exogenously infused A1M and the somatostatin-analogue octreotide, used clinically in PRRT, are
co-localized in kidneys primarily in the proximal tubules, during the first hours after iv infusion [35].
Figure 2 illustrates the co-localization in the kidney cortex and on sub-cellular level in a proximal
tubule after 20 min. In the study by Ahlstedt et al. [35] it was also shown that A1M appeared intact
and full-length, suggesting that the protein still had functional activity.
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4.3. Protection Hypothesis and Proof-of-Concept Experiments

The biological properties of A1M suggest that the protein may be employed as a co-treatment
drug to protect against damaging side-effects on the kidneys during PRRT. Indeed, protection of
kidney tissue from direct irradiation damage and/or bystander effects may allow a higher clinical
dosage of the active peptides and hence a more efficient treatment of targeted tumors. This hypothesis
is based on several sets of published results as described above. However, Proof-of-Concept
experiments need to be performed to (1) ensure that kidney glomerular and tubular functions are
significantly protected by A1M at various clinically relevant doses of radiopharmaceuticals while
effects on tumors are maintained; (2) evaluate and optimize dosage regimen of both components.
Such studies are presently undertaken at our laboratories.
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