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Background: Differences in the distribution of theMTRR rs326119 polymorphism (c.56+781 ANC) between pa-
tients with congenital heart disease (CHD) and controls have been described in Chinese individuals. The associ-
ation is thought to be due to deregulation of homocysteine-cobalamin pathways. This has not been replicated in
other populations. The primary objective of this studywas to assess the influence of theMTRR rs326119polymor-
phism on biochemical parameters of vitamin B12 metabolism, coronary lesions, and congenital heart disease in
Brazilian subjects.
Methods: We selected 722 patients with CHD, 1432 patients who underwent coronary angiography, and 156
blood donors. Genotyping for the MTRR polymorphism was evaluated by high-resolution melting analysis, and
biochemical tests of vitamin B12 metabolism were measured.
Results: Subjects carrying the AC or CC genotypes had higher homocysteine concentrations (9.7± 0.4 μmol/L and
10.1 ± 0.6 μmol/L) and lower cobalamin concentrations (260.5 ± 13.3 pmol/L and 275.6 ± 19.9 pmol/L) com-
pared with the subjects carrying the AA genotype (8.7 ± 0.5 μmol/L and 304.8 ± 14.7 pmol/L), respectively. A
multiple linear regression model also identified a significant association between the number of C variant alleles
with the concentrations of homocysteine and cobalamin. Nonetheless, the allelic and genotypic distributions for
MTRR rs326119 were not associated with CHD or coronary atherosclerosis in the studied samples.
Conclusion: Our findings indicate that theMTRR rs326119 variant might be a genetic marker associated with ho-
mocysteine and cobalamin concentrations, but not a strong risk factor for CHD or coronary atherosclerosis in the
Brazilian population.
© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Homocysteine is a molecule of the blood produced when methionine
is broken down in an organism. This metabolism is dependent on vita-
mins B6 and B12 and folate. The main form of folate in plasma, 5-
methylenetetrahydrofolate (5-MTHF), participates in the re-methylation
pathway and is formed from the reduction of 5,10-methylenetetrahydro-
folate by the enzyme methylenetetrahydrofolate reductase (MTHFR). In
this process, homocysteine receives a methyl group by the activity of
the enzymemethionine-synthase (MTR). Methionine synthase reductase
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(MTRR) is involved in reducing cob(II)alamin (B12r) tomethylcobalamin
(MeCbl), the cofactor form used in methionine synthase (MTR) [1–6].

Both MTHFR and MTRR are essential enzymes responsible for,
amongmany other functions, keeping homocysteine at adequate levels.
In fact, genetic variations in the genes that codify these enzymes have
been shown to modulate homocysteine levels [7–9]. Furthermore,
some studies have shown associations of hyperhomocysteinemia with
the development of cardiovascular disease, and increased risks of
atherosclerosis and thrombosis [9–11]. However, the relationship be-
tween genetic polymorphisms, homocysteine level, and cardiovascular
phenotypes is still controversial and has been the focus of many studies
[12–14].

A study, performed in a Chinese Han population, investigated poly-
morphisms in the MTRR gene. The study identified a significant differ-
ence in the distribution of the MTRR rs326119 polymorphism
(c.56+781 ANC) between subjects with congenital heart disease
(CHD) and controls. An association of the same polymorphism with
e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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homocysteine levels was also observed [15]. Authors then hypothesized
that homocysteinemetabolism could be the cause of an increased risk of
developmental problems in individualswith the risk allele. This, howev-
er, has not been replicated in other populations. The main aim of this
study was to assess the influence of theMTRR rs326119 polymorphism
on biochemical parameters of B12 vitamin metabolism, and in cardio-
vascular phenotypes, namely, coronary atherosclerosis and CHD in
Brazilian patients.

2. Subjects and methods

In this study, patients who underwent coronary angiography (n =
1432) plus blood donors (n = 156) were used as both a control group
for CHD (n = 722), and as samples for testing the association between
MTRR polymorphism and coronary atherosclerosis and homocysteine
levels, respectively. The University of São Paulo ethics committee ap-
proved the protocol, and all participants signed an informed consent
document.

2.1. Patients who underwent coronary angiography

For this study, 1432 consecutive patients who underwent diagnostic
coronary angiography for coronary artery disease were selected at the
Laboratory of Hemodynamics, Heart Institute (Incor), São Paulo, Brazil.
All patients had a clinical diagnosis of angina pectoris and stable angina.
No patient enrolled in this study was currently experiencing an acute
coronary syndrome. Patients with previous acute ischemic events,
heart failure classes III–IV, hepatic dysfunction, familiar hypercholester-
olemia, previous heart or kidney transplantation, and in antiviral treat-
ment were excluded [16].

2.2. Blood donors

Also included in the study were 156 subjects from the Blood Dona-
tion Center/University of São Paulo Medical School [17]. Inclusion and
exclusion criteria for enrollment were the same as for those who donat-
ed blood.

2.3. Patients with CHD

Prospectively recruited to the study were 722 patients with CHD
from the Pediatric Cardiology Outpatient Clinic – Heart Institute
(Incor), São Paulo, Brazil. Patients were evaluated by history, review of
the medical records, and physical examination and were classified ac-
cording to their anatomical defect as previously described [18]. No pa-
tient enrolled in this study had clinical features of syndromic disease.
An informed consent was obtained from progenitors or participants in
accordance with protocols approved by the local IRB.

2.4. Demographic data and laboratory tests

A trained interviewer collected demographic and clinical informa-
tion from all participants. Twelve-hour fasting blood samples were
used for biochemical testing conducted according to standard tech-
niques. Serum folate, serum cobalamin, and total homocysteine were
determined by the ion capture method, enzyme immunoassay, and
fluorescence polarization immunoassay, respectively.

2.5. Coronary artery disease scores

From the individuals who underwent coronary angiography, 20 coro-
nary segments were scored: each vessel was divided into 3 segments
(proximal, medial, and distal), except for the secondary branches of the
right coronary artery (posterior ventricular and posterior descending),
which were divided into proximal and distal segments. Stenosis greater
than 50% in any coronary segment was granted 1 point, and the sum of
points for all 20 segments constituted what is here referred to as an Ex-
tension Score. Lesion severity was calculated as follows: none and irregu-
larities, 0 points; b50%, 0.3 points; 50–70%, 0.6 points; N70–90%, 0.8
points; and N90–100%, 0.95 points. The Severity Score was calculated
through the sum of points for all 20 coronary segments [19].

2.6. Genotyping

Genomic DNA was extracted from peripheral blood following a stan-
dard salting-out procedure. MTHFR polymorphisms (c.677CNT,
c.1317TNC, and c.1298ANC)were detected by polymerase chain reaction
(PCR) followed by digestion by restriction enzyme. Genotyping for
the MTRR rs326119 was detected by PCR followed by high-resolution
melting (HRM) analysis with the Rotor Gene 6000 instrument (Qiagen,
Courtaboeuf, France). The QIAgility (Qiagen, Courtaboeuf, France), an au-
tomated instrument, was used according to manufacturer's instructions
to optimize the sample preparation step [20]. Amplification of the frag-
ment for the MTRR rs326119 (c.56+781 ANC, intron 1) polymorphism
was performed using the primer sense 5′-CGGTTCATTCACCGAAAGC-3′
and antisense 5′-AATTGGTGGGCTGTCAATTT-3′ (79 pairs base). A 40-
cycle PCR was carried out with the following conditions: denaturation
of the template DNA for first cycle at 94 °C for 120 s, denaturation at
94 °C for 20 s, annealing at 50.5 °C for 20 s, and extension at 72 °C for
22 s. PCR was performed with the addition of fluorescent DNA-
intercalating SYTO9 (1.5 μM; Invitrogen, Carlsbad, USA). In the HRM
phase, the Rotor Gene 6000 was used to measure the fluorescence in
each 0.1 °C temperature increase in the range of 70–85 °C. Melting curves
were generated by the decrease in fluorescence with the increase in the
temperature; and for genotype calling, nucleotide changes resulted in dif-
ferent curve patterns. Samples of the observed curves were analyzed
using bidirectional sequencing as a validation procedure (ABI Terminator
Sequencing Kit and ABI 3500XL Sequencer - Applied Biosystems, Foster
City, CA, USA) [21–23].

2.7. Statistical analysis

Categorical variables are presented as percentages, while continuous
variables are presented as mean ± standard deviation. The chi-square
test was performed for comparative analysis of general characteristics,
frequencies of the MTRR genotype or variant allele, and for Hardy–
Weinberg equilibrium. ANOVA test was performed for comparing the
biochemical parameters of B12 vitamin metabolism, and angiographic
datameans according toMTRR polymorphism.Whenp valuewas signif-
icant in the ANOVA test, Tukey's post hoc testwas performed to identify
the different group. Biochemical data and angiographic data were ad-
justed for age, sex, and race. Biochemical parameters of the B12 vitamin
metabolism were also adjusted for MTHFR polymorphisms (c.677CNT,
c.1317TNC, and c.1298ANC). The following variables were included, as
independent variables, in the multiple linear regressions for the bio-
chemical parameters of the B12 vitaminmetabolism: number of variant
alleles for theMTRR rs326119 (0, 1 or 2 for AA, AC, or CC, respectively),
age, sex, race, and MTHFR polymorphisms (c.677CNT, c.1317TNC, and
c.1298ANC). Multivariate logistic regression analysis was performed
to evaluate the odds ratio (OR) for coronary lesions. In this model, cor-
onary lesion frequency was compared between normal coronary arter-
ies versus 1-vessel, 2-vessel, and 3-vessel disease. Statistical analyses
were carried out using SPSS software (version 16.0, IBM, New York,
NY), with the level of significance set at p ≤ 0.05.

3. Results

3.1. Allele and genotype distribution of the MTRR rs326119 polymorphism

For the CHD sample (n= 722), the frequency of the rs326119 C var-
iant allelewas 46.5% and the distribution of the genotypeswas 19.3% for
variant homozygous, 54.4% for heterozygous, and 26.3% for wild-type.



Table 2
Variables of a multiple linear regressionmodel for concentrations of homocysteine, cobal-
amin, and folate.

Variable β coefficient
(standard error)

p value

Homocysteine, μmol/L
Number of variant alleles for the MTRR rs326119 1.1 (0.6) 0.02
Age −0.01 (0.03) 0.98
Sex (male) 2.1 (0.6) b0.001
Race (non-White) −0.1 (0.4) 0.85
MTHFR c.677CNT 2.4 (0.5) 0.001
MTHFR c.1317TNC 0.5 (0.7) 0.40
MTHFR c.1298ANC −0.4 (0.5) 0.42

Cobalamin, pmol/L
Number of variant alleles for the MTRR rs326119 −33.0 (19.5) 0.03
Age −0.4 (0.9) 0.69
Sex (male) 0.7 (18.8) 0.97
Race (non-White) 11.0 (14.4) 0.45
MTHFR c.677CNT −36.8 (15.4) 0.02
MTHFR c.1317TNC 0.7 (22.1) 0.98
MTHFR c.1298ANC −3.4 (16.8) 0.84

Folate, nmol/L
Number of variant alleles for the MTRR rs326119 0.4 (0.7) 0.60
Age 0.04 (0.03) 0.30
Sex (male) −1.8 (0.7) 0.02
Race (non-White) −0.4 (0.6) 0.49
MTHFR c.677CNT −1.6 (0.6) 0.01
MTHFR c.1317TNC 0.7 (0.9) 0.43
MTHFR c.1298ANC −0.4 (0.7) 0.51

Number of variant alleles forMTRR rs326119: 0, 1 or 2 for AA, AC, or CC, respectively.

Table 3
Logistic regression multivariate analysis of the coronary lesion odds ratio in the patients
who underwent coronary angiography.

Variables OR 95% IC p value
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For the blood donors (n=156), the frequency of the rs326119 C variant
allele was 41.0%, and the distribution of the genotypes was 17.9% for
variant homozygous, 46.2% for heterozygous, and 35.9% for wild-type.
For the patients who underwent coronary angiography (n = 1432),
the frequency of the rs326119 C variant allele was 45.9%, and the distri-
bution of the genotypes was 19.6% for variant homozygous, 52.7% for
heterozygous, and 27.7% for wild-type. The genotypic distribution for
the MTRR rs326119 polymorphism was in accordance with the
Hardy–Weinberg equilibrium (HWE) for all sample groups (HWE
p ≥ 0.01) (X2 = 6.38, p = 0.01; X2 = 0.33, p = 0.56; X2 = 5.43, p =
0.02, respectively).

3.2. Biochemical parameters of vitamin B12metabolism according toMTRR
rs326119 polymorphism

Table 1 shows significant differences in the biochemical parameters
of vitamin B12 metabolism amongMTRR rs326119 genotypes. Subjects
carrying AC or CC genotypes had higher homocysteine concentrations
and lower cobalamin concentrations compared to individuals carrying
theAA genotype, adjusted for age, sex, race, andMTHFR polymorphisms.
We did not observe any difference in the folate concentration among
studied genotypes (Table 1).

Table 2 shows a multiple linear regression model. We identified a
significant association between the number of C variant alleles and the
concentrations of homocysteine and cobalamin. Also, with the presence
of 3 MTHFR polymorphisms, the MTHFR c.677CNT polymorphism was
associated with concentrations of homocysteine, cobalamin, and folate
(Table 2).

3.3. Angiographic data according to MTRR rs326119 polymorphism in pa-
tients who underwent coronary angiography

Table 3 shows no significant association between coronary athero-
sclerosis extension andMTRR genotypes (AA versus AC or CC) in a mul-
tivariate model (OR = 1.08, 95%CI = 0.85–1.37, p = 0.50). Also, no
significant association was observed for 1 variant allele (OR = 1.01,
95%CI = 0.69–1.47, p = 0.96) or for 2 variant alleles (OR = 1.18,
95%CI= 0.84–1.66, p= 0.33). Regarding the derived scores of coronary
atherosclerosis burden, no significant difference was found among
MTRR genotypes AA, AC, and CC (Extension Score: 2.2 ± 1.7, 2.2 ± 1.6,
and 2.3 ± 1.7; Severity Score: 1.6 ± 1.3, 1.6 ± 1.2, and 1.7 ± 1.3)
(p = 0.58 and p = 0.45, respectively).

3.4. Comparison of frequencies of the MTRR genotypes or C variant allele
among CHD patients and controls

Table 4 shows the distribution of theMTRR genotypes among sample
groups.We did not observe an association between theMTRR polymor-
phism and CHD or ventricular septal defects (VSD), as previously re-
ported in a Chinese population, in our samples. Genotypic and allelic
frequencies for the MTRR polymorphism in patients with CHD and
those with CHD and VSDwere compared with frequencies of blood do-
nors and of patients who underwent coronary angiography (we consid-
ered these 2 last sample groups as controls).
Table 1
Concentrations of homocysteine, cobalamin, and folate, according to MTRR rs326119
genotypes.

Biochemical parameter MTRR rs326119 c.56+781 ANC p value

AA (n = 56) AC (n = 72) CC (n = 28)

Homocysteine, μmol/L 8.7 ± 0.5a 9.7 ± 0.4b 10.1 ± 0.6b 0.04
Cobalamin, pmol/L 304.8 ± 14.7a 260.5 ± 13.3b 275.6 ± 19.9b 0.03
Folate, nmol/L 11.9 ± 0.6 12.3 ± 0.5 12.3 ± 0.8 0.92

Biochemical data were adjusted for age, sex, race, and MTHFR polymorphisms.
Values with different superscript letters are significantly different (Tukey's post hoc test).
4. Discussion

Elevated levels of homocysteine have been associated with many
diseases, such as neurodegenerative disorders, recurrent pregnancy
loss, neural tube defects, ischemic heart disease and stroke, atheroscle-
rosis, and congenital defects [24–34]. Our study shows that the MTRR
rs326119 polymorphism is associatedwith levels of plasma homocyste-
ine. Thisfindingwas thefirst replication of Zhao et al.'s and Cheng et al.'s
studies, in a non-Chinese population [15,34]. However, our study did
not identify an association of theMTRR polymorphismwith CHD or cor-
onary artery disease.

Subjects carrying AC or CC genotypes of MTRR rs326119 polymor-
phism had higher homocysteine and lower cobalamin concentrations,
compared with subjects carrying the AA genotype. Our finding suggests
that the MTRR rs326119 polymorphism might be a genetic marker for
homocysteine and cobalamin concentrations. Some studies showed a
negative correlation between homocysteine and B12 vitamin levels
[15,35]. Regarding vitamin B12 metabolism, increased levels of
homocysteine may reflect folate and B12 vitamin deficiency. These
Genotypes for the MTRR rs326119 1.08 0.85–1.37 0.50
Sex (male) 3.73 2.64–5.27 b0.001
Age 1.03 1.02–1.05 b0.001
Self-declared race

White (reference) 1.00
Intermediate 1.35 0.57–3.44 0.52
Black 0.90 0.35–2.66 0.57

Body mass index 0.95 0.92–0.98 0.003
Statin use 1.74 1.11–2.73 0.02
Smoking 1.22 0.85–1.76 0.27
Total cholesterol 1.02 1.01–1.03 0.001

Genotypes for theMTRR rs326119 were AA genotype versus AC or CC genotypes.
Coronary lesion frequencywas compared between normal coronary arteries versus 1-vessel,
2-vessel, and 3-vessel disease.



Table 4
Frequencies of theMTRR genotypes or C variant allele, according to studied subjects.

Patients
with CHD
(n = 722)

Patients
with VSD
(n = 213)

Blood
donors
(n = 156)

Patients who underwent
coronary angiography
(n = 1432)

Genotype comparison
AA, n 190 52 56 397
AC, n 393 116 72 755
CC, n 139 45 28 280
p valuea – 0.77 0.07 0.73
p valueb 0.77 – 0.08 0.62

Variant allele comparison
C variant allele 46.5% 48.3% 41.0% 45.9%
p valuea – 0.53 0.09 0.75
p valueb 0.53 – 0.06 0.37

a Comparison of frequencies of theMTRR genotypes or C variant allele of the congenital
heart disease (CHD) group with other groups.

b Comparison of frequencies of theMTRR genotypes or C variant allele of the CHD pa-
tients with ventricular septal defects (VSD) with other groups.
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associations may also be due to the effects of changed vitamin B12 me-
tabolism on homocysteine remethylation and synthesis of DNAmethyl-
ation, resulting in elevated plasma concentrations of homocysteine [34,
36,37]. The functional variant ofMTRR rs326119 is likely to stimulate hy-
perhomocysteinemia and can further induce DNA hypomethylation.
This variant can also result in low levels of methionine and hyperhomo-
cysteinemia by dysfunction of MTR-catalyzed homocysteine recycling
to methionine [34].

Zhao et al.'s interesting study found a genetic association by using bio-
chemical data, but they also describe an association with CHD in patient
samples from a Han Chinese population [15]. Zhao et al. demonstrated
the decay ofMTRR transcription activity using a functional assay. They ex-
amined 28 in vivo cardiovascular tissue samples and observed decreased
MTRR RNAm levels. In vitro luciferase assays confirmed the influence of
the functional c.56+781 ANC variant [15]. Concerning cardiovascular
diseases, a possible pathway is that increased levels of homocysteine in-
hibit a nitric oxide (NO)-dependent mechanism regulating cardiac O2

consumption and NO-dependent vasodilatation [38].
Ourmain hypothesis for the lack of a genetic associationwith CHD is

that the different ethnicity of our patient samples might be involved.
This could lead to different associations by linkage disequilibrium with
other functional variants. It can also lead to a completely different
gene × environment scenario and justify a different threshold for asso-
ciation in these populations. Further genetic association studies arewar-
ranted to check the association of this MTRR polymorphism with the
complex phenotype of CHD among different ethnic groups. In the
same way, there is an MTRR polymorphism located in a coding region
(c.66ANG) that was associated with vitamin B12 biochemical parame-
ters, heart disease, and higher risk for coronary artery disease in some
populations [6,15,39–41]. However, many other studies were not able
to find the same genetic association [42–45].

Our study has some limitations. First, we only evaluated 1 MTRR
polymorphism. Second, CHD and coronary atherosclerosis are complex
phenotypes that depend on multiple other genetic and environmental
factors. Third, our sample size of individuals with biochemical tests
available is relatively small. Despite these facts, wewere able to identify
significant differences among genotypes replicating data found by Zhao
et al. and Cheng et al. [15,34].

In conclusion, our findings indicate that theMTRR rs326119 variant
might be a genetic marker associated with concentrations of homocys-
teine and cobalamin, but not with CHD and coronary atherosclerosis in
the Brazilian population.
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