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Abstract
A tricyclic lactam is reported in a four step synthesis sequence via Beckmann rearrangement and ring-rearrangement metathesis as

key steps. Here, we used a simple starting material such as dicyclopentadiene.
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Introduction
The Beckmann rearrangement (BR), a well-known protocol for

the conversion of ketoxime to an amide in the presence of acid

was discovered in 1886. This rearrangement involves the migra-

tion of a group anti to the leaving group on the nitrogen atom.

The BR has widely been used in synthetic organic chemistry,

for example, a large-scale production of Nylon-6 is based on the

synthesis of ε-caprolactam from cyclohexanone oxime

involving the BR. The activation energy for the BR is almost

the same as that of the nucleophilic substitution at sp2 nitrogen.

To synthesize various aza-arenes and cyclic imines, such as

quinolines, aza-spiro compounds and dihydropyrroles, the

intramolecular SN2-type reaction at the oxime nitrogen is useful

[1-6]. Here, we plan to use the BR in combination with a ring-

rearrangement metathesis (RRM) [7-24] to generate lactam

derivative 1. The RRM protocol involves a tandem process with

several metathetic transformations such as ring-closing

metathesis (RCM) and ring-opening metathesis (ROM). The

RRM has emerged as a powerful tool in organic synthesis

because of its ability to transform simple starting materials into

complex targets involving an ingenious design. The retrosyn-

thetic strategy to the target molecule 1 is shown in Figure 1.

RRM of the tricyclic allylated compound 2 can deliver the

target lactam 1. The key synthon 2 can be derived by allylation

of lactam 3, which in turn can be prepared via BR starting with

the known enone 4 [25-27], derived from dicyclopentadiene (5)

[28-30].

Results and Discussion
To begin with, the oxidation of dicyclopentadiene (5) in the

presence of SeO2 gave 1α-dicyclopentadienol (6), which on
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Figure 1: Retrosynthetic analysis of tricyclic amide 1.

Scheme 1: Synthesis of tricyclic ketone 4.

Scheme 2: Beckmann rearrangement of oximes 8a and 8b.

treatment with pyridinium chlorochromate (PCC) [31] deliv-

ered the known tricyclic enone 4. Selective reduction of enone 4

with Zn in AcOH/EtOH under reflux conditions gave the satu-

rated ketone 7 [32] (Scheme 1).

Later, tricyclic ketone 7 was reacted with NH2OH·HCl in the

presence of NaOAc in dry MeOH at rt to give a mixture of

oximes 8a and 8b and this mixture was subjected to a BR under

different reaction conditions, like (a) p-TsCl, rt, 15 h, CH3CN

(b) p-TsCl, reflux, 15 h, CH3CN (c) PPA, reflux for 20 min.

Surprisingly, in all these instances no rearrangement product

was observed. Interestingly, when the mixture of oximes 8a and

8b was treated with TsCl in the presence of NaOH at rt lactams

9a and 9b were obtained in 66% combined yield for two steps

(9a:9b = 2:1) (Scheme 2) but the products were inseparable by

column chromatography. Next, we attempted to separate the

mixture of these isomers (9a and 9b) by selective crystalliza-

tion using different solvent systems. Finally, one of the lactam

derivative 9a (δ = 3.86, dd, J = 5.8, 2.9 Hz, 1H) was isolated in

pure form from ethanol in 20% yield over two steps.

Subsequently, we attempted to synthesize the desired lactam 9a

via Schmidt reaction or BR of the keto derivative 7 in a single

step. In this regard, the tricyclic ketone 7 was treated under

different reaction conditions. These include: (a) NaN3, heat

1 day in TFA (b) NaN3, FeCl3 in DCE at rt and reflux, 1 day

and (c) TMSN3, FeCl3 in DCE, 1 day. Surprisingly, the desired

lactam 9a was not formed. Interestingly, when the tricyclic

ketone 7 was treated with hydroxylamine-O-sulfonic acid

(NH2OSO3H) in glacial AcOH under reflux conditions, the

lactams 9a and 9b were obtained in 48% yield (9a:9b = 2:1) the

ratio of oximes 9a and 9b was calculated based on 1H NMR

spectral data (Scheme 3).

Scheme 3: Beckmann rearrangement reaction in a single step.

Having prepared the lactams 9a and 9b, the allylation reaction

was attempted with the lactam mixture in the presence of NaH/

allyl bromide in dry DMF to generate allyl derivatives 10a and

10b in 84% yield. Later, without separation of allyl lactams 10a

and 10b, RRM was attempted with the lactam mixture under

different catalyst conditions. For example, reaction conditions
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Scheme 4: Synthesis of ring-rearrangement precursors.

Scheme 6: Beckmann rearrangement of oxime isomers 11a and 11b.

such as: (a) G-I in dry CH2Cl2, under ethylene atmosphere at rt;

(b) G-II in dry CH2Cl2, under ethylene atmosphere at rt and

(c) G-I and G-II in dry toluene under ethylene atmosphere did

not deliver the desired RRM product 1a (Scheme 4).

Separation of the required isomer from the mixture of oximes

8a and 8b or the lactams 9a and 9b was not possible by column

chromatography because of the same Rf value of the individual

compounds. Finally, isolation of the required lactam 9a from

the mixture was accomplished by using crystallization. Since

this method is cumbersome, an alternate method was attempted.

To this end, we changed our synthetic route and tried to use the

unsaturated ketone 4 and hoped for a different outcome during

the BR. In this content, oximation of the enone 4 was carried

out with NH2OH·HCl in the presence of NaOAc in dry MeOH.

The stereoisomeric oximes, i.e., (E)-11b and (Z)-11a were sep-

arated by silica gel column chromatography to deliver 47% and

23% yields, respectively (Scheme 5).

When the oxime 11a was treated with TsCl in the presence of

NaOH in dioxane/H2O (3:4 v/v) at rt lactam 12 was formed in

34% yield. However, the oxime 11b did not give the rearranged

product under the same reaction conditions, which clearly indi-

cates that the oxime 11b is unreactive towards BR (Scheme 6).

The stereostructure of the oxime 11b has been determined by

single crystal X-ray diffraction data (Figure 2) [33].

Allylation of lactam 12 in the presence of NaH/allyl bromide in

dry DMF gave the allyl derivative 2 in 80% yield. Finally, the

RRM of compound 2 was accomplished with G-II catalyst in

dry CH2Cl2, under ethylene atmosphere at rt in the presence of

Scheme 5: Synthesis of Beckmann rearrangement precursors.

Figure 2: Molecular crystal structure of compound 11b.

Ti(OiPr)4 to deliver the tricyclic compound 1 in 90% yield

(Scheme 7). Its structure has been established on the basis of
1H NMR and 13C NMR spectral data and further supported by

HRMS data.
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Scheme 7: Synthesis of aza tricyclic compound 1 by RRM.

Conclusion
In summary, we have demonstrated the RRM strategy with the

norbornene derivative 2 to deliver the tricyclic compound 1

involving a short synthetic sequence. However, a similar com-

pound 10a did not deliver the RRM product. For the first time,

we have demonstrated that BR in combination with RRM is a

useful strategy to generate azacyclic compounds. Here we have

used an inexpensive starting material such as dicyclopentadiene

(5).

Experimental
Synthesis of compounds 9a and 9b
Method 1: Analogously as described in [4], a mixture of 7 (2 g,

13.51 mmol), hydroxylamine hydrochloride (1.41 g,

20.27 mmol), NaOAc (1.66 g, 20.27 mmol) and methanol

(50 mL) was stirred at rt for 1 h. The residue after evaporation

of the solvent was diluted with water and extracted with ether.

Removal of ether furnished the crude oxime (2.4 g). p-Toluene-

sulfonyl chloride (6.15 g, 32.28 mmol) was added portion-wise

over 15 min to a stirred solution of the crude oxime (2.4 g) and

NaOH (2.97 g. 74.44 mmol) in 150 mL dioxane/water 3:4 at

5 °C. The mixture was stirred at rt for 15 h and dioxane was

removed in vacuo. The residue was dissolved in CH2Cl2 and

washed with brine. Removal of the solvent and column

chromatography gave a mixture of amide isomers (9a, 9b)

(1.45 g, 66%). The amide mixture was crystalized in different

solvents and finally one of isomer 9a was isolated from ethanol

20%.

Method 2: A mixture of 7 (100 mg, 0.68 mmol) and hydroxyl-

amine-O-sulfonic acid (113 mg, 1.0 mmol) in AcOH (5 mL)

was heated at reflux conditions for 4 h under nitrogen. After

completion of the reaction (TLC monitoring), the reaction

mixture was basified with 3 N NaOH solution and the

organic layer was extracted with CH2Cl2, washed with

water, brine and dried by Na2SO4. The combined organic layer

was concentrated under reduced pressure and column chroma-

tography gave a mixture of amide isomers 9a and 9b (1.06 g,

48%). The amide mixture was crystalized in different solvents

and finally isomer 9a was isolated from ethanol. White solid 9a;

mp = 150–155 °C; yield 15%: Rf = 0.30 (EtOAc/pentane 1:1

v/v); IR (neat): 3195 (m), 3067 (w), 2938 (s), 2868 (m), 1674

(s), 1627 (m), 1452 (w), 1434 (w), 1410 (m), 1333 (m), 1252

(w), 1201 (m), 1031 (w), 783 (m), 541 (m) cm−1; 1H NMR (400

MHz, CDCl3) δ 6.31 (s, 1H), 6.22 (dd, J = 5.8, 3.0 Hz, 1H),

6.10 (dd, J = 5.8, 3.0 Hz, 1H), 3.86, (dd, J = 5.8, 2.9 Hz, 1H),

2.97 (s, 1H), 2.88 (s, 2H), 2.48–2.40 (m, 1H), 2.13–2.05

(m,1H), 1.94–1.87 (m, 1H), 1.56 (dt, J = 8.8, 1.8 Hz, 1H), 1.42

(d, J = 8.8 Hz, 1H), 1.23–1.13 (m, 1H) ppm; 13C NMR (100

Hz, CDCl3) δ 175.5, 137.6, 134.2, 54.8, 48.0, 47.8, 46.5, 39.49,

31.4, 23.2 ppm.

Synthesis of compounds 11a and 11b
Analogously as described in [4], a mixture of 4 (9 g,

61.64 mmol), hydroxylamine hydrochloride (6.41 g,

92.34 mmol), NaOAc (7.58 g, 92.49 mmol) and methanol

(225 mL) were stirred at rt for 1 h. The residue after evapor-

ation of the solvent was diluted with water and extracted with

diethyl ether. Removal of ether furnished the crude oxime

which was purified by silica gel column chromatography by

eluting appropriate mixture of ethyl acetate/petroleum ether to

afford compounds 11a (2.29 g, 23%) and 11b (4.61 g, 47%) as

colourless solids.

11a: Rf = 0.29 (EtOAc/pentane 2:8 v/v); IR (neat): 3325 (m),

3013 (m), 2400 (w), 1725 (w), 1337 (w), 1216 (m), 927 (m),

759 (s) cm−1; 1H NMR (500 MHz, CDCl3) δ 9.15 (s, 1H), 6.54

(dd, J = 5.8, 1.3 Hz, 1H), 6.38 (dd, J = 5.8, 2.5 Hz, 1H), 5.97

(dd, J = 5.6, 2.8 Hz, 1H), 5.77 (dd, J = 5.6, 2.9 Hz, 1H), 3.32

(m, 1H), 3.18 (dd, J = 10.7, 4.5 Hz, 1H), 3.16 (s, 1H), 2.28 (s,

1H), 2.90 (s, 1H), 1.61 (d, J = 8.3 Hz, 1H), 1.47 (d, J = 8.3 Hz,

1H) ppm; 13C NMR (125 Hz, CDCl3) δ 165.1, 149.1, 133.3,

133.1, 126.4, 51.0, 50.5, 46.1, 45.9, 44.1 ppm; HRMS (Q-Tof)

m/z: [M + Na]+ calcd for C10H11NNaO, 184.0733; found,

184.0734.

11b: mp = 89–91 °C; Rf = 0.30 (EtOAc/petroleum ether 2:8

v/v); IR (neat): 3322 (m), 3020 (m), 2396 (w), 2125 (w), 1705

(m), 1217 (m), 926 (m), 759 (s) cm−1; 1H NMR (500 MHz,

CDCl3) δ 8.71 (s, 1H), 6.30 (dd, J = 5.8, 2.5 Hz, 1H), 6.00 (dd,

J = 5.7, 1.3 Hz, 1H), 5.90 (dd, J = 5.6, 3.0 Hz, 1H), 5.76 (dd, J

= 5.6, 2.9 Hz, 1H), 3.43 (s, 1H), 3.35 (dd, J = 6.1, 4.2 Hz, 1H),
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3.30 (m, 1H), 2.90 (s, 1H), 1.64 (d, J = 8.3 Hz, 1H), 1.50 (d, J =

8.3, 1H) ppm; 13C NMR (125 Hz, CDCl3) δ 168.1, 147.0,

133.1, 132.9, 131.1, 51.9, 50.8, 45.1, 45.0, 44.1 ppm; HRMS

(Q-Tof) m/z: [M + Na]+ calcd for C10H11NNaO, 184.0733;

found, 184.0737.

Synthesis of compound 12
Analogously as described in [4], p-toluenesulfonyl chloride

(2.36 g, 12.42 mmol) was added portionwise over 15 min to a

stirred solution of oxime 11a (1.0 g, 6.21 mmol) and NaOH

(1.24 g. 31.05 mmol) in 100 mL dioxane/water 3:4 at 5 °C. The

mixture was stirred at rt for 15 h and the dioxane was removed

in vacuo. The residue was dissolved in CH2Cl2 and washed

with the brine. Removal of solvent and column chromatog-

raphy using an appropriate mixture of ethyl acetate/petroleum

ether gave the pure lactam 12 (0.33 g, 34%) as a semi solid. IR

(neat): 3020 (m), 2400 (w), 2125 (w), 1678 (w), 1422 (w), 1216

(m), 1049 (w), 1022 (w), 929 (w), 759 (s) cm−1; 1H NMR (500

MHz, CDCl3) δ 6.36–6.34 (m, 1H), 6.15 (dd, J = 5.5, 3 Hz,

1H), 6.07 (dd, J = 5.5, 3 Hz, 1H), 5.96 (bs, 1H), 5.63 (dt, J =

8.5, 2 Hz, 1H), 4.12–4.08 (m, 1H), 3.10 (t, J = 0.5 Hz, 1H), 3.06

(d, J = 0.5 Hz, 1H), 2.99–2.95 (m, 1H), 1.44 (dt, J = 8.5, 2Hz,

1H), 1.25–1.22 (m, 1H) pmm; 13C NMR (125 Hz, CDCl3) δ

164.4, 142.4, 136.9, 134.5, 122.4, 54.9, 49.8, 47.8, 44.5, 39.3

ppm; HRMS (Q-Tof) m/z: [M + Na]+ calcd for C10H11NNaO,

184.0733; found, 184.0733.

Synthesis of compound 2
Analogously as described in [8], a suspension of NaH (20 mg,

0.83 mmol) in dry DMF (5mL), was added to compound 12

(70 mg, 0.43 mmol) in dry DMF (5 mL) and allyl bromide

(57 mg, 0.47 mmol) at 0 °C under nitrogen and it was stirred for

20 minutes at 0 °C. After completion of the reaction (TLC

monitoring) the reaction mixture was acidified with saturated

ammonium chloride and extracted with ethyl acetate. The

combined organic layer was washed with water and brine and

then dried over sodium sulfate. Later, the organic layer was

concentrated under reduced pressure and purified by silica gel

column chromatography by eluting with an appropriate mixture

of ethyl acetate/petroleum ether to afford compound 2 as a

brown liquid (87 mg, 80%). IR (neat): 3370 (s), 2945 (m), 2832

(m), 2532 (w), 2044 (w), 1662 (w), 1450 (m), 1114 (m), 1030

(s), 770 (m) cm−1; 1H NMR (500 MHz, CDCl3) δ 6.25–6.23

(m, 1H), 6.05–6.01 (m, 2H), 5.85–5.77 (m, 1H), 5.67 (dd, J =

10, 2 Hz, 1H), 5.26–5.22 (m, 2H), 4.47–4.46 (m, 1H), 4.02 (dd,

J = 10, 3.5 Hz, 1H), 3.65–3.60 (m, 1H), 3.29 (s, 1H), 3.08 (s,

1H), 3.01–2.97 (m, 1H), 1.45 (dt, J = 9, 2 Hz, 1H), 1.21–1.24

(m, 1H) ppm; 13C NMR (125 Hz, CDCl3) δ 162.5, 140.1, 137.1,

133.8, 133.6, 123.1, 117.7, 59.43, 48.4, 47.4, 47.3, 44.7, 40.0

ppm; HRMS (Q-Tof) m/z: [M + Na]+ calcd for C13H15NNaO,

224.1046; found, 224.1041.

Synthesis of compound 1
Analogously as described in [8], to a stirred solution of com-

pound 2 (20 mg, 0.099 mmol) in dry CH2Cl2 (20 mL) degassed

with nitrogen for 10 minutes, purged with ethylene gas for

10 minutes was then added Ti(OiPr)4 and Grubbs-II catalyst

(8.4 mg, 10 mol %) and stirred for 5 h at reflux conditions

under ethylene atmosphere. After completion of the reaction

(TLC monitoring) the solvent was removed on a rotavapor

under reduced pressure and purified by silica gel column chro-

matography by eluting with an appropriate mixture of ethyl

acetate/petroleum ether to afford 1 as a brown coloured semi

solid (18 mg, 90%). IR (neat): 3020 (m), 2927 (m), 2861 (m),

2396 (w), 1727 (w), 1608 (w), 1461 (w), 1216 (m), 929 (w),

762 (s) cm−1; 1H NMR (500 MHz, CDCl3) δ 6.35–6.27 (m,

1H), 6.05–5.89 (m, 1H), 5.88–5.83 (m, 1H), 5.75–5.72 (m, 1H),

5.63 (dt, J = 16.0, 9.7 Hz, 1H), 5.02–4.91 (m, 2H), 4.64–4.57

(m, 1H), 4.07–4.03 (m , 1H), 3.50–3.42 (m, 1H), 3.19–3.14 (m,

1H), 3.12–2.94 (m, 1H), 2.62–2.55 (m, 1H), 2.21–2.03 (m, 1H),

1.62–1.53 (m, 1H) ppm; 13C NMR (125 Hz, CDCl3) δ 164.2,

139.6, 139.6, 125.7, 123.5, 123.2, 115.5, 59.0, 58.8, 49.1, 42.3,

40.9, 39.6 ppm; HRMS (Q-Tof) m/z: [M + Na]+ calcd for

C13H15NNaO, 224.1046; found, 224.1041.

Supporting Information
Supporting Information File 1
NMR spectra of synthesized compounds and X-ray data of

compound 11b.
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