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Abstract A series of 2-(2-chloroquinolin-3-yl)-5-((aryl)benzylidene)-3-(4-oxo-2-phenylquinazolin-

3(4H)-yl)thiazolidin-4-ones (V)1–12 have been synthesized. In order to establish optimization of dif-

ferent parameters of chemical transformation, that is the reaction pathway for each step and reac-

tion conditions in the each step, in the present paper, different solvents and catalysts were used. The

structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, 1H

NMR and 13C NMR spectral data. All the newly synthesized compounds were screened against var-

ious strains of bacteria and fungi.
ª 2011 King Saud University. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

The number of life-threatening infectious diseases caused by
multidrug-resistant bacteria has reached an alarming level in
many countries around the world. Recently, the Severe Acute
Respiratory Syndrome (SARS) caused by the novel corona

virus SARS-CoV (Chang et al., 2007; Yeung and Meanwell,
2007) and bird flu caused by avian influenza (H5N1) virus
782439852.
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(Gary and Ting, 2007) have emerged as two important infec-
tious diseases with pandemic potential. Both infections crossed
the species barrier to infect humans. Also, the ever growing de-

mand for material protection from microbial contamination is
a serious challenge (Berber et al., 2003). The aforementioned
facts are a cause of great concern and create a pressing need

for new anti-bacterial agents. Despite great effort from the
pharmaceutical industry to manage the resistance problem,
the discovery and development of new mechanistic classes of

antibiotics has found very little success (Taun et al., 2007).
The difficulty of this task is demonstrated by the fact that only
two antibiotics of new classes, linezolid (an oxazolidinone) and
daptomycin (a cyclic lipopeptide), have been successfully

developed in the past three decades (Carpenter and Champers,
2004; Weigelt et al., 2005).

Quinazoline derivatives represent one of themost active clas-

ses of compounds possessing a wide spectrum of biological
activity (Apfel et al., 2001). They are widely used in pharmaceu-
ticals and agrochemicals (Tobe et al., 2003); for example, fluqu-

inconazole fungicide for the control of agriculture diseases
(Guang-Fang et al., 2007). Several reports have been published

mailto:dnisheeth@rediffmail.com
mailto:dnisheeth@gmail.com
http://dx.doi.org/10.1016/j.jscs.2011.04.001
http://dx.doi.org/10.1016/j.jscs.2011.04.001
http://www.sciencedirect.com/science/journal/13196103
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


260 N.C. Desai et al.
on the biological activity of quinazoline derivatives, including

their bactericidal, herbal and anti-tumour activity (Raffa
et al., 1999; Chenard et al., 2001). Thus, their synthesis has been
of great interest in the elaboration of biologically active hetero-
cyclic compounds. Recently, it was reported that some iodoqui-

nazolines exhibited moderate antibacterial activity (Alafeefy,
2008). Prompted by these findings, this article reports the design
and synthesis of an extension series of 3-substituted 2-phenyl-

quinazolin-4(3H)-one derivatives and tested their antibacterial
activities.

Quinolines are known to inhibit DNA synthesis by promot-

ing cleavage of bacterial DNA gyrase and type-IV topoisomer-
ase, resulting in rapid bacterial death (Hooper and Wolfson,
1989; Hooper, 1995; Hardman et al., 2002). Quinolones with

substituents at C-6 position, albeit less activity than fluorine,
are essential for high activity as evidenced by its enhanced gyr-
ase inhibition and cell penetration (Bhanot et al., 2001). A
number of substituents for fluorine replacement have been

introduced into that position. Garenoxacin showed greater po-
tency than the newer fluoroquinolone and moxifloxacin
against both sensitive and resistant gram positive organisms,

thus casting doubt on the validity of necessity of C-6 fluorine
(Emami et al., 2006). Several efforts to further modify non-
fluoroquinolone and their biological activities were also inves-

tigated (Ctoen-Chackal et al., 2004; Chevalier et al., 2001).
Similarly, various 4-thiazolidinones (Pan et al., 2010;

Youssef et al., 2010) have attracted considerable attention as
they are also endowed with a wide range of pharmaceutical

activities including anaesthetic (Surrey, 1949), anticonvulsant
(Troutman and Long, 1948), antibacterial (Sayyed and Mokle,
2006) and antiviral (Rao and Zappala, 2004). Furthermore,

drug research and development have led to the discovery of
new pharmacologically active agents, including imidoxy
(Wolfgang, 1998) compounds such as succinimidoxy (Farror

et al., 1993). They also possess a strong anti-convulsant activ-
ity (Edafiogho et al., 1991). 4-Thiazolidinones may be consid-
ered as phosphate bioisosteres and therefore inhibit the

bacterial enzyme MurB which is involved in the biosynthesis
of peptidoglycan layer of the cell wall (Gursoy et al., 2005).
In addition, some thiazolidinones were recently reported as no-
vel inhibitors of mycobacterial rhamnose synthetic enzymes

(Gursoy et al., 2005). This new approach is believed to be
selective as rhamnose is not found in humans, but is essential
for mycobacterial cell wall synthesis in animals (Andres et al.,

2000).
Looking to the medicinal importance of 4(3H)-quinazoli-

none, 4-thiazolidinone and quinoline, we report here the syn-

thesis of new class of heterocyclic molecules in which all of
these moieties are present and try to develop potential bioac-
tive molecules. The structures of the compounds synthesized

were assigned on the basis of elemental analysis, IR, 1H
NMR, 13C NMR and Mass spectral data. These compounds
were evaluated for their antimicrobial screening on different
strains of bacteria and fungi.
2. Experimental part

2.1. Materials and physical measurements

General Procedures. Laboratory Chemicals were supplied by
Merck Ltd. Melting points were determined by the open tube
capillary method and are uncorrected. The purity of the

compounds was monitored by thin layer chromatography
(TLC) plates (silica gel G) in the solvent system n-hexane:
ethyl acetate (V/V = 1:3). The spots were observed by expo-
sure to iodine vapour or by UV light. The IR spectra were

obtained on a Perkin–Elmer 1720 FT-IR spectrometer (KBr
pellets).The 1H NMR and 13C NMR spectra were recorded
on a Bruker Avance II 400 spectrometer using TMS as the

internal standard in DMSO. Elemental analysis of the newly
synthesized compounds was carried out on Carlo Erba 1108
analyzer.

2.2. Preparation methods and physical data of synthesized

compounds (I to V1–12)

2.2.1. Procedure for the synthesis of 3-((2-chloroquinolin-3-

yl)methyleneamino)-2-phenylquinazolin-4(3H)-one (III)
To a solution of the 2-chloroquinoline-3-carbaldehyde
(1.0 mmol) in ethanol (15 mL) was added 3-amino-2-phenyl-

4(3H)-quinazolinone (1.0 mmol) and a few drops of glacial
acetic acid was added. The reaction mixture was refluxed for
3–8 h and the course of the reaction was monitored by TLC
[n-hexane/ethyl acetate (V/V = 1:2)] to its completion. The

reaction mixture was cooled. The crude product was recrystal-
lized from 95% ethanol to give the intermediate compound-
(III). Yield 73%, m.p. 178 �C; IR (KBr, cm�1) m: 3051, 3063
(quinazolinone ring, quinoline ring Ar-H), 3072 (‚CH
stretching), 1671 (C‚O stretching), 1605, 1580 (C‚N stretch-
ing), 1562–1439 (C‚C, quinazolinone ring, quinoline ring,

benzene ring), 838 (C–Cl stretching). 1H NMR (DMSO): d
(ppm): 8.60 (s, 1H, ‚CH group), 7.60–9.27 (m, 9H, quinoline
and quinazolinone-H), 7.29–7.83 (m, 5H, Ar-H). 13C NMR

(DMSO): 121.9, 124.3, 126.6, 126.7, 126.8, 127.2, 127.3,
127.8, 128.1, 128.2, 128.8, 130.1, 133.4, 131.0, 137.8, 143.3,
148.7, 149.7, 152.7, 153.6, 166.7, 167.0. Anal. Calcd for
C24H15ClN4O: C, 70.16; H, 3.68; N, 13.64. Found: C, 70.22;

H, 3.74; N, 13.67.

2.2.2. Procedure for the synthesis of 2-(2-chloroquinolin-3-yl)-

3-(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (IV)
To a solution of compound-(III) (0.01 mol) in 1,4-dioxane
(50 ml) was added mercapto acetic acid (0.01 mol) with stirring

and a little amount of anhydrous ZnCl2 was added. The mix-
ture was refluxed for 10–12 h, after the completion of the reac-
tion, it was cooled and the excess solvent distilled and poured

into sodium bicarbonate solution to neutralize it. The solid
product was filtered, washed with cold water. The resulting
light brown colour product was obtained. The completion of

the reaction was checked by TLC [n-hexane/ethyl acetate (V/
V = 1:3)]. The crude product was recrystallized from 95% eth-
anol to give the intermediate compound-(IV). Yield 73%, m.p.
178 �C; IR(KBr, cm�1) m: 3052, 3068 (quinazolinone ring,

quinoline ring Ar-H), 1677, 1686 (C‚O stretching), 1609,
1582 (C‚N stretching), 1564–1448 (C‚C, quinazolinone
ring, quinoline ring, benzene ring), 849 (C–Cl stretching): 1H

NMR (DMSO): d (ppm): 3.85–3.95 (s, 1H, CH2 group), 5.92
(s, 1H, S–CH–N), 7.63–8.27 (m, 9H, quinoline and quinazoli-
none-H), 7.27–7.83 (m, 5H, Ar-H). 13C NMR (DMSO): 35.6,

57.7, 120.8, 126.6, 126.7, 127.5 (C-21), 127.3, 127.0, 128.2,
128.6, 128.8, 129.9, 130.1, 130.9, 133.4, 136.2, 145.4, 148.7,
151.9, 156.2, 160.8, 168.8. Anal. Calcd for C26H17ClN4O2S:
C, 64.39; H, 3.53; N, 11.55. Found: C, 64.42; H, 3.58; N, 11.61.
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2.2.3. General procedure for the synthesis of 2-(2-

chloroquinolin-3-yl)-5-((aryl)benzylidene)-3-(4-oxo-2-
phenylquinazolin-3(4H)-yl)thiazolidin-4-ones (V)1–12
Compound-(IV) (0.01 mol) was taken in ethanol (25 ml) and

substituted aromatic aldehydes (0.01 mol) wer slowly added
to it with stirring and a catalytic amount of sodium ethoxide
was added. The reaction mixture was refluxed for 6–7 h, after

the completion of the reaction, the product came out and ex-
cess amount of solvent was distilled out and the crude product
was filtered off and washed with ethanol, dried and recrystal-

lized in ethanol. The completion of the reaction was checked
by TLC [n-hexane/ethyl acetate (V/V = 1:3)] to give the final
product (V1–12).

2.2.3.1. 5-(2-Chlorobenzylidene)-2-(2-chloroquinolin-3-yl)-3-
(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)1.
Yield, 70%, off yellow crystalline solid, mp 292–293 �C. IR
(KBr, cm�1) m: 3057, 3065 (quinazolinone ring, quinoline ring
Ar-H), 3080 (‚CH stretching), 1675, 1681 (C‚O stretching),
1605, 1589 (C‚N stretching), 1568–1445 (C‚C, quinazoli-

none ring, quinoline ring, benzene ring), 845 (C–Cl stretching),
768, 692 (mono substituted benzene ring). 1H NMR (DMSO)
d (ppm): 8.03 (s, 1H, ‚CH group), 5.92 (s, 1H, S–CH–N),
7.63–8.27 (m, 9H, quinoline and quinazolinone-H), 7.27–7.83

(m, 9H, Ar-H). 13C NMR (DMSO) d (ppm): 164.4, 160.8,
156.2, 148.7, 145.4, 136.2, 134.0, 133.4, 133.0, 134.0, 133.4,
133.0, 131.9, 130.9, 130.1, 129.9, 129.3, 128.8, 128.6, 128.2,

127.8, 127.5, 127.3, 127.0, 126.7, 126.7, 126.6, 125.2, 63.5.
Anal. Calcd for C33H20Cl2N4O2S: C, 65.24; H, 3.31; N, 9.22.
Found: C, 65.32; H, 3.35; N, 9.30.

2.2.3.2. 5-(3-Chlorobenzylidene)-2-(2-chloroquinolin-3-yl)-3-
(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)2.

Yield, 66%, light brown crystalline solid, mp 148–150 �C. IR
(KBr, cm�1) m: 3053, 3064 (quinazolinone ring, quinoline ring
Ar-H), 3083 (‚CH stretching), 1673, 1684 (C‚O stretching),
1607, 1582 (C‚N stretching), 1569–1440 (C‚C, quinazoli-

none ring, quinoline ring, benzene ring), 848 (C–Cl stretching),
769, 688 (mono substituted benzene ring). 1H NMR (DMSO)
d (ppm): 8.08 (s, 1H, ‚CH group), 5.97 (s, 1H, S–CH–N),

7.66–8.28 (m, 9H, quinoline and quinazolinone-H), 7.27–7.83
(m, 9H, Ar-H). 13C NMR (DMSO) d (ppm): 164.4, 160.8,
156.2, 148.7, 145.4, 138.3, 136.2, 133.4, 136.6, 134.2, 126.4,

131.9, 130.9, 130.1, 130.0, 129.9, 128.0, 128.8, 128.6, 128.2,
127.5, 127.3, 127.0, 126.7, 126.6, 125.2, 120.8, 63.5. Anal.
Calcd for C33H20Cl2N4O2S: C, 65.24; H, 3.31; N, 9.22. Found:
C, 65.31; H, 3.33; N, 9.29.

2.2.3.3. 5-(4-Chlorobenzylidene)-2-(2-chloroquinolin-3-yl)-3-
(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)3.

Yield, 79%, off yellow crystalline solid, mp 244–246 �C. IR
(KBr, cm�1) m: 3057, 3065 (quinazolinone ring, quinoline ring
Ar-H), 3085 (‚CH stretching), 1679, 1686 (C‚O stretching),

1609, 1594 (C‚N stretching), 1572–1450 (C‚C, quinazoli-
none ring, quinoline ring, benzene ring), 840 (C–Cl stretching),
761, 698 (mono substituted benzene ring). 1H NMR (DMSO)

d (ppm): 8.05 (s, 1H, ‚CH group), 5.94 (s, 1H, S–CH–N),
7.65–8.29 (m, 9H, quinoline and quinazolinone-H), 7.28–7.81
(m, 9H, Ar-H). 13C NMR (DMSO) d (ppm): 164.4, 160.8,
156.2, 148.7, 145.4, 138.3, 136.2, 133.5, 133.4, 133.3, 131.9,

130.9, 130.1, 129.9, 129.0, 128.8, 128.7, 128.6, 128.2, 127.5,
127.3, 127.0, 126.7, 126.6, 125.2, 120.8, 63.5. Anal. Calcd for
C33H20Cl2N4O2S: C, 65.24; H, 3.31; N, 9.22. Found: C,

65.33; H, 3.38; N, 9.28.

2.2.3.4. 2-(2-Chloroquinolin-3-yl)-5-(2-nitrobenzylidene)-3-(4-
oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)4.

Yield, 63%, light brown crystalline solid, mp 145–147 �C. IR
(KBr, cm�1) m: 3054, 3063 (quinazolinone ring, quinoline ring
Ar-H), 3089 (‚CH stretching), 1674, 1680 (C‚O stretching),

1611, 1583 (C‚N stretching), 1555–1440 (C‚C, quinazoli-
none ring, quinoline ring, benzene ring), 848 (C–Cl stretching),
772, 690 (mono substituted benzene ring). 1H NMR (DMSO)

d (ppm): 8.32 (s, 1H, ‚CH group), 5.90 (s, 1H, S–CH–N),
7.67–8.35 (m, 9H, quinoline and quinazolinone-H), 7.25–7.86
(m, 9H, Ar-H). 13C NMR (DMSO) d (ppm): 164.4, 160.8,

156.2, 148.7, 147.7, 145.4, 138.3, 136.2 134.7, 133.4, 131.9,
130.9, 130.1, 129.9, 128.8, 128.8, 128.6, 128.2, 127.5, 127.3,
127.2, 127.1, 127.0, 126.7, 126.6, 125.2, 123.8, 120.8, 63.5.
Anal. Calcd for C33H20ClN5O4S: C, 64.12; H, 3.26; N, 11.33.

Found: C, 64.22; H, 3.34; N, 11.35.

2.2.3.5. 2-(2-Chloroquinolin-3-yl)-5-(3-nitrobenzylidene)-3-(4-

oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)5.
Yield, 67%, dark yellow crystalline solid, mp 235–237 �C. IR
(KBr, cm�1) m: 3050, 3067 (quinazolinone ring, quinoline ring

Ar-H), 3080 (‚CH stretching), 1671, 1685 (C‚O stretching),
1604, 1583 (C‚N stretching), 1562–1452 (C‚C, quinazoli-
none ring, quinoline ring, benzene ring), 852 (C–Cl stretching),
762, 690 (mono substituted benzene ring). 1H NMR (DMSO)

d (ppm): 8.35 (s, 1H, ‚CH group), 5.95 (s, 1H, S–CH–N),
7.60–8.32 (m, 9H, quinoline and quinazolinone-H), 7.24–7.87
(m, 9H, Ar-H). 13C NMR (DMSO) d (ppm): 164.4, 160.8,

156.2, 148.7, 147.8, 145.4, 138.3, 136.2, 136.1, 133.4, 131.9,
130.9, 130.1, 129.9, 129.5, 128.8, 128.6, 128.2, 134.6, 127.5,
127.3, 127.0, 126.7, 126.6, 125.2, 123.1, 122.7, 120.8, 63.5.

Anal. Calcd for C33H20ClN5O4S: C, 64.12; H, 3.26; N, 11.33.
Found: C, 64.21; H, 3.36; N, 11.38.

2.2.3.6. 2-(2-Chloroquinolin-3-yl)-5-(4-nitrobenzylidene)-3-(4-
oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)6.
Yield, 70%, light orange crystalline solid, mp 292–293 �C.
IR (KBr, cm�1) m: 3056, 3069 (quinazolinone ring, quinoline

ring Ar-H), 3080 (‚CH stretching), 1671, 1688 (C‚O stretch-
ing), 1612, 1592 (C‚N stretching), 1562–1451 (C‚C, quinaz-
olinone ring, quinoline ring, benzene ring), 844 (C–Cl

stretching), 764, 690 (mono substituted benzene ring). 1H
NMR (DMSO) d (ppm): 8.38 (s, 1H, ‚CH group), 5.98 (s,
1H, S–CH–N), 7.64–8.22 (m, 9H, quinoline and quinazoli-

none-H), 7.23–7.86 (m, 9H, Ar-H). 13C NMR (DMSO) d
(ppm): 164.4, 160.8, 156.2, 147.1, 141.3, 148.7, 145.4, 138.3,
136.2, 133.4, 131.9, 130.9, 130.1, 129.9, 129.0, 128.8, 128.6,

128.2, 127.5, 127.3, 127.0, 126.7, 123.8, 126.6, 125.2, 123.8,
120.8, 63.5. Anal. Calcd for C33H20ClN5O4S: C, 64.12; H,
3.26; N, 11.33. Found: C, 64.18; H, 3.35; N, 11.37.

2.2.3.7. 2-(2-Chloroquinolin-3-yl)-5-(2-hydroxybenzylidene)-3-
(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)7.
Yield, 85%, light brown crystalline solid, mp 201–203 �C. IR
(KBr, cm�1) m: 3053, 3069 (quinazolinone ring, quinoline ring
Ar-H), 3086 (‚CH stretching), 1668, 1684 (C‚O stretching),
1609, 158- (C‚N stretching), 1568–1445 (C‚C, quinazoli-

none ring, quinoline ring, benzene ring), 841 (C–Cl stretching),
769, 692 (mono substituted benzene ring). 1H NMR (DMSO)
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d (ppm): 8.08 (s, 1H, ‚CH group), 5.92 (s, 1H, S–CH–N),

7.63–8.27 (m, 9H, quinoline and quinazolinone-H), 7.27–7.83
(m, 9H, Ar-H), 5.35 (s, 1H, –OH group). 13C NMR (DMSO)
d (ppm): 164.4, 160.8, 157.1, 156.2, 148.7, 145.4, 138.3, 136.2,
133.4, 131.9, 130.9, 130.1, 129.9, 129.3, 128.9, 128.8, 128.6,

128.2, 127.5, 127.3, 127.0, 126.7, 126.6, 125.2, 121.2, 120.8,
117.6, 116.5, 63.5. Anal. Calcd for C33H21ClN4O3S: C, 67.28;
H, 3.59; N, 9.51. Found: C, 67.37; H, 3.67; N, 9.61.
2.2.3.8. 2-(2-Chloroquinolin-3-yl)-5-(3-hydroxybenzylidene)-3-
(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)8.

Yield, 70%, off yellow crystalline solid, mp 252–253 �C. IR
(KBr, cm�1) m: 3062, 3069 (quinazolinone ring, quinoline ring
Ar-H), 3080 (‚CH stretching), 1674, 1684 (>C‚O stretch-

ing), 1608, 1580 (C‚N stretching), 1563–1442 (C‚C, quinaz-
olinone ring, quinoline ring, benzene ring), 851 (C–Cl
stretching), 762, 699 (mono substituted benzene ring). 1H
NMR (DMSO) d (ppm): 8.09 (s, 1H, ‚CH group), 5.95 (s,

1H, S–CH–N), 7.68–8.31 (m, 9H, quinoline and quinazoli-
none-H), 7.28–7.82 (m, 9H, Ar-H), 5.38 (s, 1H, –OH group).
13C NMR (DMSO) d (ppm): 164.4, 160.8, 158.4, 156.2,

148.7, 145.4, 138.3, 136.2, 133.4, 131.9, 130.9, 130.0, 130.1,
129.9, 128.8, 128.6, 128.6128.2, 127.5, 127.3, 127.0, 126.7,
126.6, 125.2, 121.1, 120.8, 115.1, 112.1, 63.5. Anal. Calcd for

C33H21ClN4O3S: C, 67.28; H, 3.59; N, 9.51. Found: C,
67.24; H, 3.63; N, 9.58.
2.2.3.9. 2-(2-Chloroquinolin-3-yl)-5-(4-hydroxybenzylidene)-3-

(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)9.
Yield, 53%, dark brown crystalline solid, mp 263–265 �C. IR
(KBr, cm�1) m: 3056, 3069 (quinazolinone ring, quinoline ring

Ar-H), 3080 (‚CH stretching), 1670, 1683 (C‚O stretching),
1614, 1590 (C‚N stretching), 1560–1441 (C‚C, quinazoli-
none ring, quinoline ring, benzene ring), 846 (C–Cl stretching),

769, 691 (mono substituted benzene ring). 1H NMR (DMSO)
d (ppm): 8.05 (s, 1H, ‚CH group), 5.96 (s, 1H, S–CH–N),
7.63–8.27 (m, 9H, quinoline and quinazolinone-H), 7.28–7.88

(m, 9H, Ar-H), 5.39 (s, 1H, –OH group). 13C NMR (DMSO)
d (ppm): 164.4, 160.8, 157.7, 156.2, 148.7, 145.4, 138.3, 136.2,
133.4, 131.9, 130.9, 130.6, 130.1, 129.9, 128.8, 128.6, 128.2,
127.8, 127.5, 127.3, 127.0, 126.7, 126.6, 125.2, 120.8, 115.8,

63.5. Anal. Calcd for C33H21ClN4O3S: C, 67.28; H, 3.59; N,
9.51. Found: C, 67.35; H, 3.63; N, 9.56.

2.2.3.10. 2-(2-Chloroquinolin-3-yl)-5-(4-methylbenzylidene)-3-
(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)10.
Yield, 74%, off brown crystalline solid, mp 201–203 �C. IR
(KBr, cm�1) m: 3054, 3068 (quinazolinone ring, quinoline ring
Ar-H), 3082 (‚CH stretching), 2950 (–CH3 stretching), 1675,
1681 (C‚O stretching), 1605, 1589 (C‚N stretching), 1567–

1442 (C‚C, quinazolinone ring, quinoline ring, benzene ring),
1460 (–CH3 bending), 846 (C–Cl stretching), 762, 696 (mono
substituted benzene ring). 1H NMR (DMSO) d (ppm): 7.76
(s, 1H, ‚CH group), 5.91 (s, 1H, S–CH–N), 7.65–8.21 (m,

9H, quinoline and quinazolinone-H), 7.29–7.86 (m, 9H, Ar-
H), 2.35 (s, 3H, –CH3 group). 13C NMR (DMSO) d (ppm):
164.4, 160.8, 156.2, 148.7, 145.4, 138.3, 137.6, 136.2, 133.4,

132.2, 131.9, 130.9, 130.1, 129.9, 128.9, 128.9, 128.8, 128.6,
128.5, 128.2, 127.5, 127.3, 127.0, 126.7, 126.6, 125.2, 120.8,
63.5, 21.3. Anal. Calcd for C34H23ClN4O2S: C, 69.55; H,

3.94; N, 9.54. Found: C, 69.56; H, 3.99; N, 9.62.
2.2.3.11. 2-(2-Chloroquinolin-3-yl)-5-(4-methoxybenzylidene)-

3-(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-one (V)11.
Yield, 72%, dark yellow crystalline solid, mp 224–226 �C. IR
(KBr, cm�1) m: 3057, 3062 (quinazolinone ring, quinoline ring

Ar-H), 3075 (‚CH stretching), 2945 (–OCH3 stretching),
1672, 1684 (C‚O stretching), 1605, 1589 (C‚N stretching),
1568–1445 (C‚C, quinazolinone ring, quinoline ring, benzene
ring), 838 (C–Cl stretching), 1465 (–OCH3 bending), 763, 694

(mono substituted benzene ring). 1H NMR (DMSO) d
(ppm): 7.76 (s, 1H, ‚CH group), 5.94 (s, 1H, S–CH–N),
7.63–8.27 (m, 9H, quinoline and quinazolinone-H), 7.27–7.86

(m, 9H, Ar-H), 3.83 (s, 3H, –OCH3 group). 13C NMR
(DMSO) d (ppm): 164.4, 160.8, 159.8, 156.2, 148.7, 145.4,
138.3, 136.2, 133.4, 130.2, 131.9, 130.9, 130.1, 129.9, 128.8,

128.6, 128.2, 127.5, 127.3, 127.0, 126.7, 114.2, 126.6, 125.2,
120.8, 114.2, 63.5, 55.8. Anal. Calcd for C34H23ClN4O3S: C,
67.71; H, 3.84; N, 9.29. Found: C, 67.78; H, 3.89; N, 9.33.
2.2.3.12. 2-(2-Chloroquinolin-3-yl)-3-(4-oxo-2-phenylquinazo-
lin-3(4H)-yl)-5-(3,4,5-tri-methoxybenzylidene)thiazolidin-4-
one(V)12. Yield, 69%, dark brown solid, mp 189–191 C. IR

(KBr, cm�1) m: 3051, 3062 (quinazolinone ring, quinoline ring
Ar-H), 3080 (‚CH stretching), 2939 (–OCH3 stretching),
1671, 1682 (C‚O stretching), 1605, 1585 (C‚N stretching),

1566–1450 (C‚C, quinazolinone ring, quinoline ring, benzene
ring), 1462 (–OCH3 bending), 842 (C–Cl stretching), 763, 694
(mono substituted benzene ring). 1H NMR (DMSO) d
(ppm): 7.72 (s, 1H, ‚CH group), 5.96 (s, 1H, S–CH–N),
7.65–8.24 (m, 9H, quinoline and quinazolinone-H), 7.21–7.85
(m, 7H, Ar-H), 3.83 (s, 9H, –OCH3 group).

13C NMR (DMSO)
d (ppm): 164.4, 160.8, 156.2, 153.0, 148.7, 145.4, 138.4, 138.3,

136.2, 133.4, 131.9, 130.9, 130.1, 129.9, 129.5, 128.8, 128.6,
128.2, 127.5, 127.3, 127.0, 126.7, 153.0, 126.6, 125.2, 120.8,
103.8, 63.5, 60.8, 56.1. Anal. Calcd for C36H27ClN4O5S: C,

65.20; H, 4.10; N, 8.44. Found: C, 65.25; H, 4.17; N, 8.49.
3. Results and discussion

3.1. Synthesis

Intermediate compound (I) (2-phenylbenzo[d]1,3-oxazin-4-
one) (Bogert and Coriner, 1909) and compound (II) (3-ami-

no-2-phenyl-3-hydroquinazolin-4-one) were prepared by
following literature procedures (Siddappa et al., 2008).
Reaction conditions were non-homogeneous and the use of
an excess amount of hydrazine hydrate did not afford desired

results. The reaction conditions for the synthesis of (II) were
optimized in various solvents at different temperatures and dif-
ferent time. The results were observed and data was reported

in Table 1. In step-(II), ethanol was used as a solvent and re-
fluxed at 78 �C, reaction was completed in 4 h and yield was
found to be 24% (Table 2, step-(II), entry-1). When we used

isopropanol as a solvent and at 85 �C temperature for 4 h,
we found that 31% yield was obtained (Table 2, step-(II), en-
try-2). Pyridine was used as a solvent and reaction mixture was

refluxed at 116 �C for 3 h, we found that 87% yield was ob-
tained (Table 2, step-II, entry-3). Thus for the synthesis of
intermediate compound-(2), pyridine is considered to be
appropriate solvent and higher temperature (more than

100 �C) was the perfect parameter for step-2.
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In order to optimize the reaction conditions for the synthe-

sis of (III), the different conditions were employed. First, the
role of the catalyst (Acetic acid) in accelerating the reaction
rate was ascertained. While in the presence of catalyst, a
72% yield of (III) was achieved in 10 h (Table 2, step-(III), en-

try-1), In the absence of the catalyst, only 52% yield was ob-
tained with a prolonged reaction period of 30 h (Table 2,
step-(III), entry-2). In addition, we also examined the effect

of time taken for the completion of reaction. When the reac-
tion time was decreased to 20 h, suddenly yield was improved
(75%) (Table 2, step-(III), entry-3), We have also noted that

the time decreased to 10 h, the yield was found to be (72%).
Also, it could be observed that the yield was significantly lower
at room temperature (Table 2, step-(III), entry-4). Thus the

best condition for the synthesis of intermediate compound
(III) may be at 78 �C temperature, using solvent ethanol and
acetic acid as the catalyst.

The different reaction conditions for intermediate step (IV)

were also employed. For this step, we have used different sol-
vents and reaction was carried out at different temperature. In
this step 1,4-dioxane was used as a solvent and fused ZnCl2
used as a catalyst and refluxed at 90 �C, 76% yield of (IV)
was achieved in 15 h (Table 2, step-(IV), entry-1), It was our
observation, when the same reaction was carried out in the

same solvent at 90 �C without catalyst ZnCl2 it took 18 h,
52% yield was obtained (Table 2, step-(IV), entry2), when
we have used ethanol as a solvent at 65 �C, reaction completed
after 20 h and 32% yield was found (Table 2, step-(IV), entry-

3). While reaction is carried out in benzene as a solvent at
78 �C, reaction completed after 15 h and 56% yield observed
(Table 2, step-(IV), entry-4). So, this led to the conclusion that

good result was obtained in 1,4-dioxane used as a solvent and
fused ZnCl2 used as a catalyst and refluxed at 90 �C
temperature.

In the last step, in order to optimize the reaction conditions
for the final step, three different catalysts in the same solvent
ethanol at different temperature were used. The ethanol taken

as a solvent and sodium ethoxide was used as catalyst at 75 �C
for 8 h. Yield (74%) was found (Table 2, step-(V), entry-1),
while in the same solvent sodium methoxide as catalyst was
used at 70 �C for 12 h, only 43% yield was found (Table 2,

step-(V), entry-2), If we used the same solvent but fused so-
dium acetate as a catalyst at 72 �C for 10 h, we have obtained
52% yield (Table 2, step-(V), entry-3). From the above obser-

vations, we have concluded that if, we want to get a better
yield in the final step, ethanol as solvent and sodium ethoxide
as a catalyst will be appropriate (see Scheme 1).

The IR spectrum of the final compound-(V)8 (molecular
formula C33H21ClN4O3S, m.w. 589.07, structure and carbon
numbering is given in Fig. 1) over the 3077 cm�1 range showed

multiple weak absorption peak corresponding to Qu-H and
Ar-H stretching vibration absorption peaks. The absorption
peak at 3002 cm�1 is due to the stretching vibration of methy-
lene group. The strong absorption at 1671 cm�1 is due to the

>C‚O stretching vibration, which is present in quinazolinone
on position C-2, while another absorption peak at 1663 cm�1

is due to the >C‚O stretching vibration in thiazolidine ring

and the moderate intensity absorption at 1623 cm�1 corre-
sponds to a >C‚N– stretching vibration. The 1605–
1580 cm�1 absorptions are due to the skeleton vibration of

the aryl and heterocyclic rings. The broad absorption peak
at 3432 cm�1 is observed due to the –OH stretching vibration.



Table 2 The effect of reaction condition on yield of step (II) to (V)1–12.

Reaction step Entry Solvent Catalyst Reaction temp. (�C) Reaction time (h) Yield (%)

(II) 1 Absolute Ethanol – 78 4 24

2 Isopropanol – 85 5 31

3 Pyridine – 116 3 87

(III) 1 Absolute Ethanol Acetic acid 78 10 71.9

2 Absolute Ethanol – 78 30 52.4

3 Absolute Ethanol Acetic acid 78 20 74.8

4 Absolute Ethanol Acetic acid r.t. 10 22.1

(IV) 1 1,4-dioxane ZnCl2 90 12 76

2 1,4-dioxane – 90 18 52

3 Absolute Ethanol ZnCl2 65 20 32

4 Benzene – 78 24 52

(V)1–12 1 Absolute Ethanol C2H5ONa 75 8 74

2 Absolute Ethanol CH3ONa 70 12 43

3 Absolute Ethanol CH3COONa 72 10 52
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The absorption peak at 756 cm�1 is due to the chlorine atom,
which is attached with a carbon atom at C-19. The vibration at
845 cm�1 is due to the bending vibration of methylene group.

The absorption peaks 696 cm�1 arise due to phenyl-substituted
at position-3.

It can be seen from the chemical structure of compound-
(V)8 that different pairs of carbons e.g. C-10 and C-14, C-11

and C-13 are attached to chemically equivalent protons. The
protons which are attached to C-10 and C-14 appear at 7.83,
while the protons which are attached to C-11 and C-13 appear

at 7.52 ppm. The protons attached at C-5 position appeared as
a multiplet at d = 7.63 ppm due to mutual coupling with C4-H
and C6-H, while protons attached at C-6 appeared as a multi-

plet at d = 7.70 ppm due to mutual coupling with C5-H and
C7-H. The protons attached at C-4 position appeared as a
doublet at d = 8.03 ppm. The protons which are attached with

C-12 appeared as a multiplet at d = 7.55 ppm due to mutual
coupling with C-11 and C-13 which are present in the phenyl
ring directly attached to the quinazolinone ring. A single peak
that appeared at d = 5.97 ppm must be for proton attached at

C-17 which is present in thiazolidine ring. A single peak
appeared at d = 5.35 ppm of –OH group which is attached
with C-32. The proton of the methylene group appear as a

singlet at d = 7.33 ppm. The protons of the phenyl ring
(C-29, C-30, C-31 and C-33) appeared between d = 6.70 and
7.16 ppm, respectively. The proton attached at C-23 position

appeared as a multiplet at d = 7.59 ppm due to mutual
coupling with protons attached at C-22 and C-24, while proton
attached at C-22 position appeared as a multiplet at d =
7.74 ppm due to mutual coupling with C-21 and C-23. The

proton at C-21 appeared as a doublet at d = 7.99 ppm, while
proton at C-24 appeared at d = 8.03 ppm and proton at
C-26 appeared at d = 8.27 ppm.

The final compound-(V)8 has quinazolinone ring, quinoline
ring and thiazolidine ring. The chemical shifts of the final com-
pound carbons vary from d = 164.2–63.6 ppm. The carbon

nuclei under the influence of a strong electronegative environ-
ment appeared downfield, e.g. the C-2 and C-15 carbonyl,
which are directly linked to the ring nitrogen, has a chemical

shift value of d = 160.6 and 164.4 ppm, respectively, whereas
C-19 linked to a chlorine atom appeared at d = 151.9 ppm.
The carbon C-1 which is attached on both sides to nitrogen
atoms appeared at d = 156.0. The carbon of the methylene
group C-27 appeared at d = 125.1 ppm. The chemical shift
of the ring carbons at C-3 and C-16 which are affected by
the presence of the nearest carbonyl group appeared at

d = 120.7 and 138.4 ppm, respectively. The carbons of the
benzene ring which are attached to the quinazolinone ring hav-
ing equivalent carbons C-10 and C-14 appeared at
d = 128.2 ppm, C-11 and C-13 appeared at d = 128.8 ppm,

respectively, while carbon C-12 appeared at d = 130.1 ppm,
respectively, while the carbon atom which is present in thiazol-
idine ring between nitrogen atom and sulfur atom appeared at

d = 63.6 ppm. The carbon C-32 which is directly attached to
hydroxyl group appeared at d = 158.4 ppm, the other carbons
of this ring (C-28, C-29, C-30, C-31 and C-33) appeared be-

tween d = 115.0 and 136.6 ppm, respectively. The carbons of
the quinoline ring (C-18, C-20, C-21, C-22, C-23, C-24, C-25
and C-26) appeared between d = 126.6 and 151.9 ppm, respec-

tively. The structure and carbon numbering of compound-(V)8
is described in Fig. 1.

3.2. Antimicrobial activity

Minimum Inhibitory Concentration for bacteria (MICb) of all
the synthesized compounds was determined against four differ-

ent strains, viz two Gram positive bacteria (Staphylococcus
aureus and S. pyogenes and two Gram negative bacteria (Esch-
erichia coli and Pseudomonas aeruginosa) compared with stan-

dard drug. Ampicillin by broth dilution method (Rattan,
2000). For Antifungal activities, minimum inhibitory concen-
tration for fungi (MICf) of all the synthesized compounds
was determined against Candida albicans, Aspergillus niger

and A. clavatus organisms were compared with standard drugs
Greseofulvin by same method, which showed 100 lg/ml MICf

against all fungi used for the antifungal activity. We have syn-

thesized 2-(2-Chloro(3-quinolyl))-5-[(2-aryl)methylene]-3-(4-
oxo-2-phenyl(3-hydroquina-zolin-3-yl))-1,3-thiazolidin-4-one
(V)1–12 derivatives.

3.2.1. Antibacterial activity
From screening results, final compound (V)9 possesses very

good activity against E. coli. Compounds (V)2, (V)4, (V)5
and (V)8 were good active against E. coli compared with stan-
dard ampicillin. Final compound (V)3 possesses an excellent

activity against P. aeruginosa and compound (V)7 and (V)10
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possesses very good activity against P. aeruginosa, while com-
pound (V)8 and (V)11 possesses good activity against P. aeru-
ginosa as compared to standard ampicillin. Final compounds

(V)3 and (V)9 possesses very good activity against S. aureus,
while compounds (V)1, (V)4, (V)6, (V)8 and (V)10 possesses
good activity against S. aureus as compared to standard ampi-
cillin. Final compounds (V)2, (V)8 and (V)9 are considered as
good active against S. pyogenus as compared to ampicillin.
The remaining compounds of the entire series possesses only
moderate to poor antibacterial activity.
3.2.2. Antifungal activity
Antifungal screening data showed that final compounds (V)6
and (V)7 possesses very good activity against C. albecans, while
compounds (V)1, (V)3, (V)4 and (V)11 possess good activity
against C. albecans as compared to the standard griseofulvin.

Compounds (V)3, (V)5, (V)6 and (V)9 possesses good activity
against A. niger as compared to the standard griseofulvin.
Compounds (V)3, (V)7, (V)8, (V)10 and (V)12 possesses good

activity against A. clavatus as compared to the standard griseo-
fulvin. The remaining compounds of the entire series possesses
moderate to poor antifungal activity.
3.3. Statistical analysis

The standard deviation value is express in the terms of ±SD.

On the basis of the calculated value by using ANOVA method,
it has been observed that the differences below to 0.0001 level
(p 6 0.0001) were considered as statistically significant.
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4. Conclusion

Some of the newly synthesized compounds exhibited promis-

ing antibacterial activities against E. coli, S. aureus, P. aerugin-
osa and S. pyogenus. Some exhibited very good antifungal
activity against C. albicans, A. niger and A. clavatus. Com-
pounds (V)7 and (V)10 possessed very good activity against

both bacterial and fungal species. It seems that the methyl
group at para position and hydroxy group at second position
are very significant for activity against both bacterial and fun-

gal species. These results make novel quinazolinone, thiazoli-
dine and quinoline derivatives interesting lead molecules for
further synthetic and biological evaluation.
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