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The gamma-aminobutyric acid (GABA) metabolite gamma-hydroxybutyric

acid (GHB) shows a variety of behavioural effects when administered to ani-

mals and humans, including reward/addiction properties and absence

seizures. At the cellular level, these actions of GHB are mediated by activation

of neuronal GABAB receptors (GABABRs) where it acts as a weak agonist.

Because astrocytes respond to endogenous and exogenously applied GABA

by activation of both GABAA and GABABRs, here we investigated the action

of GHB on astrocytes on the ventral tegmental area (VTA) and the ventrobasal

(VB) thalamic nucleus, two brain areas involved in the reward and proepileptic

action of GHB, respectively, and compared it with that of the potent GABABR

agonist baclofen. We found that GHB and baclofen elicited dose-dependent

(ED50: 1.6 mM and 1.3 mM, respectively) transient increases in intracellular

Ca2þ in VTA and VB astrocytes of young mice and rats, which were accounted

for by activation of their GABABRs and mediated by Ca2þ release from intra-

cellular store release. In contrast, prolonged GHB and baclofen exposure

caused a reduction in spontaneous astrocyte activity and glutamate release

from VTA astrocytes. These findings have key (patho)physiological impli-

cations for our understanding of the addictive and proepileptic actions of GHB.
1. Introduction
Gamma-hydroxybutyric acid (GHB) is an endogenous central nervous system

(CNS) substance that results from the metabolism of the neurotransmitter

gamma-aminobutyric acid (GABA) [1–3], but can also act as a source of neuronal

GABA [4]. In humans, exogenously administered GHB elicits a variety of behav-

ioural responses that at progressively increasing doses include sedation, memory

loss, euphoria, behavioural disinhibition, sleep and coma [2,5–8]. GHB has also

found some limited clinical use in the treatment of alcohol and opiate withdrawal

[9–12] as well as of narcolepsy and cataplexy [13–15]. In the early 1970s, GHB

emerged as a recreational drug and still remains one of the most commonly used

‘club drugs’ [16–19], with GHB overdoses accounting for a substantial proportion

of the hospital emergencies that are linked to recreational nightlife settings [20].

A neuropharmacological profile similar to that observed in humans character-

izes the behaviour of animals injected with GHB. The most extensively studied

behavioural actions of GHB are its ability to induce self-administration and absence

seizures [3]; indeed, the systemic administration of low doses of GHB has become

the most widely used pharmacological model of these non-convulsive seizures [21].

Thus, oral GHB induces self-administration and conditioned place preference in

mice and rats [22–25]. In addition, GHB administration leads to a moderate stimu-

lation of the dopaminergic reward system [26], and in vitro low concentration of

GHB preferentially inhibits the GABAergic neurons of the ventral tegmental area

(VTA), one of the key brain-reward areas [25,27]. Indeed, GHB induces conditioned

place preference when injected directly in the VTA [28], but not in the nucleus

accumbens, another important brain-reward area. As far as absence seizures are

concerned, the ability of GHB to elicit absence seizures is not restricted to its
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systemic administration but importantly it also occurs when

it is injected directly into the ventrobasal (VB) nucleus of the

thalamus [29], one of the key areas for the generation of these

non-convulsive seizures [30].

In both mice and rats, all behavioural and cellular actions of

GHB, including its reward- and seizure-eliciting properties,

can be explained by it acting as a weak agonist at GABAB recep-

tors (GABABRs) [31,32], though the existence of a putative

GHB receptor site has been suggested [33] (but see [3]). Thus,

the pro-absence action of GHB is mimicked by the selective

GABABR agonist baclofen and is fully antagonized by different

selective GABABR antagonists [3], and in some studies by

NCS382, an antagonist of the putative GHB receptor site [34].

Interestingly, micromolar GHB concentrations have recently

been suggested to activate recombinant a4bd GABAARs [35],

though the physiological significance of this finding remains

obscure as these results could not be reproduced in different

brain areas, including thalamus, cerebellum and hippocampus

[36] that contain this combination of GABAAR subunits.

It is now well-established that astrocytes respond to differ-

ent neurotransmitters, including GABA [37,38] and signal back

to neurons via the release of gliotransmitters [39,40], thus

modulating neuronal excitability and different forms of synap-

tic plasticity [41]. Thus, because astrocytes respond to GABABR

activation [42], and the VTA and VB thalamus contribute to the

behavioural actions of GHB [3], we investigated the effect of

GHB on this glial cell type in brain slices and compared it

with the selective GABABR agonist baclofen. We report that

GHB and baclofen elicit a dose-dependent increase of intra-

cellular Ca2þ ([Ca2þ]i) in VTA and VB astrocytes which

is fully accounted for by activation of their GABABRs and is

mediated by Ca2þ release from intracellular stores. In contrast

to many other studies which found that transient as well as sus-

tained agonist-induced astrocytic [Ca2þ]i elevations result in

increased gliotransmitter release, prolonged GHB and baclofen

exposure causes a reduction in spontaneous glutamate release

from VTA astrocytes.
2. Materials and methods
All experiments were performed in accordance with the Animals

(Scientific Procedures) Act 1986, UK, and with approval of local

animal welfare and ethical review bodies.
(a) Slice preparation and maintaining solutions
Male and female Wistar rats (8–12 days old), as well as GABAB KO

mice and their wild-type littermates (kindly provided by B. Bettler,

Basel, Switzerland) [43] were deeply anaesthetized with isoflurane,

and the brain quickly removed. Slices of VTA or VB thalamus were

prepared as described previously [44,45]. Briefly, the brain was

glued with cyanoacrylate adhesive to a metal block and submerged

in the bath of a Leica or Microm MV tissue slicer. The bathing so-

lution was of composition (in mM): NaCl 120, NaHCO3 16, KCl

1, KH2PO4 1.25, MgSO4 5, CaCl2 1, 10 glucose, and was maintained

at 58C. Slices (350 mm) were cut in the horizontal plane, and then

stored in a 95% O2, 5% CO2-bubbled solution of identical compo-

sition at room temperature. Following a 1 h recovery period,

experiments were performed in a solution of composition (in

mM): NaCl 120, NaHCO3 16 or 25, KCl 2, KH2PO4 1.25, MgSO4

1, CaCl2 2, 10 glucose, at room temperature (20–248C), unless other-

wise stated. Slices were loaded with Fluo-4 AM (Invitrogen, Paisley,

UK) by incubating for 40–60 min at 288C with 5 mM of the indicator

dye and 0.01% pluronic acid. TTX (1 mm) was present in the
perfusate of all experiments. Agonists (GHB and baclofen) were

bath-applied for 2 min with or without GABABR antagonists

(unless stated otherwise). Chemicals were purchased from Sigma

(St Louis, MO), except CGP65426, MTEP, CNQX, CPCCOEt and

baclofen (Tocris, Bristol, UK), D-APV and TTX (Abcam, Cambridge,

UK), and GHB (that was kindly donated by Unavera ChemLab

GmbH, Mittenwald, Germany).

(b) Fluorescence imaging
The slices were placed in a recording chamber, whereas the

patch-electrode headstage micromanipulators were mounted on

a movable platform (MP MTP-01, Scientifica, UK). Fluorescence

was measured using a Noran Odyssey confocal (Thermo Noran,

USA) fitted to a Nikon E600FN upright microscope. Averages of

eight whole field images (206 mm � 158 mm) were routinely

acquired every 5 s with a 40� objective lens (NA ¼ 0.8). Acqui-

sition and image analyses were performed using Noran

Intervision and METAMORPH software. Fluorescence values over

time for specific regions of interest were exported into SIGMAPLOT

(Jandel, USA) for further analysis. The number of responding

astrocytes (reported in the text and figures) is expressed as an

absolute number of responding astrocytes per imaged slice area.

Because the imaged area (see above) was the same in all experi-

ments, and astrocytes are evenly distributed throughout the

brain parenchyma [46], using the absolute number of responding

astrocytes provides a valid and efficient way of determining

agonist and antagonist effects as reported previously [47,48].

Two photon laser scanning microscopy was performed using

a Prairie Ultima (Prairie Technologies, Madison, WI) microscope

and a Ti : sapphire pulsed laser (Chameleon Ultra II, Coherent,

UK) tuned to l ¼ 810 nm. Image acquisition was controlled

using PRAIRIEVIEW software, and laser intensity was modified

using a Pockels cell electroacoustic modulator (ConOptics,

USA). Slices were imaged using a 40�/0.8 NA objective lens,

and fluorescence signals from Fluo-4 indicator were collected in

the epicollection mode using multi-alkali photomultiplier tubes

(Hamamatsu Photonics, Hamamatsu, Japan).

(c) Electrophysiology
Patch-clamp recordings from VTA neurons were made using pip-

ettes (2–4 MV) containing an internal solution of composition

(in mM): KMeSO4 120, HEPES 10, EGTA 0.1, Na2ATP 4, GTP

0.5, osmolarity adjusted to 295 mOsm l21 with KCl. Currents

were recorded at 260 mV using a multi-clamp 700B amplifier,

digitized with a Digidata 1440A, and acquired and analysed

using pClamp (Molecular Devices). Neurons with more than

20% change in access resistance were excluded. Slow inward cur-

rents (SICs) were analysed using the event detection protocols in

the Clampfit routine of pClamp. Events were accepted as SICs if

their amplitude was more than 20 pA and their time to peak was

more than 20 ms [47,49]. Data were exported to SIGMAPLOT

(Jandel) for additional analysis and plotting.

(d) Statistics
All quantitative data are expressed in the text as mean+ s.e.m.

Statistical test used was unpaired Student’s t-test. Dose–response

curve fitting was conducted using the fitting procedures of

SIGMAPLOT (Jandel) and PRIZM (GraphPad). In the figures, asterisk

indicates significance of *p , 0.05, **p , 0.005 and ***p , 0.0005.
3. Results
In the continuous presence of TTX (1 mM), relatively brief

(2 min) application of GHB to rat VTA slices bulk-loaded

with the Ca2þ indicator Fluo-4 elicited robust and synchronous
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somatic [Ca2þ]i transients in astrocytes (figure 1a, top row

and the electronic supplementary material, movie S1), with

increasing numbers of cells responding to increasing agonist

concentration. The magnitude of GHB-induced elevations

was not different in magnitude to those evoked by the select-

ive GABABR agonist baclofen (figure 1a, bottom row). These

[Ca2þ]i elevations were present in the soma and in the fine

astrocytic processes (electronic supplementary material,

movie S1), and sometimes seen in processes without an appar-

ent clear somatic response. Moreover, the GHB- and baclofen-

elicited [Ca2þ]i transients could be observed in the mouse VTA

(figure 1c) as well as in the rat nucleus accumbens (not shown)

and in the mouse and rat VB thalamus (figure 1c). The astrocyt-

ic effect of GHB and baclofen was concentration dependent

with an ED50 of 1.6 mM and 1.3 mM, respectively (figure 1b),

with 10 mM GHB and 10 mM baclofen evoking [Ca2þ]i transi-

ents in 6.82+0.39 astrocytes (n ¼ 11 slices) and 7.14+1.14

astrocytes (n ¼ 14 slices), respectively.

To confirm that GABABRs were indeed mediating the

astrocytic GHB and baclofen responses described above,
experiments were conducted using pharmacological and

transgenic interventions. Both GHB and baclofen effects

were virtually abolished by two structurally different

GABABR antagonists, CGP5426 and SCH50911 (baclofen:

p , 1 � 1025, p , 1 � 1023, respectively; GHB: p , 1 � 1027,

p , 1 � 1025, respectively; figure 2a). Interestingly, GHB

responses were also markedly inhibited by the putative GHB

receptor antagonists NCS382 (GHB: 7.71+0.89 astrocytes,

n ¼ 19 slices; GHB þ NCS382: 1.5+0.46, n ¼ 8, p , 1 � 1024;

figure 2a), which, however, had no effect on the number

of astrocytes responding to baclofen application (baclofen:

8.5+1.28, n ¼ 8 slices; baclofen þ NCS382: 10+0.57, n ¼ 3

slices). Finally, astrocytes in VTA slices from wild-type litter-

mate mice (WT, GABABRþ/þ) readily responded with [Ca2þ]i

elevations to GHB and baclofen applications, whereas both ag-

onists failed to elicit astrocytic transients in slices from GABABR

knockout (GABABR KO,2/2) mice (figure 2b,c). However,

astrocytes in GABABR KO and WT littermate mice responded

similarly to glutamate (figure 2b,c), thus excluding the pos-

sibility that the mechanism underlying [Ca2þ]i transients in
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astrocytes from the GABABR KO mice was compromised.

Identical results were obtained in the VB thalamus of

GABABR KO and WT littermate mice (figure 2b,c).

Although all our experiments were conducted in the pres-

ence of TTX to block neuronal activity, the possibility might

exist that the observed effect could be owing to activation of

neuronal GABABRs that resulted in glutamate release and an

indirect effect mediated by the activation of metabotropic

glutamate receptors (mGluRs), which comprise a major
signalling pathway in astrocytes [50]. As shown in figure 3,

however, the response of VTA astrocytes to both GHB and

baclofen was not affected by APV, NBQX or by the combined

application of mGluR5 and mGluR1 antagonists (MTEP and

CPCCOEt, respectively).

To investigate the sources of signalling elicited by GHB

activation, we manipulated extracellular and intracellular

[Ca2þ]. To deplete intracellular stores, we used the SERCA

pump inhibitor cyclopiazonic acid (CPA; 10 mM), whereas
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in separate experiments we tested the action of GHB

and baclofen in slices bathed with a nominal extracellular

Ca2þ-free solution. Responses to baclofen were significantly

reduced by both interventions (ctrl: 5.75+ 0.70 astrocytes,

n ¼ 12 slices; CPA: 0.3+ 0.15, n ¼ 12, p , 1 � 1028; 0 mM

Ca2þ: 0.22+ 0.11, n ¼ 12, p , 1 � 1028) as were those to

GHB (ctrl: 5.6+0.56, n ¼ 12; CPA: 0.28+ 0.88, n ¼ 16, p ,

1 � 1025; 0 mM Ca2þ: 0.46+ 0.13, n ¼ 12, p , 1 � 1025),

showing that the effects of both agonists are dependent on

Ca2þ release from intracellular stores and an extracellular

Ca2þ supply, as previously described for similar [Ca2þ]i

transients observed spontaneously and evoked by other

neurotransmitter agonists [51,52].

We have previously shown that the sustained stimulation

of G-protein coupled mGluRs either by synaptic glutamate

release or by agonist exposure results in an increase in the

frequency of spontaneous astrocyte [Ca2þ]i oscillations

which is associated with a [Ca2þ]i-dependent increase in the

frequency of astrocytic glutamate release events, i.e. neuronal

SICs [49,53]. To investigate whether a similar phenomenon

resulted from sustained GABABR activation, we applied

GHB and baclofen for increasing durations to VTA slices.

Although our experiments show that a 2 min baclofen appli-

cation elicited astrocyte [Ca2þ]i elevations (figures 1–3), a

3 min pre-exposure did not lead to an increase in the

number of spontaneous astrocytic [Ca2þ]i transients, whereas

following a 15 min pre-exposure to baclofen spontaneous

astrocyte activity was reduced compared with control slices

(ctrl: 7.16+ 0.54 astrocytes, n ¼ 8 slices; baclofen 15 min:

1.78+ 0.32, n ¼ 12, p , 1 � 1025; figure 4a). Exposure to

GHB also resulted in a reduction that approached statistical

significance (ctrl: 6.3+1.12, n ¼ 12, GHB 15 min: 4.0+0.5,

n ¼ 12, p ¼ 0.069; figure 4a). To test whether these changes

in spontaneous [Ca2þ]i signalling were translated to spon-

taneous astrocyte–neuron glutamatergic signalling recorded

as SICs, we therefore treated VTA slices with baclofen or

GHB for extended periods of 1–3 h and compared these

results with those of untreated slices. Patch-clamp recordings

made from VTA neurons in the presence of TTX showed

the presence of spontaneous SICs in the VTA, confirming the

existence of spontaneous astrocyte–neuron signalling in this

brain area (figure 4b). Short (3 min) pre-incubation of the

slice with baclofen application, however, did not induce

astrocytic glutamate release as measured by SIC recording

(ctrl: 0.056+ 0.016 SICs per min, n ¼ 11 slices; baclofen:

0.086+0.027, n ¼ 11, p ¼ 0.2). Nevertheless, in agreement

with the observed decrease in astrocytic [Ca2þ]i elevations
observed during prolonged GABABR activation (1–3 h), SIC

frequency was significantly reduced by sustained pre-

exposure to GHB and baclofen (ctrl: 0.066+ 0.017 SICs per

min, n ¼ 28 slices; baclofen: 0.026+0.009, n ¼ 26, p , 0.05;

GHB: 0.01+0.008, n ¼ 11, p , 0.05; figure 4c, right plot).
4. Discussion
The main findings of this study are that GHB consistently eli-

cits robust [Ca2þ]i transients in astrocytes of both the VTA

and the VB thalamus of young rodents, two brain areas

that are involved in the reward properties and the pro-

absence effect of this drug, respectively. This astrocytic

GHB action is mediated by GABABRs and is comparable to

that evoked in astrocytes of the same regions by the selective

GABABR agonist baclofen. Moreover, prolonged GHB

and baclofen exposure causes a reduction in spontaneous

glutamate release from VTA astrocytes.

(a) Astrocytic gamma-hydroxybutyric acid effects
The astrocytic response to GHB (and baclofen) was highly

reliable and consistent from trial to trial in the age range

tested, and thus did not show the variability that has been

reported in a previous study [42]. Determination of whether

there is a difference in age-dependent GABABR signalling

that is also region-dependent will require further studies in

the VTA and VB thalamus.

Both GHB- and baclofen-elicited [Ca2þ]i transients were

(i) abolished by two highly selective but structurally dissimilar

GABABR antagonists, (ii) absent in GABABR KO mice and

(iii) unaffected by the block of ionotropic and metabotropic glu-

tamate receptors, indicating that in astrocytes, as occurs in

neurons, the action of GHB is mediated by GABABRs. Indeed,

the 1000-fold difference in the ED50 of the two drugs on astrocy-

tic responses is very similar to that reported for their activation

of pre- and post-synaptic neuronal GABABRs, including hyper-

polarization of the membrane potential and inhibition of

synaptic potentials [54]. However, the astrocytic effect of GHB

was also markedly blocked by NCS382, an antagonist of the

putative GHB receptor. This represents the first solid evidence

of a CNS action of GHB being mediated by its putative receptor

[3], and might provide an explanation for the block of GHB-

elicited absence seizures observed in some studies [34]. Finally,

the lack of action of ionotropic and metabotropic glutamate

receptors on GHB-elicited [Ca2þ]i transients indicates that

these responses are not mediated by activation of astrocytes



0.15

0

SI
C

s
(m

in
)

10 s

100 s 10
0

pA

100 s

10
A

FU

*
*

10

0
10

0

as
tr

oc
yt

es
as

tr
oc

yt
es

control

baclofen 15 min
GHB

baclofen

co
ntr

ol

co
ntr

ol

3 m
in

15
 m

in

GHB >
1 h

ba
clo

fen
>1 h

***

(b)

(a)

Figure 4. Time-dependent effect of GHB and baclofen on astrocytic [Ca2þ]i signalling and glutamate release. (a) Fluorescence traces show spontaneous astrocytic
[Ca2þ]i transients in control conditions and in a VTA slice pre-exposed to 10 mM baclofen for 15 min. Bar graphs on the right summarize data from similar experi-
ments where slices were pre-exposed to either 10 mM baclofen or 10 mM GHB for 3 and 15 min. (b) Patch-clamp recording from a VTA neuron on an expanded
timebase illustrating spontaneous SICs in control conditions (top trace), and lower trace showing effect of long duration 10 mM baclofen application (SICs high-
lighted by filled circle). (c) Summary data showing the frequency of SICs in control conditions, and following long (.1 h) exposure to either 10 mM GHB or 10 mM
baclofen. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130607

6

by glutamate, secondary to neuronal activation, and suggests

that they results from direct activation of astrocytic GABABRs.

GHB- (and baclofen)-elicited [Ca2þ]i transients were

blocked following perfusion of VTA slices with either a nom-

inal extracellular Ca2þ-free solution or with CPA. Thus, our

results indicate that both GHB and baclofen astrocytic

responses in VTA involve intracellular Ca2þ stores and their

refilling by extracellular Ca2þ. Whether GHB activity requires

Gi/o proteins (which are classically associated with neuronal

GABABR activation) or Gq proteins (which have been strongly

linked to Ca2þ release from intracellular stores) remains to be

elucidated, as is indeed the case for the astrocytic response to

baclofen in VTA or any other brain region.

Finally, in contrast to the activation of astrocytes, brief

application of GHB and baclofen had no effect on spontaneous

[Ca2þ]i transients (see control grey bar in figure 4a), but

decreased their frequency when applied for periods of

15 min or longer. A similar picture was obtained when looking

at spontaneous SICs, the neuronal counterpart of astrocytic

released glutamate, suggesting that long-term activation of

GABABR lead to a reduction in the glutamate-dependent

astrocyte to neuron signalling.

(b) Potential ( patho)physiological implications of
gamma-hydroxybutyric acid activation of astrocytes

Our finding of an astrocytic activation by GHB opens new av-

enues in the interpretation of the effects of this substance. As far
as absence seizures are concerned, our results suggest for the

first time that the ability of GHB to induce these seizures

might involve an astrocytic component together with a neuron-

al component. This, together with the already described loss of

function of GAT1 in thalamic astrocytes of genetic models of

absence seizures [29] and the fact that GABA transporters

affect astrocytic [Ca2þ]i transients [55], clearly stresses the

importance of this glial cell type in the generation of these

non-convulsive seizures. Finally, our data showing a block of

GHB-elicited astrocytic [Ca2þ]i transients by NCS382 provide

a potential explanation for the anti-absence effect of this puta-

tive GHB receptor antagonist, the action of which had so far

been difficult to reconcile with its lack of action on neuronal

response in thalamus [3], one of the key regions responsible

for the generation of these non-convulsive seizures.

Drugs that cause addiction act in the VTA to increase dopa-

mine release in target areas, notably the nucleus accumbens. It

has been suggested that GHB achieves this by inhibiting

GABAergic interneuron activity which results in disinhibition

of dopaminergic neurons in the VTA, and so increased dopa-

mine release [56,57]. Our observations suggest a possible

astrocytic contribution to such a mechanism, if a reduced astro-

cytic glutamate release which may ordinarily contribute to

tonic glutamate has a physiological role in driving GABAergic

interneuron activity. Reducing such a drive would therefore be

expected to increase the output of dopaminergic neurons.

There are reports from many brain areas of a Ca2þ-dependent

gliotransmitter release increase following the activation of
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G-protein coupled receptors [58]: these examples are linked to

PLC and IP3 production via Gq, whereas GABABRs are

coupled to adenylyl cyclase via Gi/o [54]. We found that in

astrocytes, GABABR activation elicits [Ca2þ]i elevations. The

mechanism underlying this increase is unclear but may involve

some activation of Gq-coupled pathways, or novel interactions

between GABAB auxiliary subunits and intracellular Ca2þ

release pathways. Whatever the physiological role of the

GABABR-induced [Ca2þ]i elevations, it does not seem to

invoke glutamate gliotransmitter release. It does, however,

provide an experimental reporter of astrocyte GABABR acti-

vation, and our observations are consistent with dominant

activation of non-Gq pathways, because we found a reduction
in spontaneous gliotransmitter glutamate release (i.e. SICs).

Interestingly, this observation is analogous to the effect of

GABABR activation on inhibiting spontaneous presynaptic

neurotransmitter release [59], and indicates the complexity of

signalling pathways which may influence the ways that

astrocytes interact with neuronal activity in different brain areas.
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