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Abstract: Circulating DNA has already proven itself as a valuable tool in translational medicine.
However, one of the overlooked areas of circulating DNA research is its association with different
proteins, despite considerable evidence that this association might impact DNA’s fate in circulation
and its biological role. In this review, we attempt to shed light on current ideas about circulating DNA
origins and forms of circulation, known biological effects, and the clinical potential of circulating
tumor deoxyribonucleoprotein complexes.
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1. Introduction

The first demonstrations of DNA in the blood of healthy individuals date back to
1948 [1–3]. The colorful history of circulating DNA (cell-free DNA and cell surface bound
DNA, which hereafter will be referred to as cirDNA) research and attempts of its use
in the field of oncology went from being skeptically discarded to becoming a valuable
tool in clinical oncology. Despite a big effort aimed at the elucidation of cirDNA origins,
circulation forms, biological role, and clinical use, the nature of this phenomenon and its
diagnostic potential remains poorly understood. Following multimarker initiatives, one
of the approaches that can shake the existing views up is approaching cirDNA from a
protein standpoint. Some approaches, such as the diagnostic method based on nucleosome
binding patterns in tumor cirDNA, have already managed to do it, while others remain to
be discovered [4].

2. Origins of cirDNA

Through cell death and active secretion, cirDNA is continuously shed into human
blood in the form of membrane-containing structures (such as apoptotic bodies) or nucleo-
protein complexes containing fragmented DNA molecules [5,6]. Despite intensive research,
the contribution of each of these processes to the presence of cirDNA in the bloodstream is
still unclear. Further degradation of cirDNA as part of nucleoprotein complexes occurs in
the blood under the action of extracellular nucleases, while blood proteases play an equally
important role, increasing the availability of DNA for hydrolysis by digesting proteins as
part of nucleoprotein complexes.

2.1. Cell Death Origin of cirDNA (Apoptosis, Necrosis, and Autophagy)

At least 1010 cells are going through division stages daily [7]; during this process, some
cells die, generating 1–10 g of DNA per day. One of the signs of apoptosis is the internu-
cleosomal fragmentation of DNA (with fragment sizes corresponding to nucleosomes),
followed by the formation of apoptotic bodies. Thus, the presence of cirDNA, ranging
in size from 180 to 200 bp, in blood serum and plasma in normal conditions [8,9] and in
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the development of malignant neoplasms [10–12] might indicate its possible apoptotic
origin. It has been demonstrated via in vitro and in vivo systems that Jurkat cells, in which
apoptosis is induced, release significantly more cirDNA into the culture medium than
non-apoptotic ones [13–15]. It has been shown that the release of DNA from apoptotic
cells is a time-dependent process with the amount of DNA proportional to the degree of
apoptosis, and that the pattern of the released DNA fragmentation is similar to the pat-
tern of DNA fragmentation activated after the initiation of apoptosis by nucleases [13–15].
Apoptosis can be regulated by autophagic activity. Moreover, autophagy has been found to
be activated in malignant cells [16]. Since autophagy is associated with the citrullination of
histones to ensure the unwinding and subsequent expulsion of DNA, it can be assumed
that this process also contributes to an increase in the concentration of cirDNA in the blood.

With necrotic cell death, such pattern of fragmentation is not observed. Several studies
have reported long cirDNA fragments (~10,000 bp) in the blood plasma of healthy donors
and cancer patients, which might be indicative of necrotic cell death [9,10,12,17]. However,
due to the absence of necrotic cells in a healthy state, necrosis cannot be the main source of
cirDNA in healthy individuals [5].

It is known that phagocytic cells are heavily involved in the removal of both cellular
debris [18] and apoptotic bodies [19]. In the study by Pisetsky’s group, Jurkat cells entering
apoptosis were co-cultivated with macrophages, and this co-cultivation reduced the amount
of DNA released in the culture medium. At the same time, macrophage co-cultivation with
Jurkat cells with induced necrosis was characterized by high concentrations of cell-free
DNA [20]. Thus, it can be assumed that some part of the cellular debris can avoid this fate
and remain in the blood, increasing the concentration of cirDNA.

2.2. Appearance of Blood cirDNA during Secretion by Normal and Tumor Cells

Hypotheses about necrotic and apoptotic origins of cirDNA are contradicted by
data indicating a decrease in the blood plasma cirDNA levels by 90% after the end of
a course of radiotherapy [21]. It is well known that radiation induces necrosis (or apoptosis,
depending on the radiation dose), hence such treatment should lead to an increase in
cirDNA concentration.

There is a lot of published evidence on the active secretion of cirDNA by cells. How-
ever, questions about the mechanisms of such processes and possible pathways governing
the secretion via either complexes with nucleosomes or DNA-containing extracellular
vesicles (EVs) remain open. Abe and colleagues suggest a mechanism of cirDNA secretion
indirectly with EVs [22]. It is an established fact that the total amount of tumor cirDNA
(ctDNA) correlates with the stage of the disease, the number of metastases, and a decrease in
overall survival [23–25]. Some studies described that the size of cirDNA is 160–170 bp, with
long cirDNA fragments resulting from genomic DNA contamination [26]. However only
long cirDNA fragments were detected in the cancer cell culture media (1000 to 10,380 bp),
while in animal models using the same cell lines, both long (1000 to 10,380 bp) and short
(130 to 240 bp) cirDNA fragments were detected [1,27]. Moreover, long cirDNA fragments
(1 to 9 kbp) are found in breast cancer patients at the I–II stage [9] and in lung cancer
patients with advanced stages of the disease [28]. Thus, cirDNA secreted by tumor cells can
be degraded by nucleases in the peripheral blood since tumor cirDNA is detected in both
long and short fragments [22,29]. Indeed, long cirDNA fragments were detected in the EV
fraction (after 100,000× g centrifugation); the authors suggest that it is the association of
cirDNA with EVs that protects it from degradation in the peripheral blood [22].

While the presence of DNA in the EV lumen is currently a very debatable question
in the scientific community, there is increasing evidence of cirDNA and cirRNA present
on the outer surface of small EVs (including exosomes—vesicles with a size of 30–150 nm,
carrying tetraspanins such as CD9, CD63, and CD81 on their membrane) bound by nucleic
acid binding proteins. In our previous work, we have shown the presence of DNA on
the outer membrane of exosomes, and have identified several membrane DNA-binding
and histone-binding proteins in small EV proteomes (AIFM1, IGHM, CHD5, KCNIP3,
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CHD5, and KDM6b, respectively) [30]. However, it was shown that the share of that
cirDNA fraction did not exceed 0.025% in the total pool of cirDNA from the blood of
healthy females and breast cancer patients, suggesting that this type of circulation barely
contributes to cirDNA circulation in general.

Another notable work, dedicated to the reassessment of exosome composition, echoes
the aforementioned one [22,31]. The authors have shown that double-stranded DNA
and histones H2a and H3 were absent in bona fide exosomes, but were localized within
multivesicular endosomes and detected in “crude” small EVs fraction. Based on the
findings of that paper, authors suggest an exosome-independent amphisome-dependent
mechanism of DNA and histone active secretion (Figure 1) [31].
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Figure 1. Jeppesen et al. model of amphisome-dependent, exosome-independent secretion. For
autophagy, cytosolic LC3 is lipidated by conjugation with phosphatidylethanolamine to form LC3-PE.
(1) Nuclear membranes can bleb in a process dependent on LC3B and the nuclear lamina protein
Lamin B1, causing the appearance of cytoplasmic chromatin fragments. (2) During autophagy,
cytoplasmic components are sequestered as a phagophore begins to engulf material. (3) Continued ex-
pansion of autophagic membranes requires LC3-PE and results in formation of the double-membrane
autophagosome. (4) As early endosomes develop to late endosomes, the pH decreases and continued
invagination of limiting membranes generates intraluminal vesicles (ILVs). A fully developed CD63-
positive multivesicular endosome (MVE) contains numerous ILVs. (5) Fusion of the autophagosome
with a MVE causes degradation of the inner autophagosome membrane, generating an amphisome, a
single-membrane hybrid compartment. (6) The amphisome fuses with a lysosomal compartment to
form the autolysosome followed by degradation of cargo, or alternatively, (7) the amphisome fuses
with the plasma membrane causing extracellular release of dsDNA and histones, and separately,
the ILVs as exosomes. Reprinted with permission from Ref. [31]. Copyright 2019, with permission
from Elsevier.

Thus, DNA probably finds its way into circulation as a result of cell death and active
secretion into the extracellular space. However, it should be noted that the mechanisms
responsible for the active secretion of cirDNA, as well as the contributions of different
sources of DNA release to the total pool, are still not completely clear.

3. CirDNA Forms of Circulation

Several structures involved with cirDNA circulation in biological fluids have been
described to date: EVs (small EVs or exosomes, large EVs or microvesicles, apoptotic
bodies, etc.) [30], macromolecular complexes (complexes with nucleosomes, other lipids,
and proteins, e.g., serum proteins) [32,33], and blood cell surface bound cirDNA [34]
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(Figure 2). Such association of cirDNA might allow it to be better protected from blood
endonucleases, thus allowing for the increase of its half-life in circulation, while the addition
of purified deoxyribo-oligonucleotides and DNA amplicons to blood plasma leads to their
rapid elimination due to endogenous blood nucleases [35].

Figure 2. Current views on cirDNA origins and fate. Reprinted with permission from Ref. [36]
Copyright 2019 The Author(s). Published with license by Taylor & Francis Group, LLC.

Exosomes (small CD9+/CD63+ EVs), according to some studies, might take part in the
transport of single- and double-helix genome DNA fragments, as well as fragments of mi-
tochondrial DNA. Despite their small size (30–150 nm), exosomes have a large surface area
due to their high blood concentration (about 107–108 vesicles/mL). Because the exosomal
membrane largely reflects that of the parent cells, similar to cell surface-bound DNA, they
are able to transport DNA on their surface. It was found that cirDNA binds to the outer
membrane of exosomes by association with DNA-binding proteins. However, the share of
exoDNA does not exceed 0.025% and 0.004% in healthy female and breast cancer patients’
plasma DNA, respectively [30].

Extracellular nanoparticles (ENPs) of sizes smaller than conventional exosomes might
also bind DNA. While the question of DNA abundance in recently discovered supere-
meres [37] remains open, exomeres from F10, MDA-MB-4175, and AsPC1 cell lines have
been shown to carry cirDNA with a fragment length of 100 bp to 10 kb, with a slight
enrichment around 2 kb in several cases [38].

Microvesicles of a larger size (200–1000 nm) originating from membrane outward
budding are also assumed to be able to transfer RNA and DNA from donor cells to
recipient cells [39,40].
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Apoptotic bodies are a product of an apoptotic cell death during which the cell splits
into large (1 to 5 µm) DNA-containing vesicles, consisting of the cytoplasm and densely
packed organelles with or without fragments of the nucleus [41]. The apoptotic bodies’
DNA length is a multiple of 180–200 bp, with a 5′ phosphate and 3′ hydroxyl group [42].

The typical “nucleosomal ladder” characteristic for plasma and serum cirDNA indi-
cates that multimeric complexes of mono- and oligonucleosomes represent the majority of
DNA in circulation [10,33].

Nucleosomes consist of a histone octamer and double-stranded DNA wrapped around
this protein complex, stabilized by serum amyloid P [43]. This histone H1 to amyloid P
replacement increases the solubility of nucleosomes in plasma. Each nucleosome is linked
with the other by a double-stranded DNA linker. The DNA wrapped around the histone
octamer is 147 bp in length, while the linker DNA is 20–90 bp long [7]. This association
between histones and DNA fragments provides the integrity of the nucleosomal structure,
and protects DNA from endonucleases in circulation [44,45]. There is a correlation between
the number of cells that have entered apoptosis or necrosis and an increase in the number
of nucleosomes in circulation [46]. Moreover, evidently, nucleosomes are released from
cells not only under cell death conditions, but also through active secretion [47–50]. Some
authors claim that the majority of DNA circulates in the blood as part of nucleosomes [45];
moreover, the concentration of nucleosomes increases with the progression of pathol-
ogy [44,45,51]. Currently, several studies have shown that the use of blood-circulating
nucleosomes can increase the efficiency of diagnosis and prognosis for non-oncological
pathologies such as sepsis, stroke, and autoimmune diseases, as well as malignant neo-
plasm diagnosis, staging, prediction, and monitoring [45,52]. For example, in patients with
colorectal and other types of gastrointestinal cancers, the concentration of nucleosomes
correlated with the stage and metastatic status of the disease [33]; a decrease and increase
of circulating nucleosomes concentration in patients with remission of the disease and
during chemotherapy/radiotherapy, respectively, can be used to monitor the effectiveness
of cytotoxic therapy [33].

Complexes of cell-free DNA with blood proteins. Since DNA-binding activity is inherent
in about 2–3% of serum proteins, extracellular DNA can circulate in complexes with such
proteins [5]. These complexes have been described for both major blood proteins such as
albumin and immunoglobulins, and for more minor blood proteins such as fibronectin
and complement component C1q [53]. Based on the fact that fibronectin, which forms
complexes with DNA, is a heparin-binding protein, some authors hypothesize that other
proteins of the blood coagulation system that have binding sites for heparin and other
polyanions can bind DNA.

Early studies have shown that the main DNA-binding proteins in blood serum are
fractions of high molecular weight proteins (470–760 kDa) and a fraction of proteins with
molecular weights of 150–200 kDa [53].

Moreover, several blood serum proteins (IgG, albumin, complement component C3,
and several apolipoproteins [54]) were shown to be able to bind cirDNA and mediate
its opsonization, marking cirDNA for removal from the bloodstream and degradation
by nonparenchymal cells [55]. However, in addition to DNA-binding proteins allowing
opsonization, there are also proteins that contribute to dysopsonization—increasing the
cirDNA half-life in circulation and reducing the rate of its uptake by hepatocytes. Liu et al.,
in a study of dysopsonin activity of serum DNA-binding proteins, highlight histone H4,
PF4, ACTB, ALB, HBA, HBB1, THSD1, and histone-like proteins [55]. The authors show
that such proteins are capable of forming complexes with DNA in vivo, protecting it from
degradation and nuclease activity without hindering cirDNA biological activity. Thus,
serum DNA-binding proteins allowing opsonization/dysopsonization of cirDNA might
represent a regulatory mechanism for DNA circulation.

Lactoferrin and lysozyme were shown to bind DNA in vitro. They were subsequently
confirmed to form complexes with a radioactively labeled synthetic oligonucleotide in
saliva and tears and, apparently, in the blood. Indeed, lactoferrin concentration in the blood,



Int. J. Mol. Sci. 2022, 23, 7224 6 of 16

according to different authors, is 0.05–1.75 µg/mL [56]; it has a high affinity for nucleic
acids and binds both ssDNA and dsDNA [57], as well as being able to bind with the cell
surface [57] and form complexes with lysozyme [58]. Lysozyme is also capable of binding
nucleic acids [7,59,60], and its serum concentration is 5.6–9.2 µg/mL [61].

In a pilot proteomic analysis of affinity chromatography isolated nucleoprotein com-
plexes 111 and 56 proteins were identified in the blood of control donors and breast cancer
patients, respectively [32]. The most abundant proteins were HOXC5, GPR22, and IDE,
while 40% of identified proteins were characteristic for nucleic acid-/nucleotide-binding
and contained several DNA-binding motifs (eight multidomain zinc fingers, two zinc
fingers, and five leucine zippers).

Cell surface bound cirDNA. The presence of DNA-binding proteins on the outer sur-
face of the plasma membrane indicates cirDNA capability to circulate by binding with
blood cells. Such DNA-binding proteins have been described on the leukocyte membrane
(20–143 kDa), and the lymphocyte membrane (28 kDa, 59 kDa, 79 kDa) [34]. Moreover,
leukocytes were shown not only to carry DNA on their surface, but to also bind it by the
ligand–receptor mechanism [34]. Later, the presence of cirDNA, eluted by mild trypsin
treatment of the erythrocyte, leukocyte, and platelet surfaces, was confirmed [34,62]. Similar
high molecular weight cirDNA fragments were also detected on the cell surface in vitro [27].
Such a large size of fragments can be explained either by a specific secretion mechanism or
by the fact that multiple binding to the cell surface more effectively protects long cirDNA
fragments from nucleases. Moreover, cirDNA binding with blood cells can occur not
only through the nucleic component, but also due to the interaction of protein or lipid
components of DNA-containing complexes [63]. For example, the binding of circulating
nucleosomes via histones has been described as one of the mechanisms of cirDNA binding
to the cell surface [64–66]. Membrane receptors are capable of both binding and internal-
ization of cirDNA [67]. While nucleosomes naturally can cross the cell membrane [41,68],
some cirDNA-binding proteins, such as albumin, can mediate their internalization via
endocytosis [41].

Thus, extracellular DNA can continually circulate in the blood as a component of
apoptotic bodies, nucleosomes, and complexes with various proteins. In addition, cirDNA
can be associated with the surface of exosomes and blood cells via receptors to nucleic acids
and nucleic acid binding proteins.

4. CirDNA Metabolism and Biological Role

Despite the long history of studying circulating nucleic acids and the introduction of
methods based on circulating nucleic acids in clinical practice, the role of cirDNA in the
organism, both in normal and pathological conditions, remains unclear.

4.1. Immunostimulatory Characteristics of cirDNA

DNA is a macromolecule with immunostimulating properties. This immune response
stimulation is based on its double-stranded structure, certain motifs of some sequences,
and molecular interactions [1,69]. CirDNA can be perceived by the immune system as a
molecular fragment associated with damage, which involves it in the antibacterial and
antiviral immune response [36]. Indeed, immune cell interaction with dsDNA leads to
the significant activation of genes that regulate the secretion of interferons and other
pro-inflammatory molecules. Such stimulation leads to a strong inflammatory response
mediated by the secretion of cytokines. CirDNA of nuclear, mitochondrial, and bacterial
origin has been shown to similarly stimulate coagulation and platelet activation, but has
different effects on inflammation and immune system stimulation [70].

CirDNA can activate the immune system both on its own and in combination with
other molecules [69,71], and the immunostimulatory effects directly depend on the form of
circulation of cirDNA and chromatin (Figure 3) [72]. Histones are cytotoxic for the endothe-
lium and can cause macro- and microvascular thrombosis and renal dysfunction. However,
circulating nucleosomes activate different biological pathways upon contact with cells,
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without the strong cytotoxic effect characteristic of freely circulating histones [36,70–72].
Moreover, cirDNA in complexes with histones leads to the induction of anti-DNA antibody
production, while the action of blood DNases, on the contrary, inhibits this induction.
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There is mounting evidence in the literature that the penetration of cirDNA into the
cell and the subsequent triggering of inflammatory biological pathways occurs due to
the action of a number of DNA-binding proteins, including histones. Some nucleosome-
binding proteins (HMGB1, RAGE) are able to regulate the immunostimulatory effects of
both free cirDNA and nucleosomes [73–75]. Thus, the form of DNA circulation closely
correlates with its biological effects.

4.2. Role of cirDNA in Horizontal Gene Transfer

In addition to the participation of cirDNA in intercellular communication, regulation
of inflammation, and the immune system response, various forms of DNA circulation have
been described to affect pathophysiological processes associated with the development of
malignant neoplasms.

The hypothesis about the transforming ability of cirDNA was first proposed in
1965 [76]. Later, this hypothesis was confirmed in a number of studies and led to the
formation of the concept of genometastases: ctDNA is able to end up in healthy cells and
lead to malignant transformation [77]. The first work in this field was the transformation
of NIH/3T3 mouse fibroblasts in the SW480 culture medium via cirDNA [78]. NIH/3T3
not only went through a malignant transformation after the incubation with SW480 media,
but also carried a KRAS mutation characteristic for SW480. This effect was also described
after the incubation of NIH/3T3 with KRAS-positive colorectal cancer patients’ plasma [79].
Moreover, circulating nucleosomal complexes secreted by tumor cells have also been
shown to be capable of transferring genetic information to a recipient cell and transforming
them into malignant ones. Wang et al., in a 2018 study, demonstrated that, in response
to chemotherapy, apoptotic lung cancer cells released HMGB1-containing nucleosomal
complexes that mediated tumor invasion and metastasis via TLR4 and TLR9 [80].

Chen et al. [81] suggest that oncogene-containing ctDNA can behave like an oncovirus
and transfect normal cells, leading to metastasis (Figure 4A).
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Figure 4. (A) The origin of cf-DNA and cancer metastasis. Cancer cells release DNA when they
divide. The released DNA (cf-DNA) circulates in the body fluids and has the ability to transfect and
transform adjacent or remote normal cells. The transformed cells may keep growing, and so cancer
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metastases or second primary cancer develops. (B) Hypotheses of two possible outcomes if the
lymphocyte DNA transfects cancer cells. If this DNA contains cytokine’s functional coding region,
the transfected cancer cells may become cytokine releasing cells and, in some cases, may work
like an intrinsic cancer vaccine releasing therapeutic cytokine (left). If this DNA contains a coding
region for a nonmutated oncogene or tumor suppressor gene, a homologous DNA recombination
may cause knock out of a correspondent mutated oncogene or tumor suppressor gene that may
lead to cancer cell apoptosis, and thus a dramatic spontaneous remission of the cancer may ensue
(right). (C) Hypotheses of two possible effects of cancer cf-DNA on lymphocytes. If the lymphocyte
contains the functional DNA receptor, cancer cf-DNA binding to the receptor may activate the
lymphocyte, thus forming lymphoblasts that proliferate and differentiate into immune responding
cells (e.g., helper-T cells or killer-T cells) to enhance immune function (left). If the lymphocyte
contains no functional DNA receptor, the cf-DNA has no effect on the lymphocyte without any
change in immune response (right) [81]. Copyright 2005, with permission from Elsevier.

This hypothesis expands the concept of “genometastasis”, where the source of onco-
transformation is apoptotic bodies’ DNA. Moreover, since there are DNA-binding receptors
on the cell surface [34,82,83], the authors suggest tissue-specific metastasis formation In
addition, it has been suggested that the cirDNA of normal cells (for example, DNA released
into the bloodstream by lymphocytes as a result of antigen stimulation) can transfect tumor
cells. In particular, integration of the cytokine-coding region containing cfDNA into a
tumor cell genome can lead to the expression of various cytokines, such as interleukin
2, interleukin 12, macrophage colony-stimulating factor, etc. (Figure 4B); cell-free DNA
containing an unmutated oncogene (e.g., ras gene) or an unmutated oncosuppressor gene
(e.g., wild type p53 gene) can result in knockout via homologous recombination of the cor-
responding mutant oncogene or suppressor gene within the cancer cell and, consequently,
to apoptosis of the tumor cell or even spontaneous remission of cancer (Figure 4B) [84].

The authors [81] explain the phenomenon of the presence of cirNA on the blood cell
surface in healthy donors by the ability of cirDNA to bind to receptors on the surface of
leukocytes [85], and the decrease in its content during the development of a tumor [81] is
explained by the absence of a DNA receptor on the surface of cancer patients blood cells,
or loss of DNA-binding properties due to mutation. Apparently, cirDNA is a signaling
molecule in the bloodstream, and its binding to a specific receptor on the surface of
lymphocytes can lead to cell activation and the emergence of an anti-tumor immune
response (Figure 4C). Thus, mutation of the DNA receptor on the surface of lymphocytes
can lead to tolerance of the anticancer immune response.

4.3. Role of cirDNA in Angiogenesis and Blood Coagulation

In addition to invasion and metastasis, several studies have demonstrated the potential
involvement of cirDNA as part of nucleosomal complexes in angiogenesis. Nucleosomes
contribute to an increase in the expression of IL-8 (which is involved in the early stages
of angiogenesis) by binding to the endothelial cell surface with subsequent activation
of the NF-κB/Rel-A pathway [86]. These findings might help explain why hypoxic and
hypervascular areas are often found in close proximity in tumor tissues, and may also
point to a potential role for nucleosomes in disease progression [45]. Further indirect
evidence of the circulating nucleosome participation in angiogenesis is their ability to bind
heparin-binding angiogenic factors such as FGF-1, FGF-2, VEGF, and TGFβ-1, stimulating
angiogenesis in in vitro and in vivo systems [87].

Recently, cirDNA has been shown to participate in blood coagulation [88]. Evidence
that supports this asseveration is that purified genomic DNA increases the activation of
proteases that participate in the blood clotting pathway, such as the coagulation factors
XII and XI. Moreover, cirDNA from activated neutrophils that are part of the NETs trigger
blood clotting that relies on FXII and FXI. Furthermore, it has been observed that histones
interact with the A1 domain of the von Willebrand human factor, which can propagate
platelet adhesion mediated by GPIbα [88].
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4.4. Blood cirDNA Clearance

The amount of cirDNA in circulation is determined by the ratio between the release
rates and the rates of its internalization, degradation, and elimination [4]. Under the
conditions of cancer progression, chronic inflammation, and increased cell death, due to a
shift in this ratio towards increased release and insufficient elimination, an increase in the
level of cirDNA in the circulation is observed.

CirDNA half-life in the blood has been estimated by different sources to be from several
minutes to up to two hours [36,89,90], and depends on a number of factors, including the
form of cirDNA circulation, the type and stage of the disease, the effectiveness of treatment,
etc. [1,91]. Degradation and elimination of blood cirDNA are carried out via several
mechanisms: degradation by blood plasma endonucleases [92], formation of immunological
complexes [93], phagocytosis and lysosomal degradation [13,94,95], metabolism by liver
cells [95], and direct elimination of nucleosomal complexes in the kidneys [48,96]. The
main role of the blood cirDNA degradation is attributed to circulating enzymes such as
DNAse I, FSAP, and factor H [36,97,98]. Moreover, blood proteases have been shown to
indirectly affect the levels of nucleoprotein complex cirDNA by hydrolyzing proteins and
increasing the availability of nucleic acids for blood nucleases: DNA-protein complexes and
protruding DNA pieces are cleaved first, followed by further digestion of better-conserved
DNA within nucleosome complexes [92,99–101].

Thus, despite the study of the cirDNA phenomenon for more than 70 years, many
questions, such as its biological role in circulation and the contribution of various forms of
DNA circulation to physiological and pathological processes, remain open.

5. CirDNA Perspectives in Liquid Biopsy

Currently, the most topical studies in the field of cirDNA are aimed at evaluating the
clinical applicability of cirDNA analysis for diagnosing and monitoring the effectiveness
of anticancer therapy [102,103]. Despite the critical importance of non-invasive diagnostic
tools in reducing cancer mortality, to date, only one cirDNA-based test has been approved
by the FDA in 2016—for the diagnosis of somatic plasma EGFR gene mutations. One of the
most serious obstacles to the widespread introduction of such tests in applied oncology is
the unsatisfactory signal-to-noise ratio [104].

To overcome the hurdles of sensitivity and specificity of such liquid biopsy, knowledge
about cirDNA circulation form, its primary structure, mechanisms of secretion, and the
contribution of different forms of circulation to the total pool is required. Current limited
understanding of the mechanisms by which cirDNA enters the circulation and its further
clearance limits the interpretation of existing studies. One approach to increasing the
detectability of cirDNA markers is length enrichment. Differences in sizes between cirDNA
and ctDNA [105–107] suggest that optimization of isolation and processing methods to
obtain fragments of a certain size might improve the outcome of the studies.

Another approach to increase the efficiency of liquid biopsy is the use of cirDNA within
the multi-marker approach [17,108,109]. For example, the total concentration of cirDNA
can serve as a source of information on the status and prognosis of the disease [109,110],
and its epigenetic analysis might make it possible to determine hypermethylated regions of
tumor genes [63,109], or the cell type that is the source of cirDNA fragments [4,105,111].
Simultaneous analysis of other biomarkers (protein markers from circulating EVs/NPCs,
mRNA and miRNA markers from EVs) can provide other levels of information about the
prognosis and stage of the disease, response to therapy, and detection of minimal residual
disease [112,113], increasing the overall sensitivity and specificity of the approach. Indeed,
considerable effort has been devoted to the development of a multi-marker system for
cancer diagnosis and monitoring of anticancer therapy, including those using cirDNA.
For example, in 2018, a CancerSEEK multi-marker approach was designed based on the
cirDNA mutation search and the analysis of proteomic biomarkers (CA-125, CA19-9, CEA,
HGF, MPO, OPN, PRL, TIMP-1), which makes it possible to identify eight types of cancer
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(ovarian, liver, stomach, pancreatic, esophageal, colorectal, lung and breast cancer) with a
sensitivity of 55% and a specificity of 99% [114].

Special attention is dedicated to the study of blood-circulating nucleosomes. Sev-
eral studies have shown that in autoimmune and oncological diseases, use of circulating
nucleosome concentration can often increase the efficiency of diagnosis and treatment
response monitoring compared to using cirDNA alone [115]. For example, the use of a
combination of nucleosome levels and CYFRA 21-1 (the most sensitive non-small lung
cancer biomarker) allowed the identification of chemoresistant patients in the cohort of 311
with 29% sensitivity and 100% specificity [116]. Moreover, a recent study showed that, due
to differences in the positioning of nucleosomes in different cell types, the profiling of blood
plasma cirDNA with an assessment of the pathological status of the cirDNA-secreting cell
is possible [111,117,118]. A pilot study shows that this approach allows not only to identify
cancers at an early stage and determine the contribution of cirDNA secreted by tumor cells
to the total pool, but also to contribute to the understanding of the circulation patterns
and structure of nucleosome complexes, both in healthy and oncological conditions, as
well as a number of other pathologies, such as heart attack, stroke, autoimmune diseases,
etc. [111]. This line of research was continued in the 2019 study, analyzing the activity of
transcription factors in the composition of blood-circulating nucleosome complexes from
more than 1000 blood samples from healthy donors and colorectal, prostate, and breast
cancer patients based on the analysis of cirDNA nucleosome binding patterns. Despite the
heterogeneity of cirDNA, this method was shown to be capable of serving as a basis for
early non-invasive diagnostic methods, and has been claimed to be more sensitive than
multi-marker approaches such as CancerSEEK [119].

An alternative approach to improving the results of liquid biopsy may be the develop-
ment of methods for enriching DNA of tumor origin. In this case, isolating cirDNA using an-
tibodies against tumor-associated proteins in nucleoprotein complexes will make it possible
to cut off “noise” from normal DNA, and thus increase the sensitivity of diagnostic systems.

Another promising approach for noninvasive diagnosis of malignant neoplasms may
be the use of tumor-associated proteins of nucleoprotein complexes along with cirDNA
analysis. Such a multi-marker approach will improve not only the sensitivity, but also the
specificity of non-invasive tests.

Finally, in recent years, there has been increasing evidence that complexes of DNA
associated with proteins and lipids are more effective than naked DNA in gene delivery
to the nucleus. The knowledge of the composition of proteins that interact with cirDNA
will provide a better understanding of the homeostasis of circulating nucleic acids and the
different interactions with several target cells that may be useful in developing gene-target
therapy approaches.
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