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Abstract
Background  Cardiorespiratory fitness (CRF) is a potent health marker, the improvement of which is associated with a reduced 
incidence of non-communicable diseases and all-cause mortality. Identifying metabolic signatures associated with CRF could 
reveal how CRF fosters human health and lead to the development of novel health-monitoring strategies.
Objective  This article systematically reviewed reported associations between CRF and metabolites measured in human 
tissues and body fluids.
Methods  PubMed, EMBASE, and Web of Science were searched from database inception to 3 June, 2021. Metabolomics 
studies reporting metabolites associated with CRF, measured by means of cardiopulmonary exercise test, were deemed eli-
gible. Backward and forward citation tracking on eligible records were used to complement the results of database searching. 
Risk of bias at the study level was assessed using QUADOMICS.
Results  Twenty-two studies were included and 667 metabolites, measured in plasma (n = 619), serum (n = 18), skeletal 
muscle (n = 16), urine (n = 11), or sweat (n = 3), were identified. Lipids were the metabolites most commonly positively 
(n = 174) and negatively (n = 274) associated with CRF. Specific circulating glycerophospholipids (n = 85) and cholesterol 
esters (n = 17) were positively associated with CRF, while circulating glycerolipids (n = 152), glycerophospholipids (n = 42), 
acylcarnitines (n = 14), and ceramides (n = 12) were negatively associated with CRF. Interestingly, muscle acylcarnitines 
were positively correlated with CRF (n = 15).
Conclusions  Cardiorespiratory fitness was associated with circulating and muscle lipidome composition. Causality of the 
revealed associations at the molecular species level remains to be investigated further. Finally, included studies were hetero-
geneous in terms of participants’ characteristics and analytical and statistical approaches.
PROSPERO Registration Number  CRD42020214375.
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Key Points 

A panel of unique lipid species were found to be associ-
ated with cardiorespiratory fitness.

The majority of circulating glycerolipids, acylcarnitines, 
and ceramides were negatively associated with cardiores-
piratory fitness, highlighting their link to poor cardio-
metabolic health.

Specific glycerophosphocholines and cholesterol esters 
were found to be positively associated with cardiorespi-
ratory fitness, featuring their roles in health maintenance.
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1  Introduction

Cardiorespiratory fitness (CRF), defined as the peak oxy-
gen uptake, is a powerful health marker [1]. Importantly, 
the American Heart Association now recommends assess-
ing it as a vital sign in clinical practice [1]. Indeed, CRF is 
inversely associated with an incidence of cancer, cardiomet-
abolic diseases, and all-cause mortality [1–6]. Furthermore, 
improvement in CRF is associated with a reduced incidence 
of stroke, type 2 diabetes mellitus, dementia, and all-cause 
mortality [7–12].

Physiologically, CRF reflects the entire oxygen transport 
chain from its uptake in the lungs to its delivery to the mito-
chondria for energy production [1]. While the heritability of 
basal CRF and gains in CRF is around 50%, the mechanisms 
linking CRF with reduced morbidity and mortality remain 
largely unknown [1, 13, 14]. As CRF is a better predictor of 
morbidity and mortality than physical activity itself, physi-
ological adaptations to exercise are likely not sufficient to 
explain how CRF mitigates morbidity and mortality [15–17]. 
Identifying metabolic signatures associated with CRF could 
reveal the metabolic pathways through which CRF acts on 
morbidity and mortality, lead to the discovery of novel bio-
markers of physical fitness, and ultimately pave the way for 
novel health-monitoring strategies [18, 19].

In the past decade, technological advances in mass spec-
trometry, nuclear magnetic resonance, and bioinformatics 
have enabled ‘omics’ scale metabolite phenotyping [20]. 
Metabolomics is now a powerful tool to investigate at the 
molecular species level how metabolites relate to the cel-
lular phenotype [21]. While genes encode what may hap-
pen, metabolites, influenced by both genome and exposome, 
provide insights on what has indeed happened [20]. Thus, 
the metabolome directly reflects cellular activity and is 
the closest ‘omic’ level to the phenome [20, 21]. Further-
more, metabolites not only constitute building blocks of cell 
components or fuels in cellular energetics, they also act as 
driving forces of cellular processes (e.g., cell growth, dif-
ferentiation, activation, apopotosis) by modulating (through 
covalent chemical modifications or metabolite-macromol-
ecule interactions) the expression and activity of the other 
‘omics’ levels [22, 23]. Conversely, pathological processes 
can also alter both the metabolome and CRF as well as 
their mutual associations [24, 25]. Consequently, there are 
complex interrelated interactions between the genome, the 
metabolome, the exposome, and disease development, which 
all influence the phenome (e.g., CRF or health status) [20]. 
Considering the high clinical relevance of CRF, this work 
aimed at systematically reviewing the current literature on 
metabolites in human tissues and body fluids that have been 
reported to be associated with CRF.

2 � Methods

This systematic review is reported according to the Pre-
ferred Reporting Items for Systematic and Meta-Analysis 
(PRISMA) guidelines [26]. The research question was for-
mulated according to the Population, Exposure, Compari-
son, Outcome, Study Type framework (Electronic Supple-
mentary Material [ESM]) [27]. The review was registered on 
PROSPERO (registration number CRD42020214375) on 14 
November, 2020 and a protocol was published [28].

2.1 � Eligibility Criteria

All human studies that (1) were published until the date 
of the last search, i.e., 3 June, 2021, (2) applied a metab-
olomics approach, (3) reported metabolites of any tissue, 
associated with CRF, and (4) measured CRF by means of 
a cardiopulmonary exercise test (spiroergometry) were eli-
gible. Studies reporting estimated CRF were excluded as 
estimated CRF correlates only moderately with measured 
CRF [29]. Studies that were published in languages other 
than English, German, French, Italian, or Spanish were not 
included (as the authors have linguistic expertise in these 
five languages). Finally, non-original articles (i.e., editorials, 
letters, reviews), meta-analyses, case reports, and conference 
abstracts were also deemed non-eligible.

2.2 � Information Sources and Search Strategy

Search strategies were developed in collaboration with an 
information specialist (CAH) using the Peer Review of Elec-
tronic Search Strategies (PRESS) framework [30]. PubMed, 
Web of Science, and EMBASE were searched. Database-
specific subject headings and text word synonyms around 
the concepts metabolomics and CRF were used. Non-human 
studies and conference abstracts were excluded. Search 
results were generated on 20 October, 2020, exported to 
EndNote X9 (Clarivate, London, UK) and deduplicated. 
An update search was run on 3 June, 2021. The detailed 
search strings can be found in the ESM and in the review 
protocol [28].

2.3 � Data Management and Extraction

Titles and abstracts of recovered records were reviewed 
independently by two authors (CG and JC). Articles were 
deemed as ‘include’, ‘exclude’ or ‘uncertain’ according 
to the prespecified eligibility criteria. For articles deemed 
‘include’ or ‘uncertain,’ full text was retrieved and inde-
pendently reviewed for eligibility by two authors (CG and 
JC). Discrepancies during title/abstract or full-text screen-
ing were resolved by discussion between the two screening 
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Fig. 1   Preferred Reporting Items for Systematic and Meta-Analysis (PRISMA) 2020 flow diagram. CPET cardiopulmonary exercise test, CRF 
cardiorespiratory fitness

authors. A third party made a final judgment in cases where 
no resolution was found (LS). To complement the results 
of direct database searching, bibliographic references of all 
included articles were screened manually (backward cita-
tion tracking), and the citing articles were screened using 
Scopus (forward citation tracking, on 15 June, 2021). Data 
were extracted from the full texts and entered in a standard-
ized Excel form. One author extracted the data (CG), and a 
second author independently checked the extractions (JC). 
Discrepancies were resolved through discussion (with a third 
party, if necessary, LS). Corresponding authors were con-
tacted twice by e-mail in cases of missing or unclear data. 
Information that was extracted can be found in the ESM.

2.4 � Risk of Bias in Individual Studies

The following key steps of a metabolomics workflow were 
extracted at the study level: sample collection and storage, 
sampling time and nutritional protocol, metabolite extrac-
tion method, analytical technique, quality control used to 
assess data quality, data processing, and metabolite anno-
tation. Subsequently, two authors (CG and JC) indepen-
dently assessed the risk of bias at the study level using the 
QUADOMICS items applicable to the present work (ESM) 

[31, 32]. Discrepancies were resolved through discussion 
(with a third party, if necessary, LS).

2.5 � Data Synthesis

Qualitative and quantitative data describing associations 
between metabolites and CRF were synthesized narratively 
and presented in a tabular and charted format. Metabolites 
were classified using the chemical taxonomy of the Human 
Metabolome Database (version 4.0) [33].

3 � Results

3.1 � Study Selection

The searches yielded 4728 unique records, of which 22 met 
eligibility criteria as depicted in the PRISMA 2020 flow 
diagram (Fig. 1) [26]. Authors agreed on all eligibility deci-
sions upon discussion without the need for third-party arbi-
tration. Three additional studies were identified via other 
methods. One study was identified by a senior author (AST) 
via handsearching [34], one study was identified through 
backward citation tracking [35], and another study was 
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identified through forward citation tracking, respectively 
[36].

3.2 � Characteristics of Included Studies

Included studies were published between 2012 and 2021 
(Table 1 and ESM). Fifteen studies included both female 
and male participants [34–48], and seven studies investi-
gated male participants only [49–55]. One study examined 
adolescents [38], and the remaining 21 studies enrolled only 
adults (defined as participants aged > 18 years).

Six studies included healthy participants free of any dis-
eases [46, 48, 50, 53–55], of which one enrolled elite long-
distance runners [50] and one enrolled amateur marathon 
runners [54]. In 14 studies, a subfraction or even all par-
ticipants were overweight or obese [36–45, 47, 49, 51, 52]. 
Finally, in ten studies, a subfraction or even all participants 
had a cardiometabolic disease other than overweight or obe-
sity [34–37, 40–42, 45, 49, 51].

Ten studies investigated plasma samples [34, 36, 40, 41, 
44, 45, 47, 50, 51, 53], eight analyzed serum samples [35, 
37–39, 48, 49, 52, 54], two investigated urine samples [43, 
46], one analyzed skeletal muscle [42], and one investigated 
sweat [55]. Twelve studies applied a targeted approach 
[34–38, 42, 44, 46, 47, 49, 51, 52], and eight studies applied 
an untargeted approach [39, 40, 43, 48, 50, 53–55]. Depend-
ing on the nature of metabolites, one study used a targeted or 
untargeted approach [41], whereas another used a targeted 
or semi-targeted approach [45]. Fifteen studies ran regres-
sion analyses to investigate associations between metabolites 
and CRF [34, 36, 39–41, 43–45, 47–51, 53, 55], and seven 
studies conducted correlation analyses [35, 37, 38, 42, 46, 
52, 54] (ESM).

3.3 � Risk of Bias in Individual Studies

Risk of bias assessment is summarized in Table 2. Sixteen 
studies failed to precisely describe the selection process of 
participants [34, 36, 37, 39, 40, 42–45, 48, 50–55], and 13 
studies did not take any actions to avoid overfitting [34–36, 
40–47, 50, 55]. While 18 studies collected tissue samples 
after an overnight fasting [34, 35, 37–39, 41–47, 49–54], 
Bye et al. [48] collected information on dietary habits with-
out imposing fasting, Harshman et al. [55] collected sweat in 
a non-fasted state and two studies did not report on the nutri-
tional state (ESM) [36, 40]. Harshman et al. [55] collected 
sweat during an exercise intervention, while the remain-
ing 21 studies collected tissue samples in a resting state. 
Mueller-Hennessen et al. [51] did not specify the extraction 
protocol used. Finally, Lustgarten et al. [39] Huffman et al. 
[42] Kujala et al. [49] and Mueller-Hennessen et al. [51] did 
not report on the quality control used.

3.4 � Metabolites Related to CRF

A total of 667 metabolites were reported to be significantly 
associated (n = 639) or correlated (n = 28) with CRF. These 
667 metabolites were measured in plasma (n = 619), serum 
(n = 18), skeletal muscle (n = 16), urine (n = 11), or sweat 
(n = 3). Results are presented in a tissue-specific manner 
with plasma and serum metabolites being grouped together 
under the term circulating metabolites. Twenty-seven of the 
metabolites extracted from Nayor et al. [41] were doubly 
reported as per two different analytical techniques used 
for their detection (hydrophilic interaction liquid chroma-
tography, positive ion mode analyses of polar and nonpo-
lar plasma lipids using reversed-phase chromatography 
or negative ion mode analysis of free fatty acids and bile 
acids using reversed-phase chromatography). Similarly, 
Contrepois et al. [45] doubly reported four metabolites as 
they “eluted in multiple peaks”. As all these 31 metabolites 
were collected from plasma, they were counted only once 
in this analysis. Furthermore, two studies reported only on 
metabolites non-significantly associated [50] or correlated 
[35] with CRF. These metabolites were not considered in 
the present analysis.

3.4.1 � Circulating Metabolites

Circulating metabolites were positively (n = 243) and 
negatively (n = 394) associated with CRF. As displayed in 
Fig. 2a, the former consisted of lipids and lipid-like mol-
ecules (n = 159), organic acids and derivatives (n = 51), 
organoheterocyclic compounds (n = 13), organic oxygen 
compounds (n = 8), benzenoids (n = 6), organic nitrogen 
compounds (n = 2), nucleosides, nucleotides, and analogs 
(n = 1), phenylpropanoids and polyketides (n = 1), lignans, 
neolignans, and related compounds (n = 1), and inorganic 
compounds (n = 1). As shown in Fig. 2b, metabolites nega-
tively associated with CRF were subdivided into lipids and 
lipid-like molecules (n = 273), organic acids and derivatives 
(n = 70), organoheterocyclic compounds (n = 17), organic 
oxygen compounds (n = 11), nucleosides, nucleotides and 
analogs (n = 11), organic nitrogen compounds (n = 8), ben-
zenoids (n = 2), phenylpropanoids and polyketides (n = 1), 
and alkaloids and derivatives (n = 1).

Among the 159 lipids and lipid-like molecules positively 
associated with CRF, glycerophospholipids (n = 85), fatty 
acyls (n = 29), steroids and derivatives (n = 27), sphin-
golipids (n = 8), and glycerolipids (n = 6) were the most 
prevalent lipid classes (Fig.  3a). Glycerophospholipids 
were further subdivided into mainly diacylglycerophos-
phocholines (PC, n = 25), lyso-acylglycerophosphocho-
lines (LPC, n = 18), alkenyl-acylglycerophosphocholines 
(n = 12), lyso-acylglycerophosphoethanolamines (n = 10), 
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Table 1   Studies’ and participants’ characteristics

References Study 
design

Participants
(n)

Age
(Years ± SD)

Female sex
(%)

VO2peak
(mL/min/kg)

Health 
conditions

Tissue 
samples

Metabo-
lomics 
approach

Technology 
used

Stanford 
et al. [37]

C 39 C1: 58.7 ± 2.5
C2: 29.4 ± 0.6

C1: 0
C2: 50

N/A C1: over-
weight, 
obesity, 
arterial 
hyper-
tension 
grade 1

C2: 
unknown 
smoking 
status

Serum T (AQ) LC–MS/MS

Duft et al. 
[38]

RCT​ 37 CG: 
14.72 ± 1.07

TG: 
14.44 ± 1.04

CG: 52
TG: 50

CG: 
35.18 ± 6.22

TG: 
32.80 ± 6.15

Over-
weight, 
obesity, 
unknown 
smoking 
status

Serum T (AQ) 1H NMR

Saleem 
et al. [36]

L 100 64 ± 6 15 21.7 ± 5.5 Over-
weight, 
obesity, 
dys-
lipidemia, 
arterial 
hyper-
tension, 
CAD, 
smoking, 
depres-
sion, 
musculo-
skeletal 
issues

Plasma T (AQ) HPLC–MS/
MS

Kujala et al. 
[49]

CS 580 26.1 ± 6.5 0 HF: 50.7 ± 4.2
LF: 31.8 ± 3.8

Over-
weight, 
dys-
lipidemia, 
arterial 
hyper-
tension, 
diabetes, 
smoking

Serum T (AQ) 1H NMR

Fabbri et al. 
[34]

L 443 68.9 ± 9.4 42 24.2 ± 6.8 Dys-
lipidemia, 
arterial 
hyperten-
sion, pre-
diabetes, 
diabetes, 
smoking

Plasma T (AQ) HPLC–MS/
MS

Monnerat 
et al. [50]

P 14 HF: 
25.8 ± 50.3

LF: 26.0 ± 5.0

0 HF: 76.3 ± 1.5
LF: 61.0 ± 3.5

None Plasma U UHPLC-
HRMS

Lustgarten 
et al. [39]

NRT 77 24.4 ± 4.2 64 44.4 ± 10.8 Over-
weight, 
obesity

Serum U UHPLC-MS/
MS

GC–MS
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Table 1   (continued)

References Study 
design

Participants
(n)

Age
(Years ± SD)

Female sex
(%)

VO2peak
(mL/min/kg)

Health 
conditions

Tissue 
samples

Metabo-
lomics 
approach

Technology 
used

Harshman 
et al. [55]

POC 13 C1: 
26.67 ± 5.16

C2: 
29.43 ± 3.36

0 C1: 
56.57 ± 10.40

C2: 
43.03 ± 4.07

None Sweat T (RQ) LC–MS/MS

Nayor et al. 
[41]

C 471 53.0 ± 8.0 63 23.1 ± 7.1 Over-
weight, 
dys-
lipidemia, 
arterial 
hyper-
tension, 
diabetes, 
smoking

Plasma T (AQ), U LC–MS/MS

Contaifer 
et al. [40]

CS 49 57 25 14.0 ± 3.4 Over-
weight, 
obesity, 
dys-
lipidemia, 
arterial 
hyper-
tension, 
diabetes, 
heart 
failure

Plasma U LC–MS/MS
GC–MS

Mueller-
Hennes-
sen et al. 
[51]

CC 41 P: 51.5 ± 13.7
CG: 

47.5 ± 12.8

0 P: 21.0 ± 8.0
CG: 32.0 ± 6.0

Over-
weight, 
dys-
lipidemia, 
arterial 
hyper-
tension, 
diabetes, 
heart 
failure, 
smoking

Plasma T (RQ) LC–MS/MS
GC–MS
SPE-LC–

MS/MS

Huffman 
et al. [42]

RCT​ 112 18–70 48 28.0 ± 5.8 Over-
weight, 
obesity, 
dys-
lipidemia, 
arterial 
hyper-
tension 
grade 1

Skeletal 
muscle

T (AQ) MS/MS
GC–MS

Duft et al. 
[52]

RCT​ 22 CG: 
47.50 ± 6.20

TG: 
48.60 ± 5.50

0 CG: 
29.10 ± 4.70

TG: 
28.20 ± 4.70

Obesity 
grade 1

Serum T (AQ) 1H NMR

Morris 
et al. [44]

RCT​ 40 35.0 ± 14.0 50 41.1 ± 16.2 Over-
weight, 
obesity

Plasma T (AQ) ESI–MS/MS
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and alkenyl-acylglycerophosphoethanolamines (n = 8) 
(Fig. 3c). Fatty acyls comprised very long-chain fatty acids 
(n = 7), long-chain fatty acids (n = 7), medium-chain fatty 
acids (n = 5), and acylcarnitines (n = 4). Steroids and deriva-
tives mainly consisted of cholesterol esters (n = 17). Lastly, 
the sphingolipids consisted of sphingomyelins (n = 5), gly-
cosphingolipids (n = 2), and ceramides (n = 1).

As shown in Fig. 3b, the 273 lipid species negatively asso-
ciated with CRF consisted of glycerolipids (n = 152), glycer-
ophospholipids (n = 42), fatty acyls (n = 36), sphingolipids 
(n = 26), steroids and derivatives (n = 14), and prenol lipids 

(n = 3). Glycerolipids consisted of triacylglycerols (n = 122) 
and diacylglycerols (n = 30). Glycerophospholipids consisted 
mainly of PC (n = 17), PE (n = 9), alkenyl-acylglycerophos-
phoethanolamines (n = 7), and lyso-acylglycerophosphoeth-
anolamines (n = 4) (Fig. 3d). Fatty acyls consisted of acyl-
carnitines (n = 14), further classified into short-chain (n = 8), 
medium-chain (n = 3), and long-chain (n = 3) acylcarnitines, 
and long-chain fatty acids (n = 10). Sphingolipids consisted 
mainly of ceramides (n = 12), sphingomyelins (n = 7), and 
glycosphingolipids (n = 6). Last, steroids comprised bile 

Table 1   (continued)

References Study 
design

Participants
(n)

Age
(Years ± SD)

Female sex
(%)

VO2peak
(mL/min/kg)

Health 
conditions

Tissue 
samples

Metabo-
lomics 
approach

Technology 
used

Contrepois 
et al. [45]

C 36 59.00 ± 8.00 42 30.60 ± 8.71 Over-
weight, 
arterial 
hyperten-
sion, pre-
diabetes, 
diabetes, 
smoking

Plasma U, ST LC–MS/MS
Lipidyzer 

Platform

Kistner 
et al. [46]

CS 255 46.1 ± 16.9 42 38.8 ± 11.6 None Urine T (AQ) 1H NMR

Chorell 
et al. [53]

I 27 HF TG: 
28.16 ± 2.70

HF CG: 
25.58 ± 1.77

LF TG: 
26.30 ± 5.30

LF CG: 
24.04 ± 1.83

0 HF TG: 
63.20 ± 2.93

HF CG: 
63.67 ± 2.80

LF TG: 
44.57 ± 5.62

LF CG: 
42.71 ± 2.87

None Plasma U GC–MS/MS

Brennan 
et al. [47]

RCT​ 216 CG: 52.3 ± 8.4
TG: 52.4 ± 7.8

CG: 66
TG: 64

CG: 29.2 ± 6.0
TG: 28.4 ± 5.1

Over-
weight, 
obesity

Plasma T (AQ) LC–MS/MS

Morris 
et al. [43]

CC 65 HF: 28.0 ± 9.0
LF: 

36.0 ± 11.0

48 HF: 54.9 ± 7.5
LF: 30.8 ± 7.2

Over-
weight, 
obesity

Urine U GC–MS

Shi et al. 
[54]

NRT 20 29.42 ± 4.51 0 59.20 ± 5.90 None Serum U UHPLC-MS/
MS

Bye et al. 
[48]

NRT 218 HF: 49.50
LF: 49.50

58 HF: 41.43
LF: 31.33

None Serum U 1H NMR

Michel 
et al. [35]

CC 40 P: 23.1 ± 5.1
CG: 24.7 ± 6.6

35 P: 28.8 ± 10.1
CG: 45.7 ± 6.4

Fontan 
patients 
with sys-
temic left 
ventricle

Serum T (AQ) LC–MS/MS

AQ absolute quantification, C1 cohort/group 1, C2 cohort/group 2, C cohort, CAD coronary artery disease, CC case–control, CG control groups, 
CS cross-sectional, ESI–MS/MS electrospray ionization tandem mass spectrometry, GC–MS gas-chromatography tandem mass spectrometry, 
1H NMR proton nuclear magnetic resonance, HF high fit, HPLC–MS/MS high-performance liquid-chromatography tandem mass spectrometry, 
I interventional, L longitudinal, LC–MS/MS liquid-chromatography tandem mass spectrometry, LW low fit, MS/MS tandem mass spectrometry, 
N/A not applicable, indicates that data were not reported in manuscripts and authors did not respond to our e-mail requests, NRT non-randomized 
trial, P in the column “age" and “VO2 peak” patients, P in the column study design pilot, POC proof of concept, RCT​ randomized controlled 
trial, RQ relative quantification, SD standard deviation, SPE-LC–MS/MS solid-phase extraction liquid-chromatography tandem mass spectrom-
etry, ST semi-targeted, T targeted, TG training/test group, U untargeted, UHPLC-HRMS ultra-high performance liquid-chromatography tandem 
high-resolution mass spectrometry, VO2peak peak oxygen uptake
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Table 2   Risk of bias in individual studies evaluated with QUADOMICS
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Table 2   (continued)

Green = yes, red = no, orange = unclear

Fig. 2   Included metabolites on 
the super class level. a Metabo-
lites super classes positively 
associated with cardiorespira-
tory fitness. b Metabolites super 
classes negatively associated 
with cardiorespiratory fitness. n 
number of metabolite species. 
Figure was created with the 
Mind the Graph platform (www.​
mindt​hegra​ph.​com) and Adobe 
Illustrator 2021 (Adobe Inc., 
San Jose, CA, USA)

http://www.mindthegraph.com
http://www.mindthegraph.com
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Fig. 3   Included lipid and lipid-
like molecules. a Lipids and 
lipid-like molecules positively 
associated with cardiorespira-
tory fitness, by class level. b 
Lipids and lipid-like molecules 
negatively associated with car-
diorespiratory fitness, by class 
level. c Glycerophospholipids 
positively associated with car-
diorespiratory fitness, by direct 
parent level. d Glycerophos-
pholipids negatively associated 
with cardiorespiratory fitness, 
by direct parent level. LPC lyso-
acylglycerophosphocholines, 
LPC-O lyso-alkylglycerophos-
phocholines, LPC-P lyso-
alkenylglycerophosphocholines, 
LPE lyso-acylglycerophos-
phoethanolamines, n number 
of metabolite species, PC 
diacylglycerophosphocholines, 
PC-P alkenyl-acylglycerophos-
phocholines, PE diacylglycer-
ophosphoethanolamines, PE-O 
alkyl-acylglycerophosphoetha-
nolamines, PE-P alkenyl-acyl-
glycerophosphoethanolamines, 
PI diacylglycerophosphoinosi-
tol. Figure was created with the 
Mind the Graph platform (www.​
mindt​hegra​ph.​com) and Adobe 
Illustrator 2021 (Adobe Inc., 
San Jose, CA, USA)

acids and derivatives (n = 7), sulfated steroids (n = 5), and 
cholesterol esters (n = 2).

The 51 organic acids and derivatives positively associ-
ated with CRF comprised 35 amino acids, peptides, and ana-
logs, of which the most common were alpha amino acids 
and derivatives (n = 9), N-acyl-alpha amino acids (n = 4), 
methionine and derivatives (n = 3), prolines and derivatives 
(n = 3), and dipeptides (n = 3) (Fig. 4a). Seventy organic 
acids and derivatives were negatively associated or corre-
lated with CRF, of which 51 were amino acids, peptides, 
and derivatives. The most represented amino acids and 
analogs were alpha amino acids and derivatives (n = 16), 
dipeptides (n = 5), arginines and derivatives (n = 4), tyrosine 
and derivatives (n = 4), prolines and derivatives (n = 3), and 
phenylalanines and derivatives (n = 3) (Fig. 4b).

The 13 organoheterocyclic compounds, which showed 
positive associations with CRF, consisted mainly of bili-
rubins (n = 4). Purines and purine derivates were the most 
represented metabolites (n = 4) within the 17 organohet-
erocyclic compounds negatively associated with CRF. 
Carbohydrates and carbohydrate conjugates were the most 
common metabolites within the eight organic oxygen com-
pounds positively associated with CRF (n = 5) and in the 
11 negatively associated with CRF (n = 8). Eleven nucleo-
sides, nucleotides, and analogs displayed negative associa-
tions with CRF, while only one showed a positive associa-
tion with CRF. Similarly, more organic nitrogen compounds 
were negatively associated with CRF (n = 8) than positively 
(n = 2). Finally, six benzenoids species displayed positive 
associations with CRF, while only two showed negative 
associations with CRF.
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Fig. 4   Included organic acids 
and derivatives on the class 
level. a Organic acids and 
derivatives positively associated 
with cardiorespiratory fitness. 
b Organic acids and deriva-
tives negatively associated with 
cardiorespiratory fitness. n 
number of metabolite species. 
Figure was created with the 
Mind the Graph platform (www.​
mindt​hegra​ph.​com) and Adobe 
Illustrator 2021 (Adobe Inc., 
San Jose, CA, USA)

Table 3   Metabolite species 
reported to be positively and 
negatively associated with CRF

CE cholesterol ester, CRF cardiorespiratory fitness

Metabolite super classes Metabolite species Studies reporting associa-
tions with CRF

Positive Negative

Lipids and lipid-like molecules Nervonic acid [41] [45]
Vitamin A [41] [45]
CE(20:4) [41] [45]
CE(22:4) [41] [40]

Organic acids and derivatives Pyroglutamic acid [47] [41]
Histidine [45] [47]
Methionine [40] [47]
Cinnamoylglycine [41] [45]
Phenylalanine [52] [41]
Serine [45] [40]
Tyrosine [52] [41, 47]

Organic oxygen compounds 1,5-Anhydroglucitol [45] [47]
Kynurenine [45] [47]

Organoheterocyclic compounds C-Glycosyltryptophan [45] [41]

3.4.2 � Metabolites Sampled from Skeletal Muscle, Urine, 
or Sweat

In skeletal muscle, 15 acylcarnitines were positively corre-
lated to CRF, further classified into medium-chain (n = 9), 
long-chain (n = 5), and short-chain (n = 1) acylcarnitines. In 
urine, two metabolites (creatinine and uracil) were positively 
associated with CRF, while eight amino acids and analogs 
and one straight-chain fatty acid were negatively associ-
ated with CRF. Finally, sweat methionine showed a positive 

association with CRF, while sweat ornithine and phenylala-
nine displayed negative associations with CRF.

3.5 � Metabolites Reported Multiple Times 
in Relation to CRF

Ninety-seven circulating metabolites were reported by two 
or three distinct studies. Conflicting reports were found for 
14 metabolites, which were reported to be either positively 
or negatively associated or correlated with CRF depending 

http://www.mindthegraph.com
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Table 4   Metabolites species 
reported multiple times as 
positively associated with CRF

CE cholesterol ester, CRF cardiorespiratory fitness, LPC lyso-acylglycerophosphocholines, PC diacylglyc-
erophosphocholines, PC-P alkenyl-acylglycerophosphocholines, SM sphingomyelin

Metabolite super classes Metabolite species Studies reporting posi-
tive associations with 
CRF

Benzenoids Hippuric acid [41, 45]
Lipids and lipid-like molecules 12,13-diHOME [37, 41]

Docosahexaenoic acid [41, 53]
PC(34:2) [41, 44]
LPC(18:0) [41, 51]
LPC(18:1) [41, 51]
LPC(18:2) [41, 51]
LPC(20:4) [41, 51]
SM(18:1;2/24:1) [41, 45]
CE(18:3) [41, 45]
CE(20:3) [41, 45]

Organic acids and derivatives Asparagine [41, 45]
Acetylglycine [41, 45]
Malic acid [41, 47]

Organoheterocyclic compounds Bilirubin [41, 45, 47]

on the studies (Table 3). Fifteen metabolites, including four 
LPC species, were reported multiple times to be positively 
associated with CRF (Table 4). Finally, 68 metabolites were 
consistently negatively associated with CRF (Table 5). The 
latter included 44 triacylglycerols, nine amino acids, and 
three ceramides.

3.6 � Meta‑Analysis

None of the included metabolites fulfilled the criteria, previ-
ously described in the review protocol, to be meta-analyzed 
[28]. Metabolites had (1) to be detected in the same tis-
sue, (2) using the same metabolomics approach (untargeted, 
semi-targeted, or targeted), (3) in at least three different 
studies, and (4) to be identified on a level 1 identification 
according to the Metabolomics Standards Initiative to be 
meta-analyzed [28, 56].

4 � Discussion

The present work systematically reviewed metabolites that 
are associated with CRF, a potent marker of human health 
that should be considered as a vital sign in clinical medicine 
according to the American Heart Association [1]. Lipids, 
followed by organic acids, were the metabolites most com-
monly associated with CRF. Most circulating glycerolip-
ids, acylcarnitines, and ceramides, as known biomarkers 
of poor cardiometabolic health, showed negative associa-
tions with CRF [57–63]. Conversely, most LPC and cho-
lesterol esters were positively associated with CRF (Fig. 5). 

Branched-chain amino acids (BCAAs) were negatively asso-
ciated with CRF, while bilirubin displayed positive associa-
tions with CRF (Fig. 5). None of the included metabolites 
fulfilled the qualitative and quantitative criteria defined in 
the review protocol to be meta-analyzed, which reflects the 
novelty of the present field. Nevertheless, 83 associations 
were reported independently by distinct studies, which 
strengthens the certainty of evidence of these findings. Con-
versely, conflicting results were found for 14 associations, 
which reduces their certainty of evidence. The following 
sections discuss the overall results with a focus on the 83 
associations showing the strongest certainty of evidence.

4.1 � Lipids and Lipid‑Like Molecules

In addition to their well-known functions in energy storage 
and production, lipids from biological membranes modulate 
cell surface receptor activities and regulate vesicular traf-
ficking [64–66]. Lipids also act as key signaling molecules, 
controlling important cellular processes such as cell prolif-
eration, apoptosis, migration, senescence, and inflammation 
[67, 68]. Alterations in lipid metabolism have been observed 
in many cardiometabolic, oncological, and neurodegenera-
tive disorders [69, 70]. Remarkably, changes in the lipidome 
composition have been associated with aging, healthy aging, 
and age-related disorders [71–74]. Estimated to number in 
the hundreds of thousands of discrete molecular species, 
lipids are also the most abundant circulating macromole-
cules in human plasma [75]. In light of these facts, it is not 
surprising that lipids were the metabolites most commonly 
associated with a potent health marker such as CRF.
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Table 5   Metabolite species reported multiple times as negatively associated with CRF

CAR​ carnitine, Cer ceramide, CRF cardiorespiratory fitness, HexCer hexosylceramide, SM sphingomyelin, TAG​ triacylglycerol

Metabolite super classes Metabolite species Studies reporting nega-
tive associations with 
CRF

Lipids and lipid-like molecules CAR(3) propionylcarnitine [41, 45, 47]
CAR(6) hexanoylcarnitine [41, 45]
TAG(46:1), TAG(46:2), TAG(46:3), TAG(47:0), TAG(47:2), TAG(48:1), 

TAG(48:2), TAG(48:3), TAG(48:4), TAG(48:5), TAG(49:0), 
TAG(49:1), TAG(49:2), TAG(49:3), TAG(50:1), TAG(50:2), 
TAG(50:3), TAG(50:4), TAG(50:5), TAG(50:6), TAG(51:0), 
TAG(51:1), TAG(51:2), TAG(51:3), TAG(52:1), TAG(52:2), 
TAG(52:3), TAG(52:4), TAG(52:5), TAG(52:6), TAG(52:7), 
TAG(53:2), TAG(53:3), TAG(54:1), TAG(54:2), TAG(54:3), 
TAG(54:4), TAG(54:5), TAG(54:6), TAG(54:7), TAG(54:8), 
TAG(55:2), TAG(55:3), TAG(56:5)

[41, 45]

γ-Tocopherol [39, 53]
Cer(18:1;2/16:0) [36, 41, 45]
Cer(18:1;2/18:0) [34, 36]
Cer(18:1;2/20:0) [34, 36]
HexCer(18:1;2/18:0) [36, 45]
SM(18:1;2/18:0) [41, 45]
SM(18:1;2/18:1) [36, 41, 45]
Glycocholic acid [41, 45]

Nucleosides, nucleotides, and analogs Pseudouridine [41, 51]
Organic acids and derivatives Alanine [41, 47]

Citrulline [45, 47]
Creatine [41, 45, 47]
Lysine [40, 41, 47]
Ornithine [41, 45, 47]
Isoleucine [41, 47]
Leucine [41, 47]
Thyroxine [41, 47]
Proline [41, 47]
Lactic acid [40, 41]
Pyruvic acid [41, 47]

Organic nitrogen compounds Carnitine [41, 45]
Organic oxygen compounds Gluconic acid [40, 45]

Specific PC species were previously described as car-
diometabolically favorable, while others seem to be meta-
bolically deleterious [62, 63, 76]. For instance, the favorable 
PC(16:0/22:5) and deleterious PC(16:0/16:0) are part of the 
ceramide-phospholipid score for the prediction of cardio-
vascular risk [62, 63], but the exact underlying biological 
mechanism remains unknown. Interestingly, saturated and 
monounsaturated PC species were previously positively 
associated with cardiovascular mortality [76]. The results of 
the present review support a dual role of PC species with 25 
and 17 species being positively or negatively associated with 
CRF, respectively. No pattern was observed regarding spe-
cies saturation and their association with CRF. Specifically, 
PC(34:2) was reported twice to be positively associated 

with CRF, which contrasts with the fact that this species 
was previously associated with cardiovascular mortality and 
aging [76, 77]. However, the annotation PC(34:2) does not 
unequivocally specify the fatty acyl or alkyl chains in the 
molecule, which makes data interpretation ambiguous [78]. 
Thus, PC(34:2) could correspond to different species, such 
as PC(16:0/18:2) but also PC(14:0/20:2), each of which have 
potentially different biological roles. Therefore, caution is 
necessary when interpreting lipidomic data.

Regarding LPC, more species were positively (n = 18) 
than negatively (n = 3) associated with CRF and four spe-
cies [LPC(18:0), LPC(18:1), LPC(18:2), and LPC(20:4)] 
were reported twice as positively associated with CRF [41, 
51]. LPC(18:0) and LPC(18:2) were previously associated 
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Fig. 5   Metabolites associated with cardiorespiratory fitness (CRF) 
as potential driving forces of cardiometabolic health. Figure was cre-
ated with the Mind the Graph platform (www.​mindt​hegra​ph.​com) 

and Adobe Illustrator 2021 (Adobe Inc., San Jose, CA, USA). BCAA​ 
branched-chain amino acids, LPCs lyso-acylglycerophosphocholines

with reduced cardiovascular mortality [76]. Mechanisti-
cally, LPCs are believed to inhibit cholesterol synthesis in 
macrophages and slow down atherogenesis [79]. LPC(16:0), 
which was reported once to be positively associated with 
CRF, is known to be inversely associated with vascular 
remodeling (intima-media thickness), cardiovascular dis-
eases, and mortality [76, 80]. Finally, circulating LPC levels 
have been observed to be reduced in rodents with obesity 
and type 2 diabetes [81].

Twelve alkenyl-acylglycerophosphocholines species 
were found to be positively associated with CRF. Alkenyl-
acylglycerophosphocholines belong to the ether-glycer-
ophospholipid family, which acts, amongst other things, as 
cellular antioxidants and is therefore considered as meta-
bolically favorable [82, 83]. This could explain why most 
alkenyl-acylglycerophosphocholines were positively asso-
ciated with CRF. Additionally, lower circulating levels of 
ether-glycerophospholipids have been observed in patients 
with non-alcoholic steatohepatitis and children with type 1 
diabetes [84, 85].

Circulating CE levels have been reported to be negatively 
associated with cardiovascular diseases [86, 87]. Indeed, 
the formation of cholesterol esters prevents intracellular 
free cholesterol accumulation [88]. The fact that 17 CE 
were positively associated with CRF, while only two CE 
were negatively associated with CRF supports this state-
ment. On the lipid species level, CE(18:3) and CE(20:3) 
were reported twice as positively associated with CRF [41, 
45]. Furthermore, CE(20:4), CE(20:5), CE(22:4), CE(22:5), 
and CE(22:6), levels of which were previously inversely 
associated with cardiovascular disease, displayed positive 
associations with CRF [86]. Most circulating acylcarniti-
nes (regardless of chain length) were negatively associated 

with CRF, which reflects the fact that an accumulation of 
circulating acylcarnitines indicates incomplete mitochon-
drial fatty acid oxidation, and therefore impaired metabolic 
health [59, 60]. Conversely, muscular acylcarnitines were 
positively associated with CRF, highlighting improved fatty 
acid oxidation with a higher fitness level [89]. This is in line 
with previous data, which showed that exercise improves 
muscle mitochondrial capacity and the completeness of fatty 
acid oxidation [90].

Ceramides and their roles in cardiometabolic diseases are 
receiving growing scrutiny [91, 92]. On a mechanistic level, 
circulating ceramides are believed to promote foam cell for-
mation, vascular inflammation, and atherosclerosis [93–95]. 
These findings have progressed to clinical medicine, where 
ceramides are now used to predict cardiovascular death in 
patients with and without coronary artery disease [61, 62, 
96, 97]. Thus, it is postulated that ceramides act as driving 
forces of cardiometabolic disorders [98, 99]. In this context, 
the results of the present review are highly interesting, show-
ing that 12 ceramides were negatively associated with CRF, 
with only Cer(18:1;2/10:0) being an exception. Furthermore, 
Cer(18:1;2/16:0) [36, 41, 45], Cer(18:1;2/18:0) [34, 36], 
and Cer(18:1;2/20:0) [34, 36] were reported several times 
as negatively associated with CRF. Strikingly, the three 
cardiometabolically deleterious ceramide species clinically 
used in the ceramide-phospholipid score (Cer(18:1;2/16:0) 
[36, 41, 45], Cer(18:1;2/18:0) [34, 36], and Cer(18:1;2/24:1) 
[36]) were found to be negatively associated with CRF [99]. 
In light of the these findings, it can be hypothesized that spe-
cific CRF-enhancing training could reverse altered ceramide 
profiles and optimize cardiometabolic health. This needs to 
be demonstrated in a prospective intervention study.

http://www.mindthegraph.com
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4.2 � Organic Acids and Derivatives

Amino acids not only serve as building blocks for proteins 
but also as signaling molecules, regulators of gene expres-
sion, as well as precursors of hormones and neurotransmit-
ters [100]. Circulating levels of the BCAAs isoleucine, leu-
cine, and valine have been associated with obesity, insulin 
resistance, and type 2 diabetes [101–104]. Initially attributed 
to an BCAA-mediated activation of the mammalian target 
of rapamycin pathway [105], these findings are more likely 
due to an increased ratio of BCAAs to tryptophan and threo-
nine, resulting in central serotonin depletion, hyperphagia, 
obesity, and a reduced lifespan [106]. Alternatively, it has 
been suggested that metabolically healthy and cardiores-
piratory fit individuals tend to have more efficient BCAA 
catabolism and fatty acid oxidation, which prevents BCAA 
accumulation in the circulation [107, 108]. The findings of 
the present systematic review tend to support the latter as 
isoleucine [41, 47], leucine [41, 47], and valine [47] were 
found to be negatively associated with CRF. While aspara-
gine and acetylglycine are known to be inversely associ-
ated with the incidence of metabolic syndrome, these two 
amino acids were reported by distinct studies to be positively 
associated with CRF [109]. Phenylalanine and tyrosine are 
known to be elevated in subjects with insulin resistance, 
diabetes, or coronary artery disease [110]. Both metabo-
lites also displayed higher levels in metabolically unhealthy 
obese patients, while they were not elevated in metabolically 
healthy obese subjects [111]. Remarkably, phenylalanine in 
plasma [41], urine [43], and sweat [55] as well as tyrosine 
in plasma [41, 47] and urine [46] were negatively associated 
with CRF. However, the contrary was true for phenylalanine 
and tyrosine in serum [52].

4.3 � Other Organic Compounds

Bilirubin, which was positively associated with CRF, is 
believed to be cardiometabolically favorable. Indeed, ele-
vated bilirubin levels are associated with a reduced incidence 
of peripheral artery disease and stroke [112]. Conversely, 
low bilirubin levels have been associated with a higher risk 
of coronary artery disease, impaired flow-mediated vasodila-
tation, and increased carotid intima-media thickness [113, 
114]. Therefore, elevation of bilirubin levels might be a way 
through which improvement in CRF mitigates the incidence 
of cardiometabolic diseases. Hippurate, the levels of which 
are decreased in patients with metabolic syndrome, was pos-
itively associated with CRF [115–117]. Finally, while cir-
culating cell-free nucleic acids are increasingly recognized 
as potential biomarkers of diseases (‘liquid biopsy’) [118], 
little is known about the significance of isolated circulating 

nucleosides, which were mainly negatively associated with 
CRF [41, 45, 47].

4.4 � Strengths and Limitations

The present work was the first to systematically review CRF-
associated metabolites. In this way, it provides researchers 
with an objective overview of the current literature and 
could orientate future research aiming at unraveling meta-
bolic pathways through which CRF mitigates morbidity and 
mortality. The main limitation of the present systematic 
review lies in the important heterogeneity of the included 
studies. Indeed, studies differed in terms of participants’ age, 
sex, health conditions and medications, body mass index 
and percentage of body fat, physical activity, and CRF lev-
els. Moreover, fasting protocols, analyzed tissues, sample 
preparation, extraction methods, analytical techniques, and 
metabolomics approaches were also heterogeneous. Further-
more, several statistical analyses were used, from simple 
correlations to multiple linear regressions, adjusting or not 
for important confounders. Therefore, investigating asso-
ciations between metabolites and CRF needs to be done in 
healthy participants before investigating clinical populations. 
It will then be possible to circumvent the confounding effects 
of chronic cardiometabolic diseases on lipid metabolism. 
Second, some associations between metabolites and CRF 
are likely sex specific and, for female individuals, depend on 
menopausal status [119]. Unfortunately, data gathered from 
the included studies and from author contacts did not allow 
us to analyze associations in a sex-dependent or menopause-
dependent manner. Indeed, seven studies investigated male 
individuals only [49–55], ten publications neither reported 
sex-specific or menopause-specific results nor provided indi-
vidual patient data [36–38, 40–42, 44, 46–48], three studies 
reported sex-specific results without providing individual 
patient data [34, 39, 43], and two publications provided indi-
vidual patient data without reporting sex-specific results [35, 
45]. Coupled with the important heterogeneity described 
above, the lack of individual patient data prevented the 
creation of models predictive of CRF based on a metabolic 
signature.

Third, this systematic review does not provide informa-
tion about the cellular origin, destination, or subcellular 
localization of the circulating pool of metabolites. Thus, 
potential CRF-promoting nutritional recommendations 
require further mechanistic studies in model organisms and 
intervention studies in both model organisms and humans. 
Consequently, such recommendations cannot be derived 
at this stage. Fourth, it is essential to harmonize analytical 
approaches by following recommendations edited by the 
Metabolomics Society [120, 121]. For instance, analyte con-
centration in sweat can vary greatly depending on the col-
lection, handling, processing, storage, and skin microbiome 
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[122, 123]. Finally, it is important to conduct regression 
analyses rather than simple correlation analyses and thereby 
adjust for relevant confounders [90].

5 � Conclusions

Circulating and muscle lipidome composition was associ-
ated with CRF, a clinically highly relevant health param-
eter. Known biomarkers of poor cardiometabolic health such 
as circulating glycerolipids, acylcarnitines, and ceramides 
were negatively associated with CRF. Conversely, circu-
lating LPCs, cholesterol esters, and muscle acylcarnitines 
were positively associated with CRF, featuring their roles 
in health maintenance. BCAA and bilirubins showed nega-
tive and positive associations with CRF, respectively. It is 
important to note that the included studies were heterogene-
ous in terms of participants’ characteristics and analytical 
and statistical approaches. While causality of the revealed 
associations remains to be investigated further, lipid metabo-
lism and changes in lipidome composition seem to be tightly 
related to physical fitness. Deciphering lipid responses to 
CRF-enhancing interventions could help unravel the meta-
bolic pathways through which CRF mitigates morbidity and 
mortality.
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