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TLS modelling was developed by Schomaker and Trueblood to describe atomic

displacement parameters through concerted (rigid-body) harmonic motions of

an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B24, 63–76]. The

results of a TLS refinement are T, L and S matrices that provide individual

anisotropic atomic displacement parameters (ADPs) for all atoms belonging to

the group. These ADPs can be calculated analytically using a formula that

relates the elements of the TLS matrices to atomic parameters. Alternatively,

ADPs can be obtained numerically from the parameters of concerted atomic

motions corresponding to the TLS matrices. Both procedures are expected to

produce the same ADP values and therefore can be used to assess the results of

TLS refinement. Here, the implementation of this approach in PHENIX is

described and several illustrations, including the use of all models from the PDB

that have been subjected to TLS refinement, are provided.

1. Introduction

1.1. Atomic positions in crystal structures

Describing atomic positions in crystal structures by

Cartesian coordinates is a mathematical abstraction. Atomic

positions are averages over the diffraction data-collection time

and over all of the unit cells in the crystal. The variation of

positions may range from large, representing discrete confor-

mations, to small, reflecting atomic motion around a central

position.

If a motion is harmonic (in particular, this means that the

motion amplitude is small), the probability of a shift of an

atom n by a vector rn = �xn i + �yn j + �znk is defined by

individual isotropic (Bn) or anisotropic (Un) atomic displace-

ment parameters (ADPs):

Un ¼

h�x2
ni h�xn�yni h�xn�zni

h�xn�yni h�y2
ni h�yn�zni

h�xn�zni h�yn�zni h�z2
ni

0
@

1
A: ð1Þ

These characteristics of atomic mobility are part of the

structural information that is associated with models of crystal

structures. As discussed in the literature (see, for example,

Dunitz & White, 1973; Murshudov et al., 1999; Winn et al.,

2001), the atomic displacement is a superposition of various

motions that arise from different sources. These include

displacement of atoms as part of a group and individual

vibrations. A group motion itself can have several sources such
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as motion of the whole molecule, motion of its domains, side-

chain libration etc. Typically, modern refinement programs

treat these motions using three separate components: motion

of the whole crystal (modelled as an overall anisotropic scale

factor), motion of non-overlapping groups that are considered

to be rigid, and individual atomic motions.

1.2. Rigid-group motion

Atomic displacements arising from rigid-body motions can

be accounted for using the TLS model (Schomaker & True-

blood, 1968). Such a model is based on simple geometric

considerations allowing the description of elemental harmonic

motions of atomic groups in terms of three matrices T, L and S

(for a review, see Urzhumtsev et al., 2013). This provides a

convenient mathematical way to present these motions in

terms of an individual anisotropic ADP,

UTLS;n ¼ TþAnLA�
n þAnSþ S�A�

n; ð2Þ

where

An ¼

0 zn �yn

�zn 0 xn

yn �xn 0

0
@

1
A ð3Þ

is an antisymmetric matrix expressed using the Cartesian

coordinates (xn, yn, zn) of atom n with respect to the origin of

the TLS group. The symbol � denotes the matrix transpose.

The TLS approach may be seen as a statistical model for the

analytical averaging of atomic positions that vary according to

the given elemental motion parameters. The simplest example

of a common motion is an isotropic vibration of a group that is

equivalent to the assignment of the same B value to all atoms

of the group. In the TLS model, the symmetric matrix L

corresponds to the libration of a group, the symmetric matrix

T corresponds to its common vibrations1 (also including a

correction for the position of the libration axes) and the

matrix S reflects correlations between the motions as well as

the position of the axes.

A set of TLS matrices is defined by 21 parameters (six for T,

six for L and nine for S). There is a linear constraint on the

diagonal elements of the S matrix (Schomaker & Trueblood,

1968), resulting in 20 independent parameters. If individual

atomic displacements can be ignored and the assumption that

atomic motions are purely rigid can be accepted (at low

resolution, for example), then modelling atomic displacements

using TLS can significantly reduce the overall number of

fitting parameters. In the following, we refer to the para-

meterization of an atomic group motion using parameters of

elemental rigid-body motions as direct parameterization and

that using elements of the T, L and S matrices, such as in (2), as

indirect parameterization.

Indirect parameterization is mathematically and computa-

tionally more straightforward compared with direct

parameterization. This is because of the simple relationship

between the refinable elements of the T, L and S matrices and

the atomic displacement parameters U using (2). In contrast,

direct parameterization requires a nontrivial number of

mathematical steps that link the parameters of atomic motions

(such as the amplitudes of vibration and libration etc.) to the

elements of TLS matrices (see, for example, Urzhumtsev et al.,

2015). It is thus unsurprising that model-refinement programs

such as phenix.refine (Afonine et al., 2012) and REFMAC

(Murshudov et al., 1997) use indirect parameterization for TLS

owing to its simplicity; that is, they refine the elements of TLS

matrices and not the actual parameters of atomic motions.

This approach is inherently problematic because uncon-

strained or unrestrained refinement of TLS matrices does not

guarantee that the derived parameters of atomic motions are

physically realistic or comply with TLS theory (see, for

example, Zucker et al., 2010; Merritt, 2012; Urzhumtsev et al.,

2015). This is very similar to unrestrained refinement of atomic

coordinates at typical ‘macromolecular resolutions’ (e.g.

2–3 Å): factually, such refinement would almost certainly

result in distorted stereochemistry.

1.3. Two possible interpretations of TLS models

One may think of at least two possible ways to interpret the

results of TLS refinement. One interpretation considers TLS

modelling to be successful if it leads to an improvement in the

R factors and if the atomic displacement parameters UTLS,n

derived from the refined TLS matrices using (2) are realistic

(for example, they vary smoothly between neighbouring

atoms). A more conservative approach considers TLS

modelling to be successful if, in addition to meaningful ADPs

and improved model-to-data fit, the TLS parameters comply

with the basic assumptions of the corresponding theory set out
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Figure 1
(a) A schematic representation of the atomic displacement for pure
vibrations along the vertical axis (light and dark blue arrows) and (b) for
libration around the axis perpendicular to the view (light and dark red
arrows) shown for a five-atom dummy model (black dots). Lighter
coloured arrows correspond to displacements with larger amplitudes. The
displacements for vibration and libration are similar for small amplitudes
and different for large amplitudes (b). The curvature of libration
displacements with large amplitudes (b) makes them anharmonic.

1 Traditionally, the term translation is used to denote the pure shift of the
group without rotation. We prefer to use the term vibration, which is more
coherent when using the term libration, and not rotation. This allows different
components of the T matrix to be distinguished: those owing to the proper
vibrations and those owing to apparent shifts.



by Schomaker & Trueblood (1968). This additional require-

ment is important when atomic motions modelled using TLS

parameters are used to describe molecular motions (True-

blood, 1978; Trueblood & Dunitz, 1983; and references

therein) or diffuse X-ray scattering data (Van Benschoten et

al., 2015), or are analysed for biological significance (Kuriyan

& Weis, 1991; Harris et al., 1992; Šali et al., 1992; Wilson &

Brunger, 2000; Raaijmakers et al., 2001; Yousef et al., 2002;

Papiz et al., 2003; Chaudhry et al., 2004); see also discussion in

Merritt (1999).

1.4. Analytical and numerical calculations of ADPs from TLS
models

An interpretation of TLS refinement results in terms of

elemental motions (see, for example, Howlin et al., 1993;

Urzhumtsev et al., 2015, 2016) provides an opportunity to

verify whether the corresponding motion parameters agree

with TLS theory. This can be performed in two steps as

follows. Firstly, the parameters of elemental group motions

extracted from refined TLS matrices can be used to obtain an

ensemble of models that samples these motions. In turn, (1)

can be used to convert the ensemble back to a single model

with the uncertainties in atomic positions described using the

corresponding ADP values, Uensemble,n. Secondly, (2) can be

used to calculate the uncertainties UTLS,n in atomic positions

directly from the TLS matrices. It is intuitive to expect that

UTLS,n and Uensemble,n will match within some tolerance. The

tolerance is needed to account for rounding errors and the

finite number of models in the ensemble. A difference

between UTLS,n and Uensemble,n beyond this tolerance may be

indicative of various problems with the corresponding TLS

set.

Since currently used refinement programs utilize an indirect

TLS parameterization that does not use restraints or

constraints, it may be the case that extracting motion para-

meters from refined TLS matrices is mathematically impos-

sible (Urzhumtsev et al., 2015, 2016). The simplest example is

the T or L matrices being non-positive definite. A more subtle

example is when the parameters of elemental motions can be

extracted from the TLS matrices but may not satisfy the basic

assumptions about the TLS model (for example, libration

amplitudes being too large, resulting in atomic motions that

are anharmonic; see Fig. 1 and x2).

When motion parameters can be extracted from TLS

matrices, comparison of Uensemble,n and UTLS,n requires a

measure of and a threshold for the tolerance mentioned above

(discussed in x2.1). Since Uensemble,n depends on the number of

models in the ensemble, we use a simple test system to esti-

mate how many models are required to sample the group

motion accurately and also to estimate a possible threshold

value for the similarity of respective matrices (x2.2). The

results are then validated using a more realistic protein model

(x2.3). These tests highlighted reasons for differences between

UTLS,n and Uensemble,n matrices and prompted further

improvements for TLS analysis (x2.4). In x3 we discuss the

results of the application of our procedures to all models in the

PDB (Bernstein et al., 1977; Berman et al., 2000) that contain

TLS information. Respective tools have been added to the

PHENIX suite (Adams et al., 2010).

2. Anisotropic displacement matrices and the
corresponding model ensembles

2.1. Metrics for matrix comparison

To evaluate the similarity of the two sets of anisotropic

displacement matrices, UTLS,n and Uensemble,n, for a group

composed of N atoms, n = 1, 2, . . . , N, we arbitrarily choose to

use a simple R-factor-type metric,

RUðU1;U2Þ ¼ 2

P
n

P3

i;j¼1

U
ði;jÞ
1;n �U

ði;jÞ
2;n

���
���

P
n

P3

i;j¼1

U
ði;jÞ
1;n

���
���þ U

ði;jÞ
2;n

���
���

h i ; ð4Þ

where U1,n = UTLS,n and U2,n = Uensemble,n. Here, the sums are

calculated over all elements of the matrices and over all atoms

of the group. Other metrics can also be used (Dunitz & White,

1973; Zucker et al., 2010). Specifically, Kullback–Liebler (KL)

divergence (Kullback & Leibler, 1951; Murshudov et al., 2011;

Merritt, 2011, 2012) and the correlation coefficient (CCUV;

Merritt, 1999) seem to be most prominent, with the caveat that

they require matrix inversion, which is not always possible in

numeric tests where only one single motion can be considered.

The calculation of (4) depends on the randomly generated

ensemble models that are used to obtain Uensemble,n. This is a

stochastic procedure that depends on random seed values and

on the number of models in the ensemble. Below, we analyze

how these parameters affect the estimate of Uensemble. Also, we

check whether using KLUV or CCUV leads to conclusions that

differ from those obtained using RU.

2.2. Illustrations using a one-atom model

For simplicity, in this section we drop the subscript n from

Uensemble and UTLS because only a single atom is considered.

2.2.1. Effect of vibration. In this test, we consider a model

composed of a single atom vibrating along the Ox axis. For

each trial root-mean-square deviation (r.m.s.d., which we call

the vibration amplitude t), we generated M random copies of

this atom and then took all of these copies to calculate

Uensemble using (1). We then used (4) to compare Uensemble with

the corresponding UTLS = T calculated analytically using (2)

with L = S = 0. For each trial t we repeated these calculations

100 times, each time with a different random seed. Obviously,

for different trials UTLS remains the same while Uensemble

varies. Fig. 2(a) shows the average (over 100 trials) RU for

different trial values of t and M. The results are essentially

independent of t. This is expected since h�x2
i in (1) is

proportional to Txx = tx
2 in (2) for a sufficiently large number of

models. We observe that RU becomes close to 0.01 once the

size of the ensemble reaches about 10 000 models.

2.2.2. Effect of libration. Here, we used the same single-

atom model as above and the same calculation workflow,
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except that we varied the libra-

tion r.m.s.d. value d. Similarly to

the previous example, RU as a

function of ensemble size reaches

a plateau for about 5000–10 000

models in the ensemble (Fig. 2b);

however, the plateau level

depends on the value of d. Then

we sampled a broad range of d

values keeping the ensemble size

fixed at 5000 models (Figs. 2c and

2d). We observe that RU remains

approximately constant (�0.02)

up to a d0 of �0.15 rad and then

starts increasing monotonically.

The d0 value obtained in this

numerical experiment corre-

sponds to the limit of a linear

approximation to the small rota-

tions discussed in Urzhumtsev et

al. (2013) and other works cited

therein, for example Cruickshank

(1956). Owing to rounding errors

and the differences between a

rotation motion and a linear

motion, the RU values never

reached zero even for very small

d and large ensemble sizes (Fig.

2c). Also, while the average

values over several trials are

stable, they may vary between

individual trials (Fig. 2d). These

results allowed us to draw two

conclusions. Firstly, generating

about 5000–10 000 models is

sufficient to estimate Uensemble

reliably (in x2.3 we show that

this is still the case for real-

istic macromolecular models).

Secondly, we may consider that

Uensemble agrees with UTLS for a

particular TLS set if RU is

approximately 0.05 or less.

2.2.3. Checking other metrics.
To illustrate that the results

obtained in previous tests are

independent of matrix-compar-

ison metrics, we repeated the test

described in x2.2.2 using other

metrics such as KLUV and CCUV.

Since these metrics require a

matrix inversion, we had to use a

minor modification consisting of

adding a small value to all of the

diagonal elements of the respec-

tive matrices Uensemble and the

corresponding UTLS, which is a
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Figure 3
Agreement of RU between Uensemble and UTLS matrices as a function of the number of generated models
calculated for protein data. (a) Results for 2igd models composed of all main-chain atoms (red) and C�

atoms only (blue) using different approaches to extract the elemental motions: dashed lines for (10) and full
lines for (11). (b) Results for the 4muy model using (10) shown as a dashed line and (11) shown as a full line.

Figure 2
Agreement between the Uensemble and UTLS matrices calculated for a single-atom model. RU (averaged over
100 random runs) is shown as a function of the logarithm of the number M of models for different (a)
vibration and (b) libration r.m.s.d. values. (c) RU (solid line) and KLUV" (dashed line) with " = 10�6 as a
function of the vibration r.m.s.d. value d for ensembles composed of 5000 generated models. (d) RU as a
function of the vibration r.m.s.d. value d zoomed on the d = 0.0–0.1 rad range and shown for the average
(black curve) as well as for three individual runs (in maroon, blue and green) selected from the 100 runs
used for averaging. (e) CCUV" calculated for several " values (10�2, 10�4, 10�6 and 10�8). ( f ) KLUV"

calculated for the same " values and for small d values; the curves for " values of 10�6 and 10�8 are
indistinguishable. See the text for details.



convolution with an isotropic vibration. For example, the

modified KLUV metric is KLUV" = " tr(U"V"
�1 + V"U"

�1
� 2I)

with U" = U + "I and V" = V + "I. The scale factor " before ‘tr’

is used to put the results on a similar scale (to facilitate

comparisons). By trial and error, we found that a value of " in

the range 10�8–10�6 allows the calculation of KLUV" and

CCUV" but does not significantly affect the results. Overall,

KLUV", CCUV" and RU do not contradict each other (Fig. 2c),

with CCUV" showing a much stronger dependence on "
(Fig. 2e) and both KLUV"and CCUV" showing a less prominent

drop (Figs. 2e and 2f) at a d0 of �0.10–0.15 rad (see Cruick-

shank, 1956) compared with RU. In the following we use RU

because the original matrices can be used without modifica-

tion and it has a predictable range of values, unlike KLUV".

2.3. Illustrations using a protein model

As a more realistic example, we selected the model of IgG-

binding domain III (PDB entry 2igd; S. Butterworth, V. L.

Lamzin, D. B. Wigley, J. P. Derrick & K. S. Wilson, unpublished

work) refined at 1.1 Å resolution using individual anisotropic

ADP values. We chose the core of this model as a single TLS

group containing residues 6–61 (leaving out the flexible

N-terminus).

We considered two models derived from these data. One

model contained C� atoms only (56 in total) and the other

model included all main-chain atoms (C�, O, C and N). Each

of the two models was treated as a single TLS group. For each

model we fitted TLS matrices to individual anisotropic Un

values (ANISOU records from the PDB file) using the

phenix.tls tool; we refer to these matrices as TLSCA and

TLSMC, respectively. Then, using each of the two TLS sets

(TLSCA and TLSMC) we calculated UTLS,n using (2) and

generated Uensemble,n as described in Urzhumtsev et al. (2015).

Similarly to as described in x2.2, we sampled a range of

different numbers of models per ensemble.

The blue dashed curve in Fig. 3(a)

shows that for the C�-only model

(TLSCA) RU becomes smaller than 0.05

when the ensemble contains about 5000

models; using a larger ensemble does

not change RU significantly. This agrees

with the conclusions derived in x2.2. For

the main-chain model RU reaches a

plateau for ensembles containing the

same number of models, but the value

of RU does not decrease below 0.09 (red

dashed curve in Fig. 3a). To investigate

the source of such a significant differ-

ence in RU we performed the following

tests.

Firstly, we note that the only differ-

ence between the two models is their

composition and TLS matrices (Fig. 4).

To determine which of the two, the

composition or TLS matrices, contri-

butes to the large RU value, we repeated the calculations

above using the C�-only model with TLSMC matrices and the

main-chain model with TLSCA matrices. In the first case RU

was 0.09 and in the second case it was 0.05. This shows that the

difference in RU is owing to the TLS matrices and is not owing

to the model composition. To find out which features of

TLSMC are responsible for the increased RU, we performed a

further analysis.

The elemental motions encoded by TLS matrices are three

screw librations (around three mutually orthogonal axes lx, ly,

lz) coupled with three vibrations, also about three mutually

orthogonal axes vx, vy, vz. In the following, dx, dy, dz stand for

libration amplitudes, tx, ty, tz stand for vibration amplitudes, sx,

sy, sz stand for the corresponding screw parameters and wx, wy,

wz stand for the points that belong to the respective libration

axes (for formal definitions, see Urzhumtsev et al., 2013). As

discussed in x2.2, the condition Uensemble,n ’ UTLS,n (for a

sufficiently large number of models in the ensemble) may
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Figure 4
The TLS matrices calculated for the 2igd model for all main-chain atoms
(right) and for C� atoms only (left). The matrices are given according to
the PDB conventions: T is in Å2, L is in deg2 and S is in Å deg.

Table 1
Analysis of the discrepancy between Uensemble,n and UTLS,n using RU.

For PDB entry 2igd, the two TLS sets, referred to as TLSCA and TLSMC, are derived from anisotropic
ADPs of C� atoms only or of main-chain atoms, respectively. For each of the sets the parameters of the
elemental motions were determined using either (10) or (11) with the constraints described in Urzhumtsev
et al. (2015). For both TLS sets the same model composed of C� atoms only was used to generate Uensemble,n

and compare it with the respective UTLS,n. For the 4muy model all atoms are used both to determine the
TLS matrices and to generate Uensemble,n; the elemental motions were determined using either (10) or (11).
The RU(all) column shows the results of comparison when the whole set of motions (librations and
vibrations) were used (5). The RU(no V) column indicates the case when only three librations were used
while vibration components were excluded (6). The next three columns [RU(dx, sx), RU(dy, sy) and
RU(dz, sz)] show the results for cases when only one single libration and a corresponding screw were used
(7). The last three columns [RU(dx), RU(dy) and RU(dz)] represent the pure librations (8).

TLS Method RU(all) RU(no V) RU(dx, sx) RU(dy, sy) RU(dz, sz) RU(dx) RU(dy) RU(dz)

PDB entry 2igd
TLSCA (10) 0.04 0.07 0.14 0.05 0.03 0.00 0.02 0.01
TLSMC (10) 0.09 0.15 0.28 0.01 0.03 0.00 0.02 0.01
TLSCA (11) 0.01 0.02 0.01 0.02 0.04 0.00 0.02 0.01
TLSMC (11) 0.01 0.02 0.03 0.04 0.04 0.00 0.02 0.01

PDB entry 4muy
TLSall (10) 0.61 0.85 0.89 0.25 0.27 0.01 0.01 0.01
TLSall (11) 0.05 0.11 0.02 0.27 0.42 0.01 0.02 0.00



break down owing to inadequate librations and not owing to

vibrations. To separate the contribution of vibrations and

librations, we first derived the set of parameters of elemental

motions

MPall ¼ ðdx; dy; dz; sx; sy; sz; tx; ty; tzÞ ð5Þ

from the corresponding TLS matrices as described in

Urzhumtsev et al. (2015). Here, and in the following, to

simplify the text we drop the parameters lx, ly, lz; wx, wy, wz;

vx, vy, vz from the list in (5) since they are invariant within

these tests. Then, using the parameters in (5) (Table 2) and the

C�-only model, we calculated Uensemble,n and UTLS,n for the

following different scenarios.

Firstly, we considered a scenario where all three librations

are used together, including their screw components, while

vibrations are excluded:

MPno V ¼ ðdx; dy; dz; sx; sy; sz; 0; 0; 0Þ: ð6Þ

Excluding vibrations led to an increase in RU for both TLSMC

and TLSCA; the values in the RU(no V) column in Table 1 are

�1.5 times larger2 than those for RU(all).

Secondly, we calculated RU separately for each individual

libration, including its corresponding screw component

(Table 1, columns 5–7),

MPdx;sx
¼ ðdx; 0; 0; sx; 0; 0; 0; 0; 0Þ;

MPdy;sy
¼ ð0; dy; 0; 0; sy; 0; 0; 0; 0Þ;

MPdz;sz
¼ ð0; 0; dz; 0; 0; sz; 0; 0; 0Þ; ð7Þ

and without it,

MPdx
¼ ðdx; 0; 0; 0; 0; 0; 0; 0; 0Þ;

MPdy
¼ ð0; dy; 0; 0; 0; 0; 0; 0; 0Þ;

MPdz
¼ ð0; 0; dz; 0; 0; 0; 0; 0; 0Þ: ð8Þ

(Table 1, columns 8–10). For the screw librations, RU is large

for the rotation around lx (Table 1), which is likely to be owing

to a large magnitude of the screw component sx. This

component is two and a half times greater for TLSMC

compared with TLSCA (�5.70 versus�2.07; Table 2), resulting

in an about twofold larger RU value. Removing all screw

components results in an RU of the order of 0.01 for all

librations [RU(dx), RU(dy) and RU(dz) columns in Table 1].

These tests let us draw two conclusions. Firstly, the

ensemble size required for reliable calculation of Uensemble,n

does not depend on the model size and, similarly to the one-

atom case (x2.2), 5000–10 000 models are sufficient. Secondly,

large values of the screw components are responsible for the

disagreement between Uensemble,n and UTLS,n and the large

reesulting RU. This conclusion prompted us to revisit the TLS
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Table 2
Components of the elemental motions.

The four upper blocks correspond to the TLS matrices for PDB entry 2igd calculated for C� atoms only (TLSCA) and for the main-chain atoms (TLSMC). The TLS
matrices were decomposed with (10) or (11) using the constraints described in Urzhumtsev et al. (2015). The two bottom blocks correspond to the model for PDB
entry 4muy. The vectors vx, vy, vz and lx, ly, lz of the vibration and libration bases, respectively, are given in Cartesian coordinates in the principal basis [M] with the
origin at the group centre of mass and with the axes parallel to the crystal axes. The points wx, wy, wz (in Å) are given in the orthonormal basis [L] composed of the
principal libration axes lx, ly, lz and describe the shift of these axes from the origin. The libration amplitudes dx, dy, dz are given in radians and the vibration
amplitudes tx, ty, tz and the screw components sx, sy, sz are in Å. For details of the definitions, see Urzhumtsev et al. (2013).

TLS tx, ty, tz vx, vy, vz dx, dy, dz lx, ly, lz wx, wy, wz sx, sy, sz

PDB entry 2igd

TLSCA (10) 0.163 (�0.085, 0.437, 0.896) 0.011 (�0.262, 0.915, �0.308) (�12.67, �0.39, 16.71) �2.07
0.278 (0.905, 0.410, �0.114) 0.019 (�0.067, 0.301, 0.951) (1.65, 0.97, 8.55) �0.88
0.304 (�0.417, 0.801, �0.430) 0.027 (0.963, 0.270, �0.017) (�4.67, �3.47, 0.76) 0.80

TLSMC (10) 0.089 (�0.082, 0.334, 0.939) 0.010 (�0.272, 0.943, �0.193) (�14.16, �1.74, 22.42) �5.70
0.277 (0.948, 0.316, �0.030) 0.020 (�0.113, 0.168, 0.979) (0.49, 0.11, 11.77) �0.24
0.314 (�0.306, 0.888, �0.343) 0.027 (0.956, 0.288, 0.061) (�4.92, �3.54, �0.25) 0.89

TLSCA (11) 0.163 (�0.085, 0.433, 0.897) 0.011 (�0.262, 0.915, �0.308) (�12.67, �0.39, 16.71) �0.09
0.279 (0.902, 0.417, �0.116) 0.019 (�0.067, 0.301, 0.951) (1.65, 0.97, 8.55) �0.30
0.305 (�0.424, 0.799, �0.426) 0.027 (0.963, 0.270, �0.017) (�4.67, �3.47, 0.76) 1.12

TLSMC (11) 0.083 (�0.078, 0.332, 0.940) 0.010 (�0.272, 0.943, �0.193) (�14.16, �1.74, 22.42) �0.43
0.282 (0.931, 0.362, �0.051) 0.020 (�0.113, 0.168, 0.979) (0.49, 0.11, 11.77) 0.97
0.314 (�0.357, 0.871, �0.337) 0.027 (0.956, 0.288, 0.061) (�4.92, �3.54, �0.25) 1.58

PDB entry 4muy

TLSall (10) 0.0 (0.951, 0.286, �0.117) 0.001 (0.649, 0.500, �0.573) (�219.91, �11.67, �256.03) 303.63
0.257 (�0.220, 0.893, 0.393) 0.008 (�0.633, 0.773, �0.042) (�49.29, 57.65, �1.63) 2.90
0.363 (0.216, �0.348, 0.912) 0.014 (0.421, 0.390, 0.819) (�72.36, �52.48, �124.89) �3.11

TLSall (11) 0.241 (0.227, 0.947, 0,225) 0.001 (0.649, 0.500, �0.573) (�219.91, �11.67, �256.03) 0.11
0.321 (�0.582, �0.053, 0.811) 0.008 (�0.633, 0.773, �0.042) (�49.29, 57.65, �1.63) �3.38
0.396 (0.780, �0.316, 0.540) 0.014 (0.421, 0.390, 0.819) (�72.36, �52.48, �124.89) �5.14

2 UTLS,vibr and Uensemble,vibr from vibration cancel each other in the numerator
of (4) since pure vibrations in the TLS model are always harmonic. Therefore,
the denominator of (4) is larger for the full U matrices than for the matrices
for librations only (this is easier to see in the coordinate system where UTLS,vibr

is diagonal; the diagonal elements of all U matrices are always non-negative).
This means that RU for the overall motion can increase after excluding the
vibration component.



decomposition algorithm described in Urzhumtsev et al.

(2015).

2.4. Improvement of the TLS decomposition

In the decomposition of the TLS matrices into elemental

motions, some parameters, including libration amplitudes and

axes, are defined unambiguously. However, the screw para-

meters are derived using the S matrix, which is not unique but

is defined with an arbitrary constant � that can be added to or

subtracted from its diagonal elements (Schomaker & True-

blood, 1968). This freedom in the definition of S does not

change the ADP and provides the possibility for alternative

(and possibly better) decompositions of the TLS matrices. In

Urzhumtsev et al. (2013) we discussed a possible argument for

the traditional choice of � from the condition

trðSÞ ¼ ðSxx � �Þ þ ðSyy � �Þ þ ðSzz � �Þ ¼ 0: ð9Þ

Here Sxx, Syy, Szz are the diagonal elements of the matrix S

expressed in the basis [L] of the principal libration directions;

these directions are eigenvectors of the matrix L. In

Urzhumtsev et al. (2015) we showed that (9) may result in TLS

matrices that do not correspond to elemental motions, and to

address this issue we suggested a better choice for the t value,

jtrðSÞj ¼ jðSxx � �Þ þ ðSyy � �Þ þ ðSzz � �Þj ! min
�

ð10Þ

under some additional constraints on � that are discussed in

that paper.

As shown in the previous paragraph, excessively large

screw parameters lead to significant discrepancies between

Uensemble,n and UTLS,n. This suggests that a better alternative to

(9) and (10) might be to choose � such that it minimizes the

norm of the screw vector |s|. The new condition is then

jsj2 ¼ s2
x þ s2

y þ s2
z ¼ L�2

xx ðSxx � �Þ
2
þ L�2

yy ðSyy � �Þ
2

þ L�2
zz ðSzz � �Þ

2
! min

�
: ð11Þ

Here, according to equations (5) and (8) in Urzhumtsev et al.

(2015), Sxx� � = sxhdx
2
i and Lxx = hdx

2
i (and similar expressions

for the four other terms) are the diagonal elements of the

matrices S and L given in the basis [L].

In order to test the new approach for adjusting the S matrix,

we used the same models and sets of TLS matrices as

described in x2.3. For each set of matrices, TLSMC or TLSCA,

we extracted elemental motions using (11), generated

Uensemble,n using corresponding models and then computed RU

values using the previously obtained UTLS,n. Table 1 shows that

the updated RU values calculated using (11) to adjust S are

acceptably low not only for the total motion but for each of the

individual components, both for TLSCA and for TLSMC.

Fig. 3(a) shows RU plots as a function of the number of

generated models. The curves are nearly identical for both

models, showing even lower values for RU than the original

curve for the C�-only model.

A more striking result is obtained when applying the new

correction method to a real-life example: PDB entry 4muy

(Span et al., 2014). In all tests TLS groups were used as defined

in the PDB file. The 4muy model is composed of 40 TLS

groups, and we focus on group No. 6 (residues 65–77 in chain

A). The decomposition of the reported TLS matrices into

motion parameters using the approach described previously

(Urzhumtsev et al., 2015) suggests removing � = 10�5 from the

diagonal elements of the S matrix (expressed in Å rad). The

RU corresponding to these matrices is very high at 0.61, indi-

cating a large disagreement between Uensemble,n and UTLS,n

(Figs. 5a and 5b and the dashed curve in Fig. 3b). We suspected

that this disagreement was owing to a very large value of the

screw parameter sx of 303.6 for the screw rotation around the
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Figure 5
The U ellipsoids shown with PyMOL (DeLano, 2002) for the atoms of the
sixth TLS group of the 4muy model. (a) UTLS matrices. (b) Uensemble

matrices calculated with the elemental motions obtained using (10). (c)
Uensemble matrices calculated with the elemental motions obtained using
(11).



axis lx (Table 1). Applying (11) to adjust the S matrix resulted

in � increasing to 42 � 10�5, which in turn reduced sx to 0.1

and also reduced the respective RU from 0.89 to 0.02. Fig. 5(c)

shows the thermal ellipsoids obtained using the screw libration

parameters extracted with (11): clearly, Uensemble,n and UTLS,n

are much more similar (compare with Fig. 5a). Fig. 6 shows the

variation of RU and of |s| as a function of the � value; indeed,

the minimum of RU is observed for � obtained using (11). The

RU for the overall motion decreased to an acceptable value of

0.05, and for the libration alone it decreased from 0.85 to 0.11.

The latter value is still high, possibly because by reducing sx

the procedure increased the magnitudes of sy and sz (from 2.90

to �3.38 and from �3.11 to �5.14, respectively; Tables 1 and

2). This test shows both the advantage of the new approach

(11) compared with (9) and (10) and also its limitations. In this

test using other norms, in particular max{|sx|, |sy|, |sz|}, in (11)

did not improve the result. In general, there is no guarantee

that (11) always results in the best screw parameters and

further improvements may be needed, for example by using a

local search around the � value obtained with (11).

Fig. 3(b) shows RU as a function of the ensemble size for the

4muy model generated using parameters obtained with (10)

and (11). It shows the significant difference between the

results of the two approaches for correcting the S matrix and

also confirms the previous observation that 5000–10 000

models are sufficient.

3. PDB analysis and improvement of the TLS
decomposition

3.1. Model selection and analysis setup

The PDB (as of 14 November 2016) contains 123 954

entries, of which 32 162 contain TLS records. Since each PDB

entry may contain more than one TLS record, a total of

260 353 TLS groups are available in the PDB. For each of

these groups we tried to determine the corresponding

elemental motions. This was performed using phenix.tl-

s_as_xyz as described in Urzhumtsev et al. (2015).

88 697 groups could be interpreted in terms of elemental

motions. In 263 of these cases all three matrices were

composed of zeros. Some further 314 groups were excluded

because the deposited TLS information was corrupted in a

number of different ways (missing TLS group origin, non-

interpretable atomic or TLS records etc.).

The remaining 88 120 TLS sets were subjected to three

independent rounds of decomposition into elemental motions,

each applying corrections to the S matrix using (9), (10) and

(11), respectively. When using (10) and (11) the constraints on

� described in Urzhumtsev et al. (2015) were applied. For each

set of extracted parameter values we analyzed the following

motions.

(i) A combination of three screw rotations and the vibration

component, i.e. the overall motion (5).

(ii) A combination of the screw rotations with no vibration

components (6).
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Table 3
Number of TLS groups with ADP matrices that are reproducible by explicit group motions (RU � 0.05).

PDB content (November 2016): 32 162 entries containing TLS records, 260 353 TLS groups in total. For 263 TLS groups all three matrices were zero and these
groups were excluded from further work. Decomposition of TLS matrices into parameters of elemental motions was performed using (9), (10) and (11). The
‘Extracted groups’ column shows the total number of TLS groups for which parameter extraction was possible and ‘Extracted entries’ shows the number of PDB
entries for which this was possible for all of the groups. ‘Wrong content’ shows the number of groups for which random-model generation was impossible for
technical reasons and ‘Libration undefined’ shows the number of groups for which all libration matrices were zero. Other columns: overall motion (5), overall
libration (6), conditions verified for each of the three librations of the group including their screw components (7) and conditions verified for each of the three pure
librations of the group (8).

Method
Extracted
entries

Extracted
groups

Wrong
content

Overall
motion

Libration
undefined

Overall
libration

Individual
screw

Individual
libration

Equation (9)
Total 4290 88434 314 88120 167 87953 87953 87953
RU � 0.05 45093 23042 6107 87908

Equation (10)
Total 4826 95152 332 94820 167 94653 94653 94653
RU � 0.05 46627 24163 7478 94596

Equation (11)
Total 4826 95150 332 94818 167 94651 94651 94651
RU � 0.05 57463 31395 11238 94590

Figure 6
Variation of the vector norm |s| (11) (maroon) and of the RU value (black)
as a function of the parameter � that is subtracted simultaneously from all
diagonal elements of the S matrix during the decomposition of TLS
matrices into parameters of elemental motions (4muy data; see x2.4).
Small oscillations in RU illustrate its stochastic nature.
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(iii) Each of the three screw rotations individually (7).

(iv) Each of the three pure rotations (8).

For each of these motions we calculated UTLS,n. We then

generated an ensemble of 5000 models using phenix.tls_as_xyz

and we used this ensemble to calculate Uensemble,n. Finally, we

compared Uensemble,n with UTLS,n using RU. Details of this

analysis are given in Table 3 and are commented on below.

3.2. Analysis of the elemental motions using (9)

Table 3 shows the overall statistics and the number of TLS

groups with RU � 0.05. For the overall motion combining all

elemental components together (5), about half of the TLS

groups for which we could extract the motion parameters pass

the test condition RU � 0.05 (this is approximately 17% of the

total number of deposited TLS groups). The same condition

applied when considering libration components only (6)

reduced the number of acceptable groups roughly by half. In

the case of considering librations individually (equations 7 and

8) the criterion RU � 0.05 selects only 2.3% of the TLS groups

(6107 groups).

There are 45 sets where using pure rotations gives RU >

0.05, all of which correspond to large libration amplitudes.

Thus, the main source of the discrepancies between Uensemble,n

and UTLS,n are the screw components.

We checked (Fig. 7a) the distribution of the TLS groups as a

function of RU calculated for the overall motion (5), for the

motion excluding vibrations (6) and separately for the screw

components (7). The first distribution (maroon full rectangles)

has a peak in the interval 0.02–0.05 which corresponds to the

TLS matrices that comply with the underlying study. Never-

theless, for a significant number of sets this value is above 0.05.

Major problems come from screw components, for which

many TLS groups have an RU above 0.10 or even above 0.20

(blue full rectangles).

The largest value of |s| observed across all TLS groups is

greater than 1000 Å. Such a large value means that for a

rotation of 0.01 rad, i.e. approximately 0.6�, the rotated atoms

would move by 10 Å in the direction of the rotation axis, which

is clearly physically unrealistic. Fig. 7(b) shows that there are

many groups with large values of |s|. The larger the screw

parameter |s|, the larger the RU values (Fig. 7c). However,

since a particular screw motion also depends on the libration

amplitude and on the positions of the axes, this does not allow

anharmonic rotations to be discriminated unambiguously

using this value alone (Fig. 7c).

3.3. Analysis of the elemental motions using (10) and (11)

Using the approach in (10) allows motion parameters to be

extracted for 6700 more TLS sets compared with (9). Table 3

and Fig. 7(b) show that the distributions of RU values and the

screw parameters |s| are similar to those using (9).

Figure 7
Distribution of TLS groups in the PDB. (a) Number of TLS groups with RU values in the given intervals; distributions are shown for the total motions
(maroon), for the total motions excluding vibration components (green) and for the individual screw rotations (blue). The histograms are shown when
using (9) (full rectangles) and (11) (open rectangles). (b) Number of screw rotations as a function of the screw parameter |s|; the histograms are shown
when using (9) (blue rectangles), (10) (light blue rectangles) and (11) (open rectangles). RU values are calculated for all independent screw librations (7).
(c) Number of TLS groups with different RU values for the given interval of |s|. The screw parameters were extracted by the procedure using (9); RU

values are calculated as in (b). See x3 for details.



Repeating the same calculations using (11) shows a signif-

icantly greater difference compared with using (10) (Table 3).

Considering all motions together, the number of groups for

which RU � 0.05 increased results in more than 12 000 groups

compared with using (9). Considering only screw librations,

the number of groups satisfying the condition RU � 0.05 is

doubled compared with using (9) (‘Individual screw’ column

in Table 3). Fig. 7(b) shows that the number of rotations with a

large value of the screw parameter |s| is significantly reduced.

The largest value of |s| fell to below 700 Å (which is still overly

large).

Fig. 7(a) shows that using the approach in (11) instead of

that in (9) significantly shifts all three distributions to the left

(compare the open rectangles with the full rectangles in

Fig. 7a), i.e. it improves the similarity between Uensemble,n and

UTLS,n. In particular, RU � 0.10 for the majority of TLS sets

when analyzing only the matrices for the total motion (5).

However, considering vibrations alone, RU > 0.10 for more

than a third of the models even when using the improved

decomposition into elemental motions (11).

4. Discussion

Validation of atomic models is now routine in macromolecular

crystallography and is an integral part of structure submission

to the Protein Data Bank (Read et al., 2011; Gore et al., 2017).

It requires nomenclature compliance and fit to experimental

data. Atomic coordinates are subjected to validation that

includes analysis of stereochemistry and molecular packing.

Atomic displacement parameters (ADPs) are also subjected

to validation. For isotropic ADPs the existing validation

criteria are rather simple: their values must be positive, not

excessively large and not vary too much between neigh-

bouring atoms. For anisotropic ADP values the criteria are

somewhat more complex (Hirshfeld, 1976; Schneider, 1996).

Similarly to atomic coordinates and displacement parameters,

TLS matrices are model parameters and therefore should be

subjected to some form of validation. Depending on the

accepted paradigm (x1.3) the scope of TLS validation may

refer to two questions: (i) how well does the the TLS

approximation explain the experimental data and how well

does it describe the atomic displacement parameters (see, for

example, Merritt, 2011, 2012) and (ii) are the particular

descriptors of the TLS model also consistent with the TLS

formalism in addition to (i). Addressing the first question does

not require analysis of the TLS matrices themselves but only

of the derived ADP values. This includes making sure that the

ADPs are positive definite and vary smoothly between adja-

cent atoms and TLS groups (Winn et al., 2001; Zucker et al.,

2010; Merritt, 2011, 2012). The current work addresses the

second question, which focuses exclusively on the analysis of

TLS matrices and the parameters of group motion that they

encode. Since modern atomic model refinement packages use

an indirect TLS parameterization (x1.3), i.e. they refine the

elements of the TLS matrices and not the parameters of group

motions, it is unsurprising to find that some TLS matrices do

not comply with the assumption of harmonic motion that the

TLS modelling theory is built upon. The number of such cases

may vary based upon the different measures or thresholds that

are used. For example, using the criteria discussed above we

find that only 2.3% of the TLS groups reported in the PDB can

be interpreted in terms of elemental harmonic motions. We

envisage two reasons for this. Firstly, the validation of TLS

refinement results, focusing on TLS matrices and corre-

sponding group motions, has never been enforced. Secondly,

the implementation of TLS refinement in modern refinement

packages does not allow control of the parameters of group

motion by means of restraints or constraints (see a discussion

in Painter & Merritt, 2006) because these parameters are

refined indirectly. Unsurprisingly, such unrestrained refine-

ment provides no guarantee of TLS matrices that are inter-

pretable in terms of harmonic elemental motions.

In this work, we have developed methods and a software

implementation in the PHENIX suite to analyze the results of

TLS refinements. These methods are based on comparison of

individual atomic displacement parameters calculated ana-

lytically from the TLS matrices with ADPs derived numeri-

cally using parameters of elemental motions extracted from

the TLS matrices. We theorise that large differences between

these matrices indicate problematic TLS parameters. In

particular, this may indicate a suboptimal choice of TLS

groups or refinement protocol. We show that a post-refine-

ment correction of the deposited TLS matrices makes it

possible to curate some but not all of the problematic TLS

groups.

The analyses presented in this work rely on the choice of

particular criteria (metrics and thresholds). These criteria may

be optimized further, which is a nontrivial project and may

help to diagnose the problem while still not addressing it. A

possibly better investment of effort would be to improve TLS

refinement protocols so that they operate in terms of

elemental parameters of motions, which has been proposed

previously (Tickle & Moss, 1999). This would make it possible

to control the refinable parameters directly during refinement

and therefore keep them physically realistic without the need

for post-refinement corrections. This is a major undertaking

both mathematically and algorithmically, which may be

considered as a future improvement to the PHENIX refine-

ment software.

The methods and tools discussed in this manuscript have

been implemented and are available in PHENIX 1.12 and

later. Data and scripts that can be used to reproduce the

figures and tables are available at http://phenix-online.org/

phenix_data/afonine/tls2/.
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