
Advances in insulin therapy from discovery to
b-cell replacement

One hundred and one years have passed
since Frederick Banting and Charles
Best1 demonstrated that injections of
extract of pancreas lowered blood glucose
levels in depancreatized dogs (Table 1).
In 1922, Eli Lilly and Company suc-
ceeded in formulating insulin extracted
from porcine pancreas (Figure 1), mak-
ing it possible to save many lives from
the incurable disease of diabetes. How-
ever, insulin at that time contained many
impurities that irritated the injection site,
and required a large volume using a rela-
tively thick needle. The isolation of crys-
talline insulin in 19262,3 corrected these
issues, but the increased purity of the
substance shortened the duration of its
action, resulting in the need for 3–4
injections per day. In 1936, Hagedorn4

found that the addition of protamine iso-
lated from trout sperm to insulin resulted
in microscopic clumping that slowed its
absorption rate, allowing continuous and
prolonged action. Despite these advances,
antibodies against porcine or bovine
insulin posed problems. In 1955, Sanger5

determined the amino acid sequences in
the two chains of the insulin molecule
and their linkage5, enabling chemical
synthesis of human insulin by several
groups independently. However, the syn-
thesizing process involved multiple steps,
and the drug proved prohibitively expen-
sive to market. Alternatively, the produc-
tion of human insulin by enzymatic
replacement of the amino acids in por-
cine or bovine insulin was reported6.
Opening a new path to the production
of an unlimited amount of insulin by
using bacteria and yeast, Graeme Bell

and his associates7 sequenced human
insulin complementary deoxyribonucleic
acid in 1979. Soon after, David Goeddel
and his associates at Genentech Inc. (San
Francisco, CA, USA) succeeded in
expressing human insulin in Escherichia
coli; Genentech and Lilly then agreed to
commercialize recombinant insulin,
which was marketed in 1982 as
Humulin� R (rapid-acting) and N
(intermediate-acting). By genetic and
chemical engineering, insulin prepara-
tions with various characteristics have
been developed, and newer insulin prepa-
rations such as once-weekly basal insulin,
icodec and basal insulin fc are now
under development.
Among these newly developed insulin

preparations, fixed-ratio combination
(FRC) basal insulin together with
glucagon-like peptide-1 receptor agonist
(GLP-1RA) has recently been gaining
attention as a simplified insulin regimen
for people with type 2 diabetes. GLP-
1RAs can be subdivided into two groups:
long-acting (e.g., liraglutide, dulaglutide,
and semaglutide) and short-acting (e.g.,
exenatide and lixisenatide). Long-acting
GLP-1RAs enhance insulin secretion and
suppress glucagon secretion glucose-
dependently, thereby ameliorating both
pre- and postprandial glucose excur-
sions8. Short-acting GLP-1RAs delay gas-
tric emptying, thereby ameliorating
postprandial glucose excursions8. It was
reported that the HbA1c-lowering effect
of long-acting GLP-1RAs is dependent
on the remaining pancreatic b-cells9,10; it
is now clear that both long- and short-
acting GLP-1RAs require some residual
b-cell function to reach target HbA1c
levels10–12. The addition of basal insulin
to GLP-1RA to replenish insulin insuffi-
ciency is therefore a reasonable strategy
for patients with diminished b-cell func-
tion. Basal-supported GLP-1RA therapy
is also attractive as a substitute for

multiple daily insulin injections, and
exerts comparable HbA1c-lowering
effects with reduced hypoglycemia risk
and body weight gain13. In addition,
recent advances in insulin preparations
have enabled the generation of FRC basal
insulin to be used in combination with
GLP-1RA. To date, there are two once
daily FRCs of basal insulin and GLP-
1RA on the market (iGlarLixi and iDe-
gLira); once weekly FRC is under devel-
opment. Accumulating evidence suggests
that iGlarLixi and iDegLira are especially
effective in Asian patients with type 2
diabetes14–16.
Thus, advances in insulin delivery and

glucose monitoring have rendered insulin
therapy remarkably safer and more effec-
tive. Sensor-augmented pumps with a
hybrid closed loop system (e.g., Mini-
MedTM 770G) can effectively increase the
duration of glucose control in the ideal
range and reduce the incidence of both
hyper- and hypoglycemia in patients with
type 1 diabetes17, but they are not used
widely in clinical practice due to their
high cost. Continuous glucose monitor-
ing (CGM), both real-time CGM and
intermittently scanned CGM (isCGM),
permits visualization of glucose fluctua-
tions, allowing a more precise dose titra-
tion of insulin. In Japan, the benefit of
isCGM FreeStyle LibreTM has been
demonstrated in type 2 diabetes patients
receiving basal-supported insulin ther-
apy18; it is now covered by insurance for
type 2 diabetes patients who receive insu-
lin therapy as well as for those with type
1 diabetes. While it is important to scan
adequately to make full use of the
isCGM FreeStlye LibreTM19, its usefulness
is evident, and its dissemination at a rea-
sonable price is a worthy goal in Asia.
Smart insulin pens also represent an ave-
nue to improved insulin therapy today;
the technology has evolved over the past
decade to include features such as smart
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phone connectivity and integration with
mobile health apps and continuous glu-
cose monitors20. Although the benefit of
smart insulin pens needs to be estab-
lished in well-designed clinical trials of
adequate sample size, they emphasize the
relationships between insulin dosage,
dietary intake, and physical activity, and

encourage optimization of insulin use
among people with diabetes.
The next advance in diabetes treat-

ment may well be b-cell replacement
therapy, which could upend insulin ther-
apy in the coming decades. The trans-
plantation of donor human islets can
virtually cure diabetes by eliminating the

need for insulin injections. In vitro differ-
entiation of both human embryonic stem
cells and induced pluripotent stem cells
is being actively pursued as an islet cell
replacement source21,22. It also has been
reported that the pancreatic b-cell mass
can be expanded in vivo and in vitro
by MYCL-mediated reprogramming23.

Table 1 | Historical highlights and Nobel Prizes

1921 Discovery of insulin by Frederick Banting and his assistant Charles Best
1922 First human administration of purified insulin extract for treatment of diabetes
1923 Launch of the world’s first clinical insulin preparation, Iretin

Frederick Banting and John Macleod, Banting’s laboratory director win the Nobel Prize for the discovery of insulin
1936 Hans Christian Hagedorn demonstrates that addition of protamine slows the rapid absorption of purified insulin
1950 Launch of the first clinical intermediate-acting insulin, Neutral Protamine Hagedorn (NPH)
1958 Frederick Sanger wins the Nobel Prize for determining the amino acid sequence of insulin
1964 Dorothy Hodgkin wins the Nobel Prize for the x-ray diffraction method later used to determine the molecular structure of insulin
1977 Rosalyn Yarrow wins the Nobel Prize for developing radio immunoassays to quantify peptide hormones including insulin
1983 Launch of the first recombinant insulin for clinical use, Humulin� R and N
1996 Launch of the first fast-acting insulin analog for clinical use, Humalog�

2000 Launch of the first long-acting insulin analog for clinical use, Lantus�

Purification of insulin from
porcine or bovine pancreas

Increasing β-cells in vivo

Trans-differentiation
from non-β-cells

Proliferation of β-cells

1920s 1980s

Production of recombinant human
insulin in bacteria or yeast

2020s??? Implanting cells secreting insulin
glucose-dependently

In vitro differentiation
from PSCs

Figure 1 | From purified insulin to b-cell replacement therapy. Insulin therapy using insulin purified from porcine or bovine pancreas revolutionized
diabetes therapy in the 1920s. A series of advances including cloning human insulin complementary deoxyribonucleic acid in 1979 enabled the
development of recombinant human insulin with improved features. In 2021, Timothy Kieffer and his associates24 reported that implantation of
pancreatic endoderm from pluripotent stem cells (PSCs) can detect meal-induced C-peptide secretion in people with type 1 diabetes. Thus, insulin
treatment for diabetes may well be upended by b-cell replacement therapy in the coming decades.
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Macro-encapsulation devices for islet cells
are being developed that contain and
protect the cells from immune attack21,22.
Importantly, Timothy Kieffer and his
associates24 have reported that the
implantation of pluripotent stem-cell-
derived pancreatic endoderm can detect
meal-induced C-peptide secretion in
people with type 1 diabetes. Although
numerous barriers must be overcome to
establish b-cell replacement therapy for
diabetes treatment clinically, the virtual
cure of the disease now appears to be a
practicable goal.
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