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Simple Summary: The methanogenesis pathway via methanogens dates back to the Hadean or Ar-
chaean Earth. These methanogens are considered to have a thermophilic origin and are presently ubiq-
uitously distributed across anaerobic environments. The class Methanobacteria comprises methanogens
that are found extensively in geothermal environments, such as hot springs and hydrothermal vents,
and their evolutionary history and how they adapted to different temperatures remain unclear.
In this study, we isolated a novel species of the class Methanobacteria from a natural hot spring in
Tengchong, China. This species can produce methane, utilizing hydrogen and carbon dioxide, at
65 ◦C. In addition, we found that members of the class Methanobacteria originated in a geothermal
niche and then evolved to adapt to ambient temperatures; during this process, thermal adaptation
genes were lost and a wide range of metabolic genes were acquired. This research on methanogen
evolution will help us understand how life originated in geothermal environments and then spread
extensively across present-day Earth.

Abstract: Methanogens can produce methane in anaerobic environments via the methanogenesis
pathway, and are regarded as one of the most ancient life forms on Earth. They are ubiquitously
distributed across distinct ecosystems and are considered to have a thermophilic origin. In this study,
we isolated, pure cultured, and completely sequenced a single methanogen strain DL9LZB001, from
a hot spring at Tengchong in Southwest China. DL9LZB001 is a thermophilic and hydrogenotrophic
methanogen with an optimum growth temperature of 65 ◦C. It is a putative novel species, which
has been named Methanothermobacter tengchongensis—a Class I methanogen belonging to the class
Methanobacteria. Comparative genomic and ancestral analyses indicate that the class Methanobacteria
originated in a hyperthermal environment and then evolved to adapt to ambient temperatures. This
study extends the understanding of methanogens living in geothermal niches, as well as the origin
and evolutionary history of these organisms in ecosystems with different temperatures.

Keywords: methanogenic archaea; enrichment and isolation; comparative genomic; metabolic pathway
reconstruction; thermal adaptation; evolutionary history

1. Introduction

Methanogens are considered one of the most ancient life forms on Earth, with an evolu-
tionary history dating back more than 3.4 billion years [1,2]. The methanogenesis pathway
is considered one of the most ancient metabolic pathways and may even be shared by the
last universal common ancestor (LUCA) [3]. The methanogenesis pathway can be classified
into four major types, based on metabolic substrate utilization, i.e., hydrogenotrophic
(H2/CO2 and formate), methylotrophic (methanol, methylamine, methanethiol), acetoclas-
tic (acetate), and other complex carbon sources such as coal [4,5]. It has been estimated that
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about one billion tons of methane are produced via these methanogenesis pathways and
enter the atmosphere every year, accounting for ~1.6% of annual global carbon fixation [6].
Methane is the second most potent greenhouse gas on Earth and significantly influences
global climate change [7]. Therefore, methanogens are crucial for the stability of Earth’s
ecosystems [6], and increasing attention has recently been focused on methanogens.

Previous studies have shown that the methanogenesis pathway may have existed
in the common ancestor of the Euryarchaeota and TACK superphyla, including Ca. Ver-
straetearchaeota [8], Ca. Bathyarchaeota [9], Ca. Nezhaarchaeota and Thaumarchaeota [10,11],
close to the last common archaea ancestor [12], which has been postulated to be a ther-
mophilic methanogen [8–11,13]. However, none of the TACK methanogens have been pure
cultured, and their actual optimum growth temperatures have not been verified. Pure cul-
tured methanogen strains to date have only been from the phylum Euryarchaeota, and
can be categorized into three major groups: (1) the Class I methanogens, which include
three classes (Methanobacteria, Methanococci, and Methanopyri); (2) Class II methanogens,
referred to as the class Methanomicrobia; (3) Class III methanogens, including the order
Methanomassiliicoccales, Ca. Methanofastidiosales and Ca. Nuwarchaeales [12,14,15]. Most
Class II and III methanogens are found in temperate environments, while many of the
Class I methanogens are thermophilic and can be found in hydrothermal vents or hot
springs [12,14,15]. Within the Euryarchaeota group, the class Methanobacteria—a Class I
methanogen—comprises thermophilic and non-thermophilic members [16–20]; however, the
evolutionary history of this ancient methanogen branch remains elusive.

The isolated strains in the class Methanobacteria have diverse temperature adaptation
ranges and are divided into five genera: Methanothermus, Methanothermobacter, Methanobrevibacter,
Methanosphaera, and Methanobacterium [16–20]. The deep-branching genus Methanothermus can
grow on H2 and CO2, and its optimum growth temperature range is 80–88 ◦C [20,21]. In contrast,
the optimum growth temperature for Methanothermobacter is 55–70 ◦C, with H2 or formate and
CO2 as metabolic substrates [17,22]. However, the genera Methanobrevibacter, Methanosphaera,
and Methanobacterium have optimum growth temperature ranges of 28–40 ◦C [18,23–25]. It
remains unclear whether the class Methanobacteria has a thermophilic origin or how their
descendants adapted to temperate environments. In this study, we isolated and pure cultured
a single Methanobacteria strain DL9LZB001, of the genus Methanothermobacter, from a hot
spring in Tengchong, China. DL9LZB001 is postulated as a novel species and has been
named Methanothermobacter tengchongensis. We sequenced and analyzed its genome to
deepen our understanding of the evolutionary history of the class Methanobacteria.

2. Materials and Methods
2.1. Sampling, Enrichment, Isolation, and Pure Culturing

Our samples were collected from a hot spring in Tengchong, China (98.82350◦ N,
25.04233◦ W) in January 2020. The temperature of the sampling site was 65.7 ◦C, and the
pH was 6.66. Sediments and upper water were collected and stored in anaerobic bottles
with nitrogen as the headspace.

During the primary enrichment, we mixed each set of sediments collected with its cor-
responding upper water sample in an anaerobic tank. We transferred 100 mL of the mixture
into 125 mL sterile anaerobic bottles with butyl rubber stoppers and then amended it with
various substrates, such as methylamine, sodium formate, and methanol. We pressurized
H2 (100%, 10 psi) into these bottles and maintained them at 65 ◦C for approximately one
year. Then, we inoculated the primary enriched product into a modified MB medium [26],
and each group was enriched with the corresponding previously amended substrates. The
modified MB medium contained the following, per liter: 900 mL distilled water, 1.00 g
NH4Cl, 0.30 g K2HPO4·3H2O, 0.30 g KH2PO4, 0.20 g KCl, 0.50 g MgCl2·6H2O, 2.00 g
NaCl, 0.05 g CaCl2, 1.00 mL resazurin solution (0.5 g·L−1), and 1.00 mL trace element solu-
tion [26,27]. After the medium was autoclaved and then cooled, we transferred a 100 mL
mixture solution (containing 1.00 mL vitamin mixture solution [27], 4.00 g bicarbonate, and
0.5 g Na2S·9H2O) into the medium via a 0.22 µm filter in the anaerobic tank. The pH value
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was regulated to ~7. We then inoculated approximately 5 mL of enriched product into a
95 mL modified MB medium in 125 mL bottles in an anaerobic tank, maintained at 65 ◦C
for 30 days before the next round of enrichment.

The strains were isolated using a Hungate rolling tube [28] by adding 2% gellan
gum (w/v), 1.00 g·L−1 yeast extract, 2.00 g·L−1 tryptone, 10 mM methylamine, and 10 mM
sodium formate into the modified MB medium described earlier; H2 (100%, 10 psi) was then
pressurized into the tube. Subsequently, all the colonies—with different colors, sizes, and
shapes—from the middle of the tube were collected and transferred into a 5 mL modified
MB medium with additional methylamine, sodium formate, yeast extract, and tryptone,
in 20 mL bottles filled with H2/CO2 (80%/20%, 10 psi). We repeated this process three
times and used antibiotics for purification, including ampicillin sodium, kanamycin sulfate,
streptomycin sulfate, and vancomycin hydrochloride at the same final concentration of
200 mg·L−1. Finally, we serially cultured the strains in a modified MB medium with H2,
CO2, and bicarbonate as the only energy and carbon sources. The cell concentrations were
monitored spectrophotometrically at an optical density of 600 nm (OD600), with 1 mL
double distilled water as the blank. The pH range for growth in the modified MB medium
was determined to be 4.0–10.0, by using different pH buffers: (1) 0.1 M citrate and 0.1 M
sodium citrate for pH 4 and pH 5; (2) 0.2 M Na2HPO4 and 0.2 M NaH2PO4 for pH 6, pH 7,
and pH 8; (3) 0.1 M NaHCO3 and 0.1 M Na2CO3 for pH 9 and pH 10 [29]. The salinity
range for cell growth was determined at NaCl concentrations of 2, 10, 20, 30, and 40 g·L−1,
at 0.2%, 1%, 2%, 3%, and 4% (w/v), respectively.

2.2. Headspace Gas Analysis

The methanogenesis of the enrichments and cultures was monitored using a gas
chromatograph (GC, Agilent, California, USA) and a flame ionization detector (FID). The
injection temperature, column temperature, and FID temperature were 60 ◦C, 80 ◦C, and
300 ◦C, respectively. Before monitoring the samples, we tested pure methane (99.9%) at
concentrations of 0%, 20%, 40%, 60%, 80%, and 100% to establish a standard curve between
various concentrations of methane and the peak areas of the GC results. Subsequently, the
methane concentrations in the headspace of the samples were calculated using the results
for the corresponding peak area.

2.3. Microscopy Observation

The coenzyme F420 contains a fluorescent component [30], and the oxidation states
of the coenzyme F420 can absorb 420 nm ultraviolet light and excite 470 nm blue-green
fluorescence [30]. Isolated cells from pure cultures were observed under a fluorescence
microscope (BX63 Olympus, Tokyo, Japan) with 405 nm ultraviolet light as the light source.
For observation under electron microscopes, we centrifuged the cell suspension at 6000× g
for one minute and washed it three times with 0.5 mL sterile water. We then fixed the cells
on a silicon pellet illuminated by a white light source and observed them under a scanning
electron microscope (VEGA 3, TESCAN, Brno-Kohoutovice, Czech Republic). Alternatively,
the cells were fixed on copper grids and observed under a transmission electron microscope
(Tecnai G2, Thermo Fisher Scientific, Waltham, MA, USA).

2.4. ToF-SIMS Analysis

Cell morphology and composition were imaged using time-of-flight secondary ion
mass spectrometry (ToF-SIMS) analysis. ToF-SIMS can directly distinguish between dif-
ferent cell-surface components because of its high mass resolution and spatial resolution.
For this study, we used ION-ToF ToF-SIMS 5 at the Shanghai Jiao Tong University Instru-
ment Analysis Centre, and the pressure of the analysis chamber was maintained below
1.1 × 10−9 mbar. The fast imaging mode with a pulsed 30 keV Bi3+ (0.16~0.18 pA pulsed
current) ion beam was applied for high lateral resolution mapping (<100 nm) analysis,
which showed the 2D or 3D distribution of elements and molecules in cells; the typical
analysis area was 50 × 50 µm2, the lateral resolution as low as 60 nm, and the sensitivity
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as high as ppm–ppb. Through spectrometry analysis, the specific peaks of target cells,
i.e., C2SO2

+, PO3
−, and PO2

−, were identified. The distribution of C2SO2
+, PO3

−, and
PO2

− acquired by the SIMS mapping method only instructed the distribution of target
cells, and even some non-target cells existing in samples, as cells’ chemical composition
could be differentiated at the same position. Therefore, ToF-SIMS analysis can be seen as a
combination between electron microscopy and mass spectrum analysis, and is presented as
a supplementary certification of the TEM/SEM results.

2.5. DNA Extraction, Sequencing, and Analysis

DNA was extracted from the pure culture using a Bacterial Genome DNA Rapid
Extraction Kit (Huiling Biotechnology Co., Ltd., Shanghai, China), following the manufac-
turer’s instructions. The exact concentration of the DNA was measured using a Qubit 4
Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), and DNA purity and integrity
were detected via agarose gel electrophoresis. Genome sequencing was completed using
PacBio sequencing technology and Illumina PE150 sequencing for high-accuracy assem-
bly. The genome was assembled using SMRT Link software (version 5.0.1) [31], and the
protein-coding genes were predicted using GeneMarkS software (Version 4.17) [32]. The
tRNA was predicted by the software tRNAscan-SE (version 1.3.1) [33], the rRNA genes
were predicted using RNAmmer software (version 1.2) [34], and small RNA was identified
against the Rfam database [35] using CMsearch (version 1.1rc4) [36]. The genomic island
was predicted using IslandPath-DIOMB (version 0.2) [37], and the CRISPR (clustered regu-
larly interspaced short palindromic repeat) sequences were predicted using CRISPRdigger
software (version 1.0) [38]. A display of the entire genomic map was generated using Circos
(version 0.69) [39], along with the prediction results of the protein-coding genes.

2.6. Phylogenetic Analyses

The genome of our isolated strain and 233 reference genomes of representative archaea
from the four superphyla, i.e., Euryarchaeota, TACK, Asgard, and DPANN, were em-
ployed to construct a phylogenomic tree based on the concatenated alignment of 37 marker
genes [10,40]. The 233 reference genomes were downloaded from the NCBI prokaryote
genome database [10]. Each of the 37 marker protein sequences translated from refer-
ence genomes was aligned using the rapid multiple sequence alignment program MAFFT
(version 7.313), filtered using trimAI software (version 1.4. rev2) [10,41,42], and then con-
catenated into a single alignment. The phylogenetic tree was then constructed using IQ-Tree
software (version 1.6.6) [43], with the model LG + C60 + F + G and a bootstrap value of
1000 [10]. We also downloaded from the NCBI database the completely sequenced genomes
of all the isolated strains from the classes Thermococci, Methanobacteria, Methanococci, and
Methanopyri, and collected in situ environmental and pure culture information on these
genomes. A phylogenetic tree for evolutionary analysis was constructed using only the
completely sequenced genomes of Class I methanogens, employing the same method.

2.7. Comparative Genomic and Ancestral Analyses

The amino acid identities (AAI) of the isolated strains of the classes Thermococci,
Methanobacteria, Methanococci, and Methanopyri were calculated using the CompareM
(version 0.0.23, https://github.com/dparks1134/CompareM (accessed on 12 May 2022))
software toolkit, and the average nucleotide identities (ANI) were calculated using fas-
tANI software (version 1.33) [44]. The protein sequences of all the completely sequenced
genomes were predicted using Prodigal gene prediction software (version 2.6.3) [45]. We
then identified all the clusters of orthologous groups (COG) of these strains using Or-
thofinder software (version 2.5.4) [46], and annotated these COG using BlastKOALA
(https://www.kegg.jp/blastkoala/ (accessed on 24 June 2022)). Combined with the phylo-
genetic tree of the isolated strains, the gene sets of the ancestor nodes were predicted using
a posterior probability algorithm in Count software (version 9.1106 RC1) [47]. Finally, by
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comparing the gene sets of different ancestor nodes, we identified the lost and the gained
gene sets of each predicted ancestor node.

3. Results and Discussion
3.1. Enrichment and Isolation of a Thermophilic Methanogen from a Hot Spring

The sediment and upper water samples were collected from a hot spring in Tengchong,
China in January 2020 (Figure 1A). This hot spring (pH: 6.66, temperature: 65.7 ◦C) is a
natural environment with abundant vegetation (Figure 1B). Initial enrichment was made
using the collected sediment and corresponding upper water sample combined with
potential methanogenesis substrates (for details, see Section 2.1) for approximately one year
(Figure 1C). A modified MB medium was used in the subsequent enrichments to gradually
remove the sediments from the medium (Figure 1C) [26]. To eliminate bacteria from the
enrichments, cultures with H2/CO2 as the headspace gas and bicarbonate as the only
carbon source in a liquid medium were established using four different kinds of antibiotics,
and rapid methane production was detected. After this round of enrichment, the Hungate
rolling tube technique was performed, and one strain of methanogens from this enrichment
was successfully isolated; the colony was white, approximately 1–2 mm in diameter, and
convex (Figure 1D). After another two rounds of colony isolation via the Hungate rolling
tube, and several instances of continuous culture, the strain was purified by checking
the cell morphology under an optical microscope and an electron microscope. During
continuous culture, the only carbon sources in the medium were CO2 and bicarbonate,
without any organics, indicating that the strain DL9LZB001 is autotrophic archaea.
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Figure 1. Sampling, enrichment, and isolation of methanogens from hot spring sediments. (A) Tengchong
is located in the Yunnan province in Southwest China. (B) The sampling site was a natural hot spring
and the sediments were brownish. (C,D) We enriched methanogens with methanogenesis substrates, and
isolated methanogens using Hungate rolling tubes.

3.2. Morphology and Physiological Characteristics of Strain DL9LZB001

Strain DL9LZB001 was directly observed under a fluorescence microscope (for de-
tails, see Section 2.3 and Figure 2A). The DL9LZB001 cells were straight slender rods
2.80–6.43 µm in length (average length = 4.72 ± 1.01 µm, n = 9), with an average diameter
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of 0.436 ± 0.052 µm (n = 9). The cells often occurred in pairs, similar to Methanothermobacter
marburgensis Marburg (Figure 2A–C). M. marburgensis Marburg is a pure-cultured strain
isolated from the sewage sludge of an artificial digestor (Table 1) and has the closest ANI
match to strain DL9LZB001 [48]. We did not observe a flagellum (Figure 2B–D), indicating
that the strain DL9LZB001 is nonmotile, similar to most strains in the genus Methanoth-
ermobacter [17]. We performed ToF-SIMS analysis and 3D surface reconstruction. C2SO+,
PO2

−, and CN− fragments (Figure 2E–G) were employed to represent the cell components.
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Figure 2. Cells of Methanothermobacter tengchongensis DL9LZB001 under a microscope and in
ToF-SIMS images. (A) Under a fluorescence microscope with 405 nm ultraviolet light as the light
source. (B,C) Under a scanning electron microscope. The length of DL9LZB001 in these images
is 5.26 µm, and the diameter is approximately 0.4 µm. (D) DL9LZB001 cells under a transmission
electron microscope. (E–G) ToF-SIMS ion images of dried cultured cell aggregates showing their
morphology and components. The lighter parts in the pictures are signals of (E) C2SO2

+, (F) a
combination of PO3

−, PO2
−, and PO−, and (G) CN−. The darker parts are sections without signal

(without cells). The scale bar on the right displays the strength of the signal.
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Table 1. Descriptive and catabolic features of M. tengchongensis DL9LZB001 compared with other members of the genus Methanothermobacter.

Characteristics 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 *

Origin Gas field Sewage sludge Anaerobic sludge Anaerobic sludge Anaerobic sludge Sewage sludge and
river sediment Sewage sludge digester Hot spring upper

water and sediment
Cell size

(diameter × length,
µm × µm)

0.5 × 3.5–10.5 0.35–0.6 × 3–7 0.40 × 7–20 0.36 × 1.4–6.5 0.42 × 3–6 0.35–0.5 × 2.5 0.3–0.4 × 3–3.5 0.436 × 2.80–6.43

Filaments – + + + – + + +
Gram stain results + + + – + + + +

Optimum temperature (◦C) 70 65–70 55 57 60–65 55–65 65 60–65
pH range for growth 5.8–8.7 6.0–8.8 7.5–8.5 7.0–8.5 6.0–7.5 6.0–8.2 5.0–8.0 6.0–8.0

Max NaCl concentration for
growth (w/v, %) 2 n. d. 3 3 2 1 3.5 1

Growth with formate – – + – + + – +
Autotrophic – + + + + + + +

Dependent growth factors:
Acetate – – – n. d. – – – –

Yeast extract + – – n. d. – – – –
Coenzyme M n. d. – + + – n. d. – –

Peptone + – – n. d. – n. d. – –

* Strains/species: 1 → M. tenebrarum RMAS [22], 2 → M. thermautotrophicus DeltaH [48,49], 3 → M. thermoflexus IDZ [50], 4 → M. thermophilus M [17], 5 → M. defluvii ADZ [50],
6→M. wolfeii DSM 2970 [51], 7→M. marburgensis Marburg [48], 8→M. tengchongensis DL9LZB001 (this study). n.d. indicates that there were no related tests. For the symbols see the
standard definitions.
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The temperature range for growth was tested by measuring the turbidity (OD600) of
the pure cultures at temperatures of 40, 50, 60, 65, 70, and 80 ◦C (Figure 3, n = 3). No growth
was observed at 40 ◦C or 80 ◦C. The culture maintained at 65 ◦C grew better than those at
50, 60, and 70 ◦C during the exponential growth phase. Therefore, the optimum growth
temperature for M. tengchongensis DL9LZB001 is approximately 65 ◦C, close to that of M.
marburgensis Marburg (Table 1) and the environmental temperature of the sample location.
The pH and salinity (NaCl%, w/v) ranges for growth at 65 ◦C for the strain DL9LZB001
are pH 6–8 and ≤1%, respectively (Table 1, n = 3); both values are less than those for M.
marburgensis Marburg (Table 1).
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3.3. General Genome Characteristics of the Strain DL9LZB001

Sequencing of the strain DL9LZB001 genome on the PacBio platforms generated
108,026 reads, accounting for 1,072,592,174 bases of the total sequence information. The
final assembly and correction using Illumina PE150 produced a closed circular chromo-
some of DL9LZB001 with a size of 1,674,288 bases and a GC content of 48.39% (Figure 4).
Gene prediction using GeneMarkS revealed 1802 protein-coding genes, accounting for
1,522,086 bases (90.91% of the chromosome size), and the number of tRNA genes was
found to be 36 (Table 2). Using IslandPath-DIOMB we identified six genomic islands in the
chromosome, accounting for 69,449 bases (4.15% of the chromosome size). No predicted
prophage gene was identified in the chromosome; however, four CRISPR sequences were
predicted by the CRISPRdigger software (Figure 4).
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of the genome sequence. From the outside to the inside: coding genes, gene function annotation
results, ncRNA, genome GC contents, and genome GC skew values. We calculated the GC contents
and GC skew values based on window bp (chromosome length/1000) and step bp (chromosome
length/1000). The red inward part indicates that the GC content in that area is lower than the average
of the entire genome, while the green outward part shows higher GC content. The heights of the
peaks indicate the difference in value between the GC content of that area and the average GC content.
The algorithm of the skew value is (G – C)/(G + C), and the pink inward part indicates that the
content of G in that area is lower than that of C, while for the light green outward part the reverse
applies. The heights of the peaks indicate the value difference.

Table 2. General genome features of M. tengchongensis DL9LZB001.

General Features M. tengchongensis DL9LZB001

Size (bp) 1,674,288
GC content (%) 48.39

Protein coding genes 1802
Genomic islands 6

CRISPR 1 sequences 4
Genes assigned to COG 2 categories 1487

tRNA 36
5S rRNA 3

16S rRNA 2
23S rRNA 2

sRNA 0
1 CRISPR: Clustered regularly interspaced short palindromic repeat. 2 COG: Clusters of orthologous group.

To determine the phylogenetic position of the strain DL9LZB001, a phylogenetic
tree was constructed based on 37 marker protein sequences with 233 representative
archaea genomes from four superphyla: DPANN, Asgard, TACK, and Euryarchaeota
(Supplementary Table S2) [10]. The constructed phylogenetic tree is rooted in the su-
perphylum DPANN and displays only the phylogeny of the Class I methanogens.
Among the Class I methanogens, the class Methanobacteria is clustered with the classes
Methanopyri and Methanococci of the phylum Euryarchaeota (Figure 5). The strain
DL9LZB001 is clustered with M. marburgensis Marburg and M. thermautotrophicus DeltaH
within the genus Methanothermobacter (Figure 5). Genome comparison results indicate
that the strain most closely related to DL9LZB001 is M. marburgensis Marburg; the ANI
between M. marburgensis Marburg and strain DL9LZB001 is 94.13% with an AAI of 94.87%
(Supplementary Tables S4 and S5), indicating that the strain DL9LZB001 may represent a
novel species, named Methanothermobacter tengchongensis DL9LZB001.

The metabolic pathways of the strain DL9LZB001 were constructed based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Figure 6). DL9LZB001 uses CO2 or
bicarbonate as the electron acceptor and H2 as the electron donor for the hydrogenotrophic
methanogenesis pathway, which comprises seven independent enzymic reaction steps
(Figure 6). Briefly, the CO2 is first reduced to formyl-methanofuran (formyl-MFR) by
formylmethanofuran dehydrogenase (Fwd). The formyl group is then transferred to
tetrahydromethanopterin (H4MPT). The formyl-H4MPT is dehydrated to methenyl-H4MPT,
reduced to methylene-H4MPT, then reduced to methyl-H4MPT (Figure 6). Then, the methyl
group is transferred to the coenzyme M (HS-CoM) by methyl-H4MPT methyltransferase
(Mtr), a sodium ion transporter. The final and rate-limiting step of the methanogenesis
pathway is the reduction of the methyl coenzyme M (methyl-S-CoM) by methyl-coenzyme
M reductase (Mcr), with the coenzyme B (HS-CoB) as the electron donor. For recycling
HS-CoM and HS-CoB, coenzyme M and coenzyme B heterodisulfide (CoM-S-S-CoB) are
reduced by the heterodisulfide reductase (Hdr). During this process, three coenzyme F420
(reduced) molecules and one H2 molecule or four coenzyme F420 (reduced) molecules are
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consumed in total to generate one methane molecule (Figure 6). The reduction of coenzyme
F420 (oxidized) is catalyzed by methyl-viologen-reducing hydrogenase (Mvh), with H2 as
the electron donor. Therefore, four H2 molecules are consumed to generate one methane
molecule. DL9LZB001 also contains formate dehydrogenase (Fdh), which can catalyze
four formate molecules to four CO2 molecules and produce four coenzyme F420 (reduced)
molecules for the subsequent generation of one methane molecule.
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Figure 5. Phylogenomic affiliation of M. tengchongensis DL9LZB001. We constructed the phyloge-
nomic tree based on 37 marker-protein sequences, with 233 representative archaea genomes from
four superphyla: (from top to bottom) DPANN, Asgard, TACK, and Euryarchaeota [10]. The tree is
rooted in the superphylum DPANN. The position of the genus Methanothermobacter is labeled with a
black arrow, and DL9LZB001 is highlighted in red. Bootstrap values larger than 80 are marked as
squares on the tree branch.

Our annotation results indicate that DL9LZB001 may also use acetate for methanogen-
esis (Figure 6). The first step is acetate activation by acetyl-CoA synthetase (Acs) with ATP
as the energy donor. The acetyl-CoA is then cleaved into methyl and carbonyl groups by
acetyl-CoA decarbonylase (Cdh). However, we failed to detect methane production via
pure culturing under 100% N2 of DL9LZB001 with 10 mM acetate and 5 g·L−1 bicarbonate
as the only carbon source (65 ◦C, pH7, 0.2% NaCl). The known acetoclastic methanogens
primarily belong to the order Methanosarcinales and the genus Methanothrix [52,53]; however,
no acetate-utilizing ability has been reported in the genus Methanothermobacter. Therefore,
the actual functions of Acs and Cdh require further research. The strain DL9LZB001 uses
an incomplete tricarboxylic acid cycle for carbon fixation and may have the potential to
transform nitrogen to ammonia (Figure 6). No intact sulfur pathway was discovered in this
strain. We found only that it may have the potential to oxidize thiosulfate to sulfite using
the enzyme thiosulfate sulfurtransferase, or to sulfate using S-sulfosulfanyl-L-cysteine
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sulfohydrolase. It also includes several ABC-type transporters for the uptake of tungstate,
phosphate, zinc, cobalt, and nickel, with ATP as the energy driver (Figure 6).
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3.4. The Evolutionary History of the Class Methanobacteria

For evolutionary analyses, we collected from the GTDB database all completely se-
quenced genomes of the isolated strains from the classes Thermococci, Methanobacteria,
Methanococci, and Methanopyri (https://gtdb.ecogenomic.org/ (accessed on 26 February
2022), Supplementary Table S1), including the strain DL9LZB001. A phylogenetic tree was
constructed, rooted in the class Thermococci (Figure 7). We also added to the phylogenetic
tree the environmental information corresponding to each isolated strain (Figure 7). Most
of the published pure cultured and completely sequenced strains of the genus Methan-
othermobacter were isolated from artificial environments (Figure 7), whereas DL9LZB001
was isolated from a natural hot spring (Figure 1). Adding this newly isolated strain from
a natural environment to construct the evolutionary history of the class Methanobacteria
may increase the habitat diversity on the ancestral node of the genus Methanothermobacter.
All the COG of these genomes were identified using the Orthofinder software and were
subsequently annotated. The gene sets of ancestor nodes were predicted by a posterior
probability algorithm in the Count software, and the gene set of the common ancestor of
the class Methanobacteria was constructed.

Based on the KEGG annotation, the common ancestor of the class Methanobacteria
possesses hydrogenotrophic pathways, and it can use formate for methanogenesis
(Supplementary Table S3). However, none of the known nitrogen and sulfur metabolic
pathways are complete, indicating that it may have alternative pathways for nitrogen
and sulfur assimilation. The Methanobacteria ancestor also codes for most subunits of
phosphate, tungstate, molybdate, zinc, cobalt, nickel, and biotin ABC-type transporters.
Previous phylogenomic analysis suggests that the Class I methanogens including the class
Methanobacteria may have originated before the Great Oxygenation Event (GOE), which is
consistent with their strictly anaerobic features [54]. There have also been studies focused
on the evolution of the genus Methanosphaera within the class Methanobacteria that confirm

https://gtdb.ecogenomic.org/
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its monophyletic origin [55]. Nonetheless, to our knowledge, no research has systemically
focused on the evolutionary history of the class Methanobacteria.
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and Methanobacteria. We rooted the tree in the class Thermococci1 and labeled the optimum growth
temperature ranges with corresponding colors as the genus within the class Methanobacteria. The
number of present genes (P), gained genes (G), and lost genes (L) on the speculated common ancestor
nodes were also labeled. The genus Methanothermus (83 ◦C) is the deepest clade, followed by the
genus Methanothermobacter (55–70 ◦C). Other clades are the genera Methanobrevibacter (30–40 ◦C),
Methanosphaera (37 ◦C), and Methanobacterium (28–37 ◦C). We also labeled the in situ environments of
strains with different geometries. The star denotes that the strains were isolated from natural aquatic
environments, including hot springs or groundwater. The rectangle denotes that the strains were
isolated from natural terrestrial environments, including permafrost, peat soil, and wet wood. The
ellipse indicates that the strains were isolated from artificial bioreactions, including digesters and
fermenters. The plus sign indicates that the strains were isolated from co-culture systems. The regular
triangle indicates that the strains were isolated from gastrointestinal tracts of animals including
mammals and termites. The del operator indicates that the strains were isolated from animal feces
including those from mammals and geese.

Based on the phylogenetic results and environmental information, we found a clear
trend indicating that the optimum growth temperatures for different genera decreased
gradually during the evolution of the class Methanobacteria. At the deep-branching position
of the class Methanobacteria, the first diverging clade was the genus Methanothermus (83 ◦C),
followed by the genus Methanothermobacter (55–70 ◦C), with other members of the class
being the mesophilic genera (28–40 ◦C) including Methanobrevibacter, Methanosphaera, and
Methanobacterium (Figure 7). Therefore, we hypothesize that the loss of genes related to
thermal adaptation by the ancestor nodes led to mesophilic adaptation.

Compared with the deep-branching genus Methanothermus, other nodes lost genes
related to the reverse gyrase gene (rgy) (Supplementary Table S3). By consuming ATP,
Rgy can modify the topological state of DNA by introducing positive supercoils, which
are very important for the hyperthermal adaptation of DNA and may also be involved in
unwinding DNA strands under a positive supercoil state to allow subsequent transcription
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or replication [56]. We propose that the loss of rgy might be one of the factors that altered
the living conditions of the common ancestor of the genus Methanothermobacter and other
mesophilic methanogens, resulting in a shift in their temperature adaptation ability from
hyperthermal (83 ◦C) to thermal or ambient adaptation (28–70 ◦C). By comparing the
common ancestor of the thermal methanogens (50–70 ◦C) and mesophilic methanogens
(28–40 ◦C), we found that the latter lost the genes coding for enzymes that may be related
to thermal adaptation—such as the integral membrane protein that may help to stabilize
the membrane under thermal conditions, and the enzyme that repairs DNA, prevents
DNA lesions, or facilitates DNA transcription (Supplementary Table S3)—which may have
helped the methanogens to adapt to thermal environments.

The three mesophilic genera Methanobrevibacter (30–40 ◦C), Methanosphaera (37 ◦C),
and Methanobacterium (28–37 ◦C) cluster together and share a mesophilic common ancestor
(Figure 7). However, the methanogenesis pathway of the genus Methanosphaera, which
gains energy by reducing methanol to methane only when H2 is the electron donor, is the
most specific in the entire class Methanobacteria. Our results show that the common ancestor
of the genus Methanosphaera lost genes coding for the complex that catalyzes the reversible
cleavage of acetyl-CoA and enzymes related to the hydrogenotrophic methanogenesis
pathway, i.e., the sulfur-carrier protein required for the activity of Fdh, the subunit E of the
Fwd, coenzyme F420-dependent NADP oxidoreductase, and even part of the Mtr complex
related to energy conservation (Figure 6, Supplementary Table S3). However, it gained
genes encoding for enzymes, such as methanol cobalamin methyltransferase, corrinoid
iron-sulfur protein (which transfers methyl in the Wood-Ljungdahl pathway), and the
subunit A of methanol-coenzyme M methyltransferase (MtaA). Mta catalyzes methyl group
transfers from methanol to coenzyme M to form methyl coenzyme M [55]. We propose
that gaining these genes occasioned the transformation of the genus Methanosphaera from
hydrogenotrophic metabolism to hydrogen-dependent methanol metabolism.

Interestingly, strains of the genera Methanosphaera and Methanobrevibacter were all
isolated from the gastrointestinal systems of mammals or termites or the feces of mam-
mals or geese, except for Methanobrevibacter arboriphilus DH1, which was isolated from
wet wood, and Methanobrevibacter smithii ATCC35061 from a primary sewage digester
(Figure 7) [18,20,57]. However, all the strains of the genus Methanobacterium were iso-
lated from natural systems (Figure 7) [19]. Compared with the genus Methanobacterium,
which inhabits natural environments, the common ancestor of the host-associated
genus Methanobrevibacter did not experience considerable gene gain or loss (Figure 7,
Supplementary Table S3). The potential reason for this may be that both genera continue
to depend on H2/CO2 utilization as the anaerobic intestine environments of the host may
be similar to ancient natural anaerobic environments. However, the common ancestor of
another host-associated genus, Methanosphaera, experienced significant gene gain and gene
loss, and obtained energy from the hydrogen-dependent reduction of methanol to methane
(Supplementary Table S3). Previous research indicates that the methanol concentration
in gastrointestinal systems (10 µM in cockroaches, 23–72 µM in the rumen, and 70 µM
in humans) is higher than in natural environments where methanol is generally around
or below the micromolar level [58–61]. Therefore, this specific selection force may have
driven the ancestor of the genus Methanosphaera to become better adapted to methanol-
rich gastrointestinal systems. Therefore, the host-adapted genera Methanobrevibacter and
Methanosphaera may have evolved independently to utilize different substrates in intestinal
systems. It should be fascinating to study what produced this massive difference between
these two closely related genera, which inhabit similar environments.

4. Conclusions

Methanogens are one of the most ancient life forms on Earth and have immensely
impacted the global climate since their origin. They exist in an extensive range of all
kinds of anaerobic ecosystems and are considered to have originated in geothermal en-
vironments. In this study, we isolated and pure cultured one methanogen, temporarily
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named Methanothermobacter tengchongensis DL9LZB001, from a hot spring at Tengchong
and completely sequenced its genome. DL9LZB001 utilizes H2 and CO2 for methano-
genesis, with an optimum growth temperature of 65 ◦C. Genome analysis demonstrates
that it has a complete hydrogenotrophic methanogenesis pathway and a potential acetate
metabolic pathway. Phylogenetic analysis indicates that the strain DL9LZB001 belongs to
the class Methanobacteria of the Class I methanogens, and its closest relative is the strain
M. marburgensis Marburg. Comparative genomic and ancestral analysis of isolated strains
among the Class I methanogens indicates that the class Methanobacteria had a hyperther-
mal origin, from which it gradually evolved to be thermophilic and then finally to be
mesophilic. The evolutionary history of the class Methanobacteria is an odyssey of leaving
high-temperature niches, which have the greatest potential to be cradles of life. These
ancient strains gradually lost their thermal adaptation and came to occupy niches with
different temperatures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology11101514/s1, Table S1: environmental information of
isolated strains within the class Methanobacteria; Table S2: information of 37 marker-protein sequences;
Table S3: common ancestor gene annotations within the class Methanobacteria; Table S4: AAI from
strain DL9LZB001 to the isolated strains within the class Methanobacteria; Table S5: ANI from strain
DL9LZB001 to the isolated strains within the class Methanobacteria.
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