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Abstract

Poor intra-facility maternity care is a major contributor to maternal mortality in low- and mid-

dle-income countries. Close to 830 women die each day due to preventable maternal com-

plications, partly due to the increasing number of women giving birth in health facilities that

are not adequately resourced to manage growing patient populations. Barriers to adequate

care during the ‘last mile’ of healthcare delivery are attributable to deficiencies at multiple

levels: education, staff, medication, facilities, and delays in receiving care. Moreover, the

scope and multi-scale interdependence of these factors make individual contributions of

each challenging to analyze, particularly in settings where basic data registration is often

lacking. To address this need, we have designed and implemented a novel systems-level

and dynamic mathematical model that simulates the impact of hospital resource allocations

on maternal mortality rates at Mnazi Mmoja Hospital (MMH), a referral hospital in Zanzibar,

Tanzania. The purpose of this model is to provide a rigorous and flexible tool that enables

hospital administrators and public health officials to quantitatively analyze the impact of

resource constraints on patient outcomes within the maternity ward, and prioritize key areas

for further human or capital investment. Currently, no such tool exists to assist administra-

tors and policy makers with effective resource allocation and planning. This paper describes

the structure and construct of the model, provides validation of the assumptions made with

anonymized patient data and discusses the predictive capacity of our model. Application of

the model to specific resource allocations, maternal treatment plans, and hospital loads at

MMH indicates through quantitative results that medicine stocking schedules and staff allo-

cations are key areas that can be addressed to reduce mortality by up to 5-fold. With data-

driven evidence provided by the model, hospital staff, administration, and the local ministries

of health can enact policy changes and implement targeted interventions to improve
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maternal health outcomes at MMH. While our model is able to determine specific gaps in

resources and health care delivery specifically at MMH, the model should be viewed as an

additional tool that may be used by other facilities seeking to analyze and improve maternal

health outcomes in resource constrained environments.

Introduction

Every day, close to 830 women die of preventable maternal complications. Nearly all of these

maternal deaths occur in developing countries, the majority of which occur specifically in sub-

Saharan Africa [1–3]. One in 16 women in these regions die in pregnancy or childbirth as a

result of these complications– 175 times the maternal mortality risk of high income countries

[4]. Poor intra-facility maternity care is becoming a major contributor to overall maternal

mortality as an increasing number of women are persuaded to give birth at health facilities [5].

Barriers to adequate care during the ‘last mile’ of healthcare delivery are the result of deficien-

cies at multiple levels: education, staff, medication, facilities, and delays in receiving care. The

contribution of each of these factors is difficult to analyze in settings where even basic data reg-

istration is lacking [6]. It is, however, crucial to understand how each factor contributes to a

facility’s maternal health outcomes, as “more of everything” is not a viable strategy with limited

financial resource availability,.

To assess the burden of poor maternal health, the WHO has created the Maternal Severity

Index (MSI), which indicates the probability of death amongst all severe maternal outcomes,

and the Workforce Indicators of Staffing Need (WISN), which calculates the number of new

health workers needed to meet the demand [7, 8]. Both the MSI and WISN have been utilized

in previous studies to measure the relationship of in-hospital maternal health complications

and human resources to maternal mortality [7, 9]. In addition to human resources, delays in

receiving monitoring and treatment for complications in pregnancy can lead to adverse mater-

nal health outcomes [10, 11]. Studies have explored different delay models to identify causes of

critical delays in delivery that result in adverse maternal health outcomes [12–15]. However,

current research has not clearly identified possible solutions at the facility level to address

these institutional delays. While preventable maternal mortality is linked to the availability of

resources at maternal health facilities, the relationship has not been quantitatively examined

[10]. To address this gap, we have developed a dynamic computational simulation of a mater-

nity ward that can be used as a tool to quantitatively understand how preventable maternal

mortality is linked to resource availability. This model can serve as a robust decision aid for

hospital administrators and policymakers seeking to improve maternal mortality at the facil-

ity-level within a constrained set of resources. It incorporates key parameters of the health care

facility such as medications, supplies, staff and physical infrastructure to understand how they

may be optimized to minimize maternal mortality.

To demonstrate its utility for a real maternal health facility, we have developed the model to

reflect the structure and processes of the maternity ward at Mnazi Mmoja Hospital (MMH) in

Zanzibar. MMH is the only public referral hospital in Zanzibar, a semi-autonomous archipel-

ago of Tanzania. It receives referrals from other health centers to treat high-risk patients, but

many patients without complications also self-refer to the hospital. As such, it serves a large

portion of Zanzibar’s entire 1.3 million people population. The maternity ward in MMH is

burdened with approximately 12,000 deliveries per year and limited numbers of skilled health

workers and supplies [16]. Previous studies have found the maternal mortality ratio at MMH
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to be 457 deaths per 100,000 live births—over twice the global mortality ratio of 216 deaths per

100,000 [16, 17]. While there is an understanding that delays in treatment are often due to lack

of trained staff, there are no systems in place to account for the number of staff on shift,

depleted medical supplies, and inconsistent documentation of patient records [16]. Therefore,

it is difficult to predict how changing each of these factors in isolation or in tandem could

impact maternal health outcomes.

Our mathematical model incorporates these factors to analyze resource use and maternal

mortality for a population reflecting that found at MMH. The purpose of this model is to pro-

vide a tool that enables hospital administrators and public health officials to generate quantita-

tive data on how patient outcomes are impacted by resource allocation and availability within

the maternity ward to help them optimize resource use. This model will be able to determine

specific gaps in resources and health care delivery, and this information may be used for tar-

geted and specific interventions to improve maternal health outcomes. With such targeted

interventions backed by evidence from the model, hospital staff, administration, and the Min-

istry of Health can work collaboratively to enact policy and operational changes to improve

maternal health outcomes.

Methods

De-identified patient data spanning approximately six months was collected from medical rec-

ords at Mnazi Mmoja Hospital. This research was approved by ZAMREC, the research author-

ity in Zanzibar, Tanzania on July 18 2017; Protocol No. ZAMREC/0001/JUN/17. A stepwise,

iterative, object-oriented program was developed to simulate the workflow and patient treat-

ment process at the maternity ward at MMH. In order to ensure the algorithm accurately

reflects a patient’s stay at the hospital and the resources used in treatment, it was developed in

close collaboration with doctors, nurses, and clinical researchers at MMH. The model allows

users to define resource allocations, patient load and incoming morbidity distributions over

various shifts, as well as specific treatment plans based on patient status. A full list of key vari-

ables, classifications, and measures used throughout the model are summarized in Table 1.

These factors are tracked and updated over a simulated duration of time, providing users with

information on short-term and long-term maternal mortality impacts.

In order to construct the model, patient records from the MMH maternity ward between

July 2016 and September 2016 were anonymized and digitized to create a database of 343

patients with potentially life-threatening complications and 2,285 patients with uncomplicated

deliveries. Potentially life-threatening complications included preeclampsia, eclampsia, ante-

partum hemorrhage, postpartum hemorrhage, rupture of the uterus, sepsis or systemic infec-

tion, cardiomyopathy, and anemia with a hemoglobin level below 7 g/dL. In addition to

patient records, information on staffing levels over ten days at the hospital, staff scheduling,

and ward inventory data detailing the stocks of all medications supplied to the ward was col-

lected. Data on case fatality rates and causes of death were used from a previous clinical study

at MMH’s maternity ward [16]. Complication incidence rates, average duration of patient stay

for each condition, the rate of occurrence of multiple complications in a patient, and the num-

ber of maternal near-miss cases were calculated from this database of patient records.

To appropriately scope the model, only five complications—postpartum hemorrhage, pre-

eclampsia, eclampsia, rupture of the uterus, and sepsis—were considered as discussed in the

inclusion criteria set of the World Health Organization’s near-miss criteria [18–21]. The

model algorithm was designed to replicate patient admission, treatment, and triage mecha-

nisms in the maternity ward. Finally, the model was calibrated to reflect the current maternal

health outcomes at MMH as determined by Herklots et al [16]. This was done by adjusting the
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distribution for the relative severity of each complication (severity distribution), how effec-

tively treatment alleviated complications (treatment efficacy), and how quickly a patient’s con-

dition deteriorated without treatment (deterioration rate).

Model foundation and structure

The foundation of the model is an iterative simulation that accounts for the stochastic nature

and nonlinear impacts of hospital admissions and condition severities, tracking both staff

resources and medicines stocks in the process. Each iteration or cycle of the model represents

fifteen minutes at the hospital maternity ward—the shortest duration necessary for a single

intervention outlined in clinician treatment plans for each complication. Each cycle consists of

four key steps:

1. Admission of a new patient

2. Allocation of resources to patients

Table 1. Description of key variables, clinical classification, and outcome measures used in the model.

Term Description

Key variables
Probability of Mortality A value between 0 and 1 indicates the severity of the patient’s condition and

represents how likely the patient’s complication is to becoming fatal over their

entire stay at the hospital, where 0 represents a 0% chance of death and 1

represents a 100% chance of death.

Deterioration rate A numerical value that is associated with each complication that indicates how

quickly the complication will become fatal if left untreated.

Treatment plan An object assigned by the model to each patient based on the probability of

mortality of each of their complications. It describes the types of medications,

medication dosages, the number of nurses and doctors required to execute the

plan, how frequently each staff member needs to be with a patient, the total

duration in time (in simulation cycles) until completion of the treatment plan, and

a treatment efficacy that determines how rapidly a patient’s probability of

mortality will improve when treated.

Treatment efficacy An integer between 0 and 1 that is unique to each treatment plan and represents

the extent to which the treatment plan decreases a patient’s probability of

mortality. An efficacy of 1 is most efficacious resulting in a probability of mortality

of 0, and an efficacy of 0 indicates that the treatment plan does not decrease the

probability of mortality.

Severity distribution A normal distribution unique to each complication that is used to assign a random

severity for each patient that presents with a given complication upon admission.

Cycle A single cycle is fifteen minutes of simulated time in the model.

Clinical classification
Potentially-life threatening

complication

A complication in pregnancy that could be fatal if untreated.

Severe maternal outcome An outcome in which the patient comes closest to maternal death, and may

survive (maternal near-miss) or may not (maternal death)

Maternal-near miss A case in which a patient comes close to maternal death but does not die.

Maternal death Maternal death is the death of a woman while pregnant or within 42 days of

termination of pregnancy, irrespective of the duration and site of the pregnancy,

from any cause related to or aggravated by the pregnancy or its management but

not from accidental or incidental causes.

Outcome measures
Mortality Rate The percentage of fatal cases in the specified patient cohort

Case fatality rate The percentage of fatal cases for a given complication

Complication Incidence Rate The percentage of cases with a given complication in the entire patient cohort

https://doi.org/10.1371/journal.pone.0212753.t001
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3. Evaluation of patient health and resource redistribution to hospital

4. Restocking hospital resources

Admission of new patients. Beginning each cycle, the model simulates the intake of new

patients to the existing cohort based on a probability of admission that varies from morning,

afternoon, to evening (Fig 1). These numbers were calculated as the probability of a patient

arriving every 15 minutes throughout the day based on real patient admission data recorded

from the maternity ward at MMH over ten days. If a patient is added to the cohort, the model

randomly ascribes complications and associated severities to the incoming patient (if any)

based on predefined incidence rates and severity distributions for each complication. Inci-

dence rates were determined from the deidentified patient data, and corresponding severity

distributions for complications at patient admission were formulated as follows: each compli-

cation’s severity distribution is modeled as a truncated normal distribution on the closed inter-

val of (0, 1) and centered around a mean probability of mortality corresponding to actual case

fatality rates found by Herklots et al [16]. The standard deviation for each distribution was

defined based on the concept that a small proportion of incoming patients would arrive with a

probability of mortality associated with a severe maternal outcome (SMO)–patients that either

meet the near miss criteria or become maternal deaths. As a base assumption, this proportion

was set to 2.5% (two standard deviations above the mean), and the probability of mortality at

this point was fixed to the chance of dying if classified as an SMO patient; this was calculated

based on a study by Herklots et al as the proportion of maternal deaths among all SMO

patients [16].

Once a set of probability of mortalities for an incoming patient has been randomly selected

from severity distributions for each of the patient’s complication, a composite probability of

Fig 1. Schematic of the first step in the algorithm—the creation and admission of a new patient (blue) to the

simulated ward with a high probability of mortality (red), a moderate probability of mortality (orange and

yellow), or low probability of mortality (green).

https://doi.org/10.1371/journal.pone.0212753.g001
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mortality for the patient, pc, is calculated under the simplification that each condition contrib-

utes independently to the patient’s health. For a patient exhibiting two simultaneous condi-

tions with probabilities of mortality of p1 and p2, the probability of survival for each condition

is (1-p1) and (1-p2), respectively. The total probability of survival is then (1-p1)(1-p2), making

the total probability of mortality, pc, 1 –(1-p1)(1-p2).This composite probability of mortality is

then utilized in the next section of the model to prioritize resource allocations to each patient.

Allocation of resources to patients. Once new patients have been added to the cohort,

the model determines the resources required by the cohort based on the assignment of treat-

ment plans for each patient’s condition(s) (Fig 2). These treatment plans outline specific

resource requirements such as frequencies and dosages of medicines, number and frequency

of nurse visits, and number and frequency of doctor visits (S2 Table). They are specific to the

patient’s current status and conditions and are in effect for a predefined duration of time or

model cycles, but are reevaluated from cycle to cycle based on whether the patient improves,

worsens, or successfully completes a plan. Treatment plans may also be linked, such that suc-

cessful completion of one treatment plan moves the patient to a predefined subsequent treat-

ment plan.

With a treatment plan and associated resources determined for each patient, the model

begins treating patients in descending order of composite probability of mortality, with the

patients with the highest probability of mortality being treated first; this is consistent with the

standard protocol at MMH. Each patient is treated only if all medication and staff resources

required by the treatment plan are available. If a single human or material resource is missing

from the standard treatment plan, the patient will not be treated. Furthermore, doctors and

nurses that are specified for consecutive treatment cycles in a particular treatment plan will

stay with the patient and will not be returned to hospital staff resource pool until their visita-

tion is complete.

Fig 2. Schematic of the second step of the algorithm—allocation of resources to patients as prescribed by their

respective treatment plans, starting with the patients with the highest probability of mortality (red) and ending

with patients with the lowest probability of mortality (green).

https://doi.org/10.1371/journal.pone.0212753.g002
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As the patient progresses through treatment, the probability of mortality, p, for each of her

conditions decreases with each cycle based on the efficacy of her treatment plan, η. For each

cycle that she is treated, the patient’s probability of mortality is calculated as p = pi(1—η),

where pi is the probability of mortality at the start of the cycle and p is the new probability of

mortality after treatment that cycle. Over successive cycles of treatment, this approach leads to

a geometric decay of the probability of mortality with the form p(c) = pi
rc, where pi is the prob-

ability of mortality at c = 0, c is the number of successive cycles of treatment, and r is the rate

constant and is related to the treatment efficacy by r = 1—η. The treatment efficacy for each

treatment plan was calibrated by ensuring that with complete and timely treatment, a patient’s

mean probability of mortality for each complication would decrease to zero by the end of a

hospital stay (numerically chosen as 10−10).

In the case that enough resources are not available to carry out the treatment plan for a

given cycle, treatment is not omitted that cycle, causing the probability of mortality for each

complication to worsen according to p ¼ pi
l
lþc, where pi is probability of mortality for the

condition at the beginning of the cycle, λ is the deterioration rate, and c is the number of con-

secutive cycles that the patient has not received treatment. Over successive cycles without

treatment, this leads to a sigmoidal increase in the probability of mortality on the open interval

of (0,1), with the form p cð Þ ¼ pi
lcGðlþ1Þ

Gðlþcþ1Þ, where pi is the probability of mortality for the condi-

tion for the first cycle that treatment is not provided, c remains the number of successive cycles

treatment is not provided and Γ is the mathematical gamma function. Deterioration rates for

each condition were initially estimated qualitatively from patient records based on the mean

length of time required for a complication to become fatal, after which they were adjusted to

reflect expected mortality outcomes for each complication as observed in the patient files col-

lected from MMH.

Evaluate patient health and redistribute resources. In the third stage, the model iterates

through the patient cohort and stochastically determines which patients survive based on the

selection of a uniform random variate for each patient (Fig 3). If the random variate is greater

than the patient’s probability of mortality, the patient survives. Because each patient’s compos-

ite probability of mortality, pc, is considered their chance of death over the full length of their

remaining hospital stay, a scaled probability of mortality, p, is used to reflect their chance of

death within only the current cycle. This scaled probability of mortality is calculated based on

a binomial distribution, where the composite probability of mortality is the cumulative proba-

bility of dying at any cycle and is given by pc ¼
Pn

k ¼ 1
n
k

� �
pkð1 � pÞn� k, where n is the number

of remaining cycles in the patient’s intended hospital stay. To solve for p, we may instead

consider the probability of surviving, ps, where pc = 1 − ps, and by the binomial distribution

in the case of k = 0 over n cycles, ps = (1 − p)n. Hence, we find that p is related to pc by

p ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � pcn

p
Þ. After assessing the survival of each patient based on this scaled probability

of mortality, any staff resources that were associated with patients that did not survive are

promptly returned to the hospital resource pool for reallocation in the next cycle.

Restock hospital resources. The last phase of the cycle accounts for the hospital restock-

ing its inventory, updates to on-duty staff based on shift changes, and for changing patterns of

patient admission at different times of day (morning, evening, and night) (Fig 4). If the model

simulates several months at the maternity ward, it must account for new shipments of medica-

tion and consumables at defined intervals of time, which can be set by the user or will default

to monthly restocking of the hospital inventory.

Model outputs. In order to store the multi-dimensional data generated by the model in a

flexible and organized format, the model outputs were stored in a JavaScript Object Notation
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Fig 4. Schematic of the fourth and final step in the algorithm, before the four steps are repeated for the next

fifteen minute cycle—medications are restocked if necessary, and any doctors or nurses that were treating

patients in the current cycle but are not required for treatment in the next cycle are returned to the staff pool to

be re-allocated in the following cycle.

https://doi.org/10.1371/journal.pone.0212753.g004

Fig 3. Schematic of the third step in the algorithm—the probabilities of mortality for patients who were treated

will decrease as per the efficacy of their assigned treatment plans, while the probabilities of mortality for patients

that did not get treated due to insufficient resources will increase based on the deterioration rates of their

respective complications (if any).

https://doi.org/10.1371/journal.pone.0212753.g003
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(JSON) file. A user interface for plotting data and exporting the data to other file formats was

developed in Java to enable efficient parsing of the JSON file and identification of trends of

interest. The number of maternal deaths outputted by the model for each test case was

obtained from 50 trials to capture the impact of stochastic variations.

Model calibration. The model was calibrated by inputting current medication inventories

(as mentioned above in the Methods section), with monthly restocking of oxytocin and hydral-

azine, and the staff available at the MMH maternity ward. The staff available in the ward and

rate of patient admission varies between the morning, evening and night shifts, and this varia-

tion was incorporated in the model during calibration (Table 2). All model runs were executed

with these parameters, unless otherwise specified.

With these inputs, deterioration rates for complications were adjusted such that case fatality

rates and complication incidence rates outputted by the model over three simulated months

matched those obtained from a clinical study conducted by Herklots et al at the MMH mater-

nity ward (Figs 5 and 6) [16].

Table 2. Variations in staff capacity and probability of patient admission at Mnazi Mmoja Hospital’s maternity

ward over a 24 hour period.

Shift Number of Nurses Number of Doctors Probability of Patient Admission in 15 minutes

Morning 5 3 0.4

Evening 3 2 0.28

Night 3 1 0.625

https://doi.org/10.1371/journal.pone.0212753.t002

Fig 5. Comparison of case fatality rates for each complication outputted by the calibrated model and case fatality

rates recorded by Herklots et al for the five complications incorporated in the model. Box plots represent

distribution of data over n = 50 identical simulations. Outliers have been omitted from the box plots for clarity.

Predicted case fatality rate is depicted as the mean of each data set, inclusive of outliers.

https://doi.org/10.1371/journal.pone.0212753.g005

Fig 6. Comparison of complication incidence rates outputted by the calibrated model and complication incidence

rates recorded by Herklots et al for the five complications incorporated in the model. Box plots represent

distribution of data over n = 50 identical simulations. Outliers have been omitted from the box plots for clarity.

Predicted case fatality rate is depicted as the mean of each data set, inclusive of outliers.

https://doi.org/10.1371/journal.pone.0212753.g006
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Results and discussion

Our model provides a new and distinctive tool that allows hospital administrators and health

officials to track the impact of resource limitations on mortality rates in local hospitals. Here,

we demonstrate the application of this model on an analysis of the maternity ward at Mnazi

Mmoja Hospital in Stone Town, Zanzibar, Tanzania. Unlike population level analyses that

review resource uses as a whole, our simulation-based approach enables users to investigate

how resource consumption is impacted by individual stochastic events involving patient

admission rates and associated complications and severities at admission. Additionally, by

tracking and treating individual patients, the model can help to understand the impact of

cycles of successful and unsuccessful treatment due to limited resources and identify critical

factors that may help prevent these cases from becoming fatalities. Simulations of three-month

durations at MMH were conducted to understand the influence of three major factors: medi-

cine restocking schedules, amount of staff on duty, and patient influx.

To verify the model was considering relevant patient loads, we examined the average num-

ber of patients admitted to the ward over one month, the average number of patients in the

ward per day and the proportion of patients with potentially life-threatening complications.

The results showed an average of 1149 patients admitted per month and falling into the range

reported by MMH, which varied from 748 patients in December 2016 to 1494 patients in April

2017; however, it is higher than the average of 925 patients per month found by previous stud-

ies [16]. The steady-state population of patients in the ward at any given moment was 35 with

a standard deviation of 4.7 patients. From monthly records kept at the ward, the average num-

ber of patients per day varies between 24.9 patients per day in December 2016 and 49.6

patients per day in April 2017. The 6981 patients recorded in the ward between April 2016 to

October 2016 by Herklots et al corresponds to an average of 38.1 patients per day [16]. Based

on these findings, the model was found to closely replicate the characteristics of the patient

cohort at the MMH maternity ward, and thereby accurately reflect the demand for medication

and staff resources seen at MMH.

Effects of essential medicines availability on maternal mortality

To demonstrate the utility of the model in informing procurement of essential medicines at

the maternity ward, the effects of two of the most frequently used medications–oxytocin and

hydralazine–were examined. At MMH, all patients in delivery are given prophylactic doses of

oxytocin, and additional doses are administered to patients who experience postpartum hem-

orrhage or are designated as high risk. As an antihypertensive, hydralazine is administered to

patients with severe gestational hypertension, severe pre-eclampsia and eclampsia to lower the

blood pressure and prevent life-threatening complications, mainly cerebral hemorrhage, as

per the standard hospital protocol at MMH. From pharmacy inventory records at MMH

between August 2016 and June 2017, there had been three non-consecutive months with a

stock out of oxytocin and five non-consecutive months with a stock out of hydralazine.

Restocking of both medications was irregular, varying from monthly to every two or three

months. Additionally, the amount of medication received was found to be inconsistent

between shipments.

As such, to determine the effects of oxytocin and hydralazine availability on maternal mor-

tality, the model was run with varying initial supplies of each medication and compared

monthly restocking to no restocking over a 3-month period. When varying oxytocin stocks,

the initial hydralazine was set to an 11-pack stock (approximately 2200 mg/mL of hydralazine)

and not resupplied during the quarter to inspect the relative impact of the two medications on

maternal mortality. Conversely, when varying hydralazine stocks, the initial oxytocin stock
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was set to 200 packs (approximately 20,000 IU of oxytocin) and was not resupplied during the

quarter. In all cases, the model was run with the staffing distribution and patient admission

rates detailed in Table 2.

For oxytocin, our model shows that monthly restocking results in the greatest improvement

on the number of maternal deaths over 3 months (Fig 7). It also indicates that a single large

shipment that meets the demand for oxytocin over three months may contribute to worse out-

comes than smaller, more frequent shipments, due to stochastic demands for oxytocin sup-

plies. The majority of shipments of oxytocin to MMH tend to be between 150 packs and 200

packs—and as such, missing a shipment is related to significant, detrimental effects on mater-

nal mortality outcomes. The predicted number of maternal deaths increases almost five-fold

when the 150-pack stock is not replenished in a 3-month period, underscoring the importance

of investing in a steady, reliable supply chain to improve maternal health outcomes.

Testing for hydralazine shows a similar trend in the necessity for restocking if smaller ship-

ments are supplied, with the number of maternal deaths increasing over four-fold when 10

packs of hydralazine are not replenished over three months (Fig 8). The absolute number of

maternal deaths remains high after 25 packs of hydralazine are supplied regardless of restock-

ing, indicating that while hydralazine is crucial for maternal health, other factors, such as staff

limitations and oxytocin, contribute more significantly to adverse maternal health outcomes.

Effects of staff availability on maternal mortality

Adequate monitoring of patients and timely interventions in the case of complications are cru-

cial to preventing maternal deaths, and as such sufficient staffing of the maternity ward plays a

key role in decreasing maternal mortality. Surveys of staff scheduling revealed that there are

typically five nurses and three doctors on staff at the maternity ward, while at night there are

on average two nurses and one doctor. However, additional reports from staff describe

extremely limited staff availability—with only one nurse staffing the ward at times or no doc-

tors available in the ward. Given this, we chose to examine the effects of staff capacity on

maternal mortality and determine minimum staffing requirements necessary to minimize

maternal deaths, keeping in mind the different rates of patient admission during the morning,

evening, and night.

Fig 7. Impact of oxytocin inventory and supply frequency on maternal deaths over a 3 month period. Box plots

exclude outliers and whiskers reflect local maxima and minima among n = 50 runs for each data point. Line plots

reflect mean values for each data point, including outliers.

https://doi.org/10.1371/journal.pone.0212753.g007
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The number of nurses and doctors available to staff the ward was varied between 0 and 10

and simulations were run over a 3-month period to determine the impact on maternal deaths.

Fig 9 summarizes the results and demonstrates that under extreme staff shortages, the number

of maternal deaths can reach over 200. Adding additional staff drastically reduces these deaths

from over 200 to under 50, however the plot indicates that this can only be achieved if a critical

Fig 8. Impact of hydralazine inventory and supply frequency on maternal deaths over a 3-month period. Box plots

exclude outliers and whiskers reflect local maxima and minima among n = 50 runs for each data point. Line plots

reflect mean values for each data point, including outliers.

https://doi.org/10.1371/journal.pone.0212753.g008

Fig 9. Predicted effect of staffing combinations for nurses and doctors when staffed consistently across morning,

evening, and night shifts. Data depicts mean maternal deaths for each staff combination over n = 50 identical

simulations of over a simulated timeframe of 3 months with 20,000 IU of oxytocin and 2200 mg/mL of hydralazine

being supplied each month.

https://doi.org/10.1371/journal.pone.0212753.g009
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number of both doctors and nurses is achieved. Under the specific morbidities and associated

treatment plans considered for this model, the minimum number for both doctors and nurses

was found to be 3. Fig 9 shows that when staffed with only 2 doctors, additional nurses have

minimal to no effect on the number of deaths. Similarly, when staffed with only 2 nurses, addi-

tional doctors also have minimal to no reduction in deaths. Once a minimum of 3 doctors and

3 nurses has been met, we find that increases in staff lead to further decreases in mortality, par-

ticularly when adding nurses. This corroborates well with the observations of the hospital staff

and their experience and is also consistent with the fact that in this model, nurses are required

at a higher frequency for continual patient care than doctors, as defined within the specific

treatment plans for each condition. Again, it should be underscored that the critical number of

doctors and nurses required to adequately manage maternal mortality are heavily dependent

on complication incidence rates, specific treatment plans, and overall patient load. While at

MMH our model finds this number to be 3 for both doctors and nurses, the model should be

used as a tool to continually evaluate these critical numbers under changing conditions at the

hospital or under different conditions at another hospital.

To explore the effects of different staffing schedules on maternal mortality, we varied the

number of staff available on each shift from the existing distribution detailed in Table 2. As

observed in Fig 10, decreasing the staff capacity on each shift by even one doctor and nurse

contributes to an increase in the number of maternal deaths by almost ten-fold, attesting to

the importance of ensuring the critical number of staff members are available at all hours.

Increasing the number of nurses available during the evening and night shifts at the ward

correlates to outcomes comparable to the status quo. However, increasing the number of

doctors available on all shifts to the critical number of 3 corresponds a 50% reduction in

maternal deaths, indicating a potential insufficiency in the number of doctors available in the

evening and at night.

Effects of patient influx on maternal mortality

As the main referral hospital in Zanzibar, MMH receives a range of patients from self-referrals

to patients who are referred from other health facilities. The spectrum of severity ranges from

relatively uncomplicated and non-severe cases that ideally would seek care in the secondary or

primary health care facilities, to severely complicated cases for which MMH is the designated

hospital. The large influx of patients exacerbates delays in receiving care, stock-outs of medical

Fig 10. Effect of different staffing distributions during the morning, evening, and night on maternal mortality.

Inset depicts zoomed version of shift patterns excluding the 1 fewer doctor and nurse condition. All data sets were

found to be statistically significant from one another, except for the current staff distribution compared to the 5 nurses

for all shifts, with p< 0.05 using a two-tailed test.

https://doi.org/10.1371/journal.pone.0212753.g010
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supplies and shortages of staff. We examined the effects of decreasing the rate of patient influx

to the maternity ward from 0.4 patients per 15 minutes to assess how this affects mortality out-

comes for patients with potentially-life threatening complications. Conversely, the effects of a

higher patient influx to MMH’s maternity ward were examined to determine if the ward could

respond to higher patient volumes in the future without compromising health outcomes. Cur-

rently, approximately 50% of pregnant women in Zanzibar deliver in health facilities [22].

With public health initiatives encouraging women to deliver in health facilities, the health sys-

tem must have the capacity to respond to the increasing need for care.

Simulations indicate that a patient admission rate that is half of the current patient admis-

sion rates in the morning, evening and night, contributes to a decrease in mortality rate for

patients with potentially life-threatening complications from 5.53% to 1.60% (Fig 11). Increas-

ing patient admission rates by a factor of 1.5, however, increases the mortality rate among

high-risk patients by over fourteen-fold. This supports a shift to treatment of low-risk patients

at secondary health care facilities, freeing up resources in the MMH maternity ward for high-

risk patients in order to improve overall maternal health outcomes. It is of key importance that

those facilities designated to deal with a potential increased patient load will be fully equipped

and staffed to do so.

Conclusion

The health systems model described here was created for use in the Mnazi Mmoja Hospital

maternity ward in Zanzibar, Tanzania. Yet, it provides a template for health systems modeling

at other facilities, providing policymakers and hospital administrators with a tool to identify

gaps and inefficiencies in maternal care that can be addressed in order to improve maternal

mortality. The model has identified the following factors as contributors to a reduction in

maternal mortality in this setting: (1) more frequent, monthly shipments of oxytocin and

hydralazine to health facilities as opposed to larger, quarterly shipments, (2) an increase in the

number of nurses working per shift, assuming the critical number of 3 doctors per shift has

been met, and (3) a reduction of patient admissions by directing low-risk cases to deliver at

primary and secondary healthcare facilities outside of MMH.

Assumptions, limitations, and future directions in health-facility modeling

While the model accounts for the staff capacity, medication inventory, treatment plans, and

triaging of patients for six noted conditions, collection of additional clinical data likely will

Fig 11. Predicted effect of patient influx rate on mortality rates for patients with complications.

https://doi.org/10.1371/journal.pone.0212753.g011
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extend the utility of the model by accounting for the use of the intensive care unit, blood prod-

ucts, non-pharmaceutical consumables, surgical tools, and medical equipment. The model

does not account for patients procuring their own medication and consumables for use in the

event of stock outs (though this occurs at MMH), and operates under the ideal case of all medi-

cation being procured from Zanzibar’s Central Medical Store and purchased using funds from

the government or aid agencies. Temporal changes in staff capacity and physical separation of

antenatal wards, labor rooms, and postnatal wards were not included in this iteration of the

model. Building on this framework to include these factors could extend the model for further

use as a tool to optimize logistics and operations in the maternity department.

Age and obstetric history of the simulated patients do not affect their initial probability of

mortality in this iteration of the model, as further data must be collected to assess the relation-

ships between age, prior complications in pregnancy, and mortality in order to be incorpo-

rated in the model. Accuracy of diagnosis was not incorporated into this version of the model,

as it is assumed that if a patient has a complication that is what they are diagnosed with and

treated for. Patients in the model can only have one of the five complications, if any, and can-

not develop new complications as they progress through the simulation. Additionally, because

there is insufficient data on how to weigh the impact of each resource prescribed by the treat-

ment, all resources necessary for treatment must be available in the simulated ward inventory

and staff pool for a patient in the model to be treated.

Cesarean sections, hysterectomies, laparotomies, salpingectomies, and oophorectomies

performed at the maternity ward are indirectly included in treatment plans but only specify

the staff resources needed and the treatment efficacy; the average length of time of the sur-

gery, the need for and availability of surgical tools and an operating theatre were excluded

from this iteration of the model. Further, the potential for a patient’s condition to worsen

due to complications arising from surgery was not included in the model due to a limited

number of post-surgery complications becoming fatal. Abortions and anemia were not

explicitly incorporated in the model as complications, though both occur in a substantial pro-

portion of patients. Anemia has a relatively low mortality rate relative to other complications

included in the model, and there was not adequate information on patient abortions in the

medical records.

Despite these limitations, we note that the model was able to capture the current trends and

provide specific predictions that are relevant for understanding the complex operation of the

maternity ward. We also note that by comparing the resource allocation and usage of human,

pharmaceutical and capital resources, we are able to analyze the varying burdens on resources.

Our model is unique from other generic tools for improving efficiency since it incorporates

local challenges, patient trajectories and observations of staff. While the model is based on

patient outcomes at MMH in Zanzibar, we note that the framework is modular and capable of

adaptation to other wards and hospitals in low and middle-income countries using facility-

specific inputs.
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