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Abstract

Brain and vascular cells form a functionally integrated signalling network that is known as the neurovascular unit (NVU). The
signalling (autocrine, paracrine and juxtacrine) between different elements of this unit, especially in humans, is difficult to
disentangle in vivo. Developing representative in vitro models is therefore essential to better understand the cellular
interactions that govern the neurovascular environment. We here describe a novel approach to assay these cellular
interactions by combining a human adult cerebral microvascular endothelial cell line (hCMEC/D3) with a fetal ganglionic
eminence-derived neural stem cell (hNSC) line. These cell lines provide abundant homogeneous populations of cells to
produce a consistently reproducible in vitro model of endothelial morphogenesis and the ensuing NVU. Vasculature-like
structures (VLS) interspersed with patches of differentiating neural cells only occurred when hNSCs were seeded onto a
differentiated endothelium. These VLS emerged within 3 days of coculture and by day 6 were stabilizing. After 7 days of
coculture, neuronal differentiation of hNSCs was increased 3-fold, but had no significant effect on astrocyte or
oligodendrocyte differentiation. ZO1, a marker of adherens and tight junctions, was highly expressed in both
undifferentiated and differentiated endothelial cells, but the adherens junction markers CD31 and VE-cadherin were
significantly reduced in coculture by approximately 20%. A basement membrane, consisting of laminin, vitronectin, and
collagen I and IV, separated the VLS from neural patches. This simple assay can assist in elucidating the cellular and
molecular signaling involved in the formation of VLS, as well as the enhancement of neuronal differentiation through
endothelial signaling.
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Introduction

The neurovascular unit (NVU) is the quintessential organiza-

tional principle of functional brain tissue [1]. Signaling between

the vascular and neural cells is a key physiological process

regulating the interaction between peripheral circulation and

brain activity. At the interface of the vascular and neural

compartments is the blood-brain barrier (BBB) that limits the

access of molecules and peripheral cells to the brain. In the healthy

brain, neuronal and glial activity will influence vascular function

by neurovascular coupling to regulate their energetic demands by

maintaining tissue oxygenation and nutrient influx [2]. In the case

that this energetic demand is not met, a rapid physiological

response to hypoxia (i.e. lack of sufficient oxygenation) induces an

angiogenic cascade that aims to restore tissue oxygenation [3].

Angiogenesis, a growth of new vessels from existing vessels,

increases the vascular density and warrants adequate tissue

oxygenation. In brain tumors, the continued growth of the

‘‘neural’’ compartment is perpetuating a state of mild hypoxia,

hence producing an ongoing angiogenesis [4]. In contrast, in

stroke, where blood flow to brain tissue is blocked for protracted

periods of time, cells will die. Nevertheless, peri-infarct regions

undergo a mild hypoxia engendering a vascular response

encompassing vasculogenesis, angiogenesis, arteriogenesis and

collateral growth [5]. This leads to heteregeneous peri-infarct

areas of neo- and hypervascularization [6].

In the peri-infarct regions of a stroke, a local increase in

neovascularization is also observed after implantation of neural

stem cells (NSCs) [7,8] and has been suggested by some to mediate

behavioral improvements [9,10]. It is conceivable that these cells

have a propensity to directly act on the host vasculature, but the

increase of energetic demand in the area of implantation due to an

increase of cellular density can also induce mild hypoxia that

promotes neovascularization. It is important to note that NSCs
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injected into a stroke cavity with bioscaffolding by themselves do

not lead to re-vascularization [11,12], a common problem

observed in tissue engineering [13,14]. Strategies aimed at

modulating the vascular response following a stroke [15] or

NSC transplantation [9,10], vascularization of engineered tissues

[16], as well as inhibition of angiogenesis in brain tumors [17] are

grounded on a thorough understanding of the dynamic paracrine,

autocrine and juxtacrine interactions in the NVU [18,19].

However, parceling out these interactions in vivo, especially in

humans, is extremely challenging. Therefore the development of

in vitro models that afford a high level of experimental control and

reproducibility is required to complement in vivo studies [20].

Although a variety of in vitro models have been developed to

investigate angiogenesis [21] and the BBB [22], as well as the

NVU using rodent cells [23], assays composed of only human cells

investigating the formation of vasculature-like structures (VLS) of

brain microvascular endothelial cells by interacting with brain

cells, i.e. establishing a neurovascular environment, are generally

lacking. Although co-culturing of hNSCs with non-CNS endothe-

lial cells, such as Human Umbilical Vein Endothelial Cells

(HUVECs), have been reported to identify paracrine factors that

promote hNSCs proliferation [24], as well as angiogenesis-

promoting factors [25], these do not model the interaction

between hNSC and brain endothelium. Transwell experiments

only investigate paracrine and autocrine factors, whereas extra-

cellular matrix models, such as the Matrigel assay, are predom-

inantly biased towards juxtacrine factors [26], hence these are

more suitable to investigate a specific type of factors rather than

their synergistic and iterative effects. However, given the

appropriate conditions, endothelial cells will organize in vitro into
a net of VLS, akin to a vascular bed in tissue. An in vitro model of

the neurovascular environment therefore needs to involve direct

cell-to-cell contact between endothelial and ‘‘brain’’ cells, while

forming a network of VLS, hence affording the investigation of the

dynamic interactions of the formation of a neurovascular

environment, as well as the processes involved in angiogenesis in

the brain.

We here describe an all-human in vitro model that affords

controlled and detailed investigations of interactions between

previously validated brain microvascular endothelial and neural

stem cell lines, while forming a network of VLS. The resulting

cytoarchitecture is reminiscent of the neurovascular environment

with endothelial cells organized into a vasculature-like structure

surrounded by astrocytes, neurons and oligodendrocytes.

Materials and Methods

Human neural stem cell (hNSC) line
The derivation of the c-mycERTAM transduced hNSC line

STROC05 (ECACC accession number 04110301, provided by

ReNeuron Ltd., Surrey, UK) has been previously described [27].

In brief, hNSCs were isolated from the whole ganglionic eminence

of a human fetus at 12 weeks of gestation. The cells were

transduced with the retroviral vector pLNCX-2 (Clontech)

encoding the c-mycERTAM gene [28]. Expansion and mainte-

nance of STROC05 cells were performed in tissue culture flasks

(BD Biosciences) coated with mouse laminin (Sigma-Aldrich,

L2020) at a concentration of 10 mg/ml at 37uC in 5% CO2.

STROC05 cells were cultured in serum-free medium consisting of

DMEM:F12 medium (Sigma) containing 5 mg/ml insulin (Sigma),

100 mg/ml transferrin (Sigma), 40 ng/ml sodium selenite (Sigma),

60 ng/ml progesterone (Sigma), 16.2 mg/ml putrescine (Sigma),

0.03% human albumin solution (GemBio), 400 ng/ml L-thyroxine

(Sigma), 337 ng/ml tri-iodo-thyronine (Sigma), 10 units/ml

heparin sodium (Sigma), 40 ng/ml corticosterone (Sigma), and

2 mM L-glutamine (Sigma) (Table S1). Recombinant human basic

fibroblast growth factor (bFGF; 10 ng/ml; PeproTech), epidermal

growth factor (EGF; 20 ng/ml; PeproTech), and 4-hydroxyta-

moxifen (100 nM; Sigma) were added as mitogens. The cells were

passaged and used for experiments when they reached 70–80%

confluency.

Human cerebral microvascular endothelial cell (hCMEC/
D3) line
The immortalized human cerebral microvascular endothelial

cell line (hCMEC/D3) was isolated from microvessel fragments of

the temporal lobe of an adult with epilepsy by coexpressing human

telomerase reverse transcriptase and simian vacuolating virus 40

(hTERT/SV40) large T antigen via a lentiviral vector transduc-

tion system [29]. This cell line has been widely used as an in vitro
model of human brain endothelium [30]. The cell line was

expanded and maintained in tissue culture flasks (BD Biosciences)

coated with rat tail collagen type I (BD Biosciences, 354236) at a

concentration of 150 mg/ml at 37uC in 5% CO2, using endothelial

basal medium-2 (EBM-2; Lonza), supplemented with 5% fetal

bovine serum ‘‘Gold’’ (PAA, The Cell Culture Company), 5 mg/
ml ascorbic acid (Sigma), 1% chemically defined lipid concentrate

(Invitrogen), 10 mM HEPES buffer (Sigma), and 1% penicillin/

streptomycin (Invitrogen) (Table S1). hCMECs were used between

passages 28 and 32. Cells were passaged at 95% confluency.

Endothelial morphogenesis – Matrigel assay
The Matrigel (BD Biosciences, 356237) endothelial branching

morphogenesis assay establishes the potential of ECs to form

tubular networks (also known as capillary-like structures, CLS)

[31]. For this, 300 ml Matrigel (10.4 mg/ml, not diluted) was

added to the wells of 24-well plates and allowed to gel at 37uC for

30 minutes. Then 40,000 hCMECs were added to each well and

allowed to invade the material for 48 hours. As a positive control

for this assay, an immortalized microvascular EC line (HMEC-1)

derived from human foreskins was used [32]. HMEC-1 cells were

expanded in MCDB131 (Sigma), supplemented with 10% fetal

calf serum (Sigma), and 1% penicillin/streptomycin (Invitrogen).

The Matrigel endothelial morphogenesis assay confirmed the

branching phenotype in both hCMEC and HMEC-1 lines

(Fig. 1A). hCMECs therefore have the potential for endothelial

morphogenesis, but when cultured on a collagen-coated surface,

hCMECs are organized in an extensive and homogeneous

cobblestone-like monolayer displaying a brain microvascular

morphology with tightly packed elongated cells (Fig. 1B), as well

as characteristics of the BBB [29].

In vitro modeling of the neurovascular unit – Culture
media
D3 hCMECs and STROC05 hNSCs utilize medium of

different composition. To coculture these, it is therefore essential

to determine how these different media or their combination affect

cell morphology and culture consistency (e.g. attachment charac-

teristics, density). Culture media specific to D3 (EC medium) or

STROC05 cells (NSC medium) were used in monoculture to

expand cells until they reached confluency on coverslips (VWR,

89015-724) coated either with collagen I (hCMECs) or laminin

(hNSCs) in 24-well plates. Media were then replaced every other

day with either EC or NSC medium without addition of mitogens

and tamoxifen (i.e. differentiation media), or a 50:50 mix of

EC:NSC media (Table S1). Cell morphology was evaluated 7 days

later. EC medium resulted in both D3 hCMECs and STROC05

An In Vitro Assay of Endothelial Morphogenesis
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Figure 1. Establishing branching phenotype of endothelial cells and media for coculture with neural stem cells. (A) Matrigel branching
morphogenesis assay confirmed the potential for endothelial morphogenesis in D3 human cerebral microvasculature endothelial cells (hCMECs) and
HMEC-1 dermal EC lines. (B) D3 hCMECs in EC medium formed a cobblestone-like monolayer on collagen-coated surfaces. D3 hCMECs in NSC medium
started to detach from culture surfaces, and STROC05 human neural stem cells (hNSCs) in EC medium lost bipolar elongated morphology. In
comparison, morphology of D3 hCMECs and STROC05 hNSCs was maintained in a 50:50 mix of EC:NSC medium. Diamidino-2-phenylindole (DAPI,
blue) serves as a nuclear counterstain. Scale bars represent 200 mm.
doi:10.1371/journal.pone.0106346.g001
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hNSCs adapting a dense cobblestone morphology without

extension of filopodia (Fig. 1B). In contrast, NSC medium lead

to detachment of hCMECs and reduced density and cell

differentiation. The 50:50 media mix provided the most consistent

cell morphology of both cell lines, while preserving robust

attachment and cellular density. hNSCs preserved their ability to

extend filopodia in the mixed medium. The EC:NSC serum-free

coculture media mix therefore retained both hCMEC and hNSC

features and was consequently used for all coculture experiments.

In vitro modeling of the neurovascular unit –
Experimental set-up
A major advantage of in vitro models over in vivo models is the

greater experimental control over the cellular and molecular

interactions being investigated. The use of two cell lines here

provides an opportunity to study various aspects of EC-NSC

interaction ranging from how particular molecules affect a single

cell type (monoculture), to the effects of secreted (paracrine &

autocrine) factors in a transwell assay, as well as the interaction

between differentiated and undifferentiated cells when these are

cocultured (paracrine, autocrine & juxtacrine factors combined).

Typically, 7 days of coculture are sufficient to investigate these

dynamic interactions (Figure 2A). The following conditions have

been investigated here (Fig. 2B):

Monoculture – modeling cell line specific features. To

investigate hCMECs or hNSCs interactions, hCMECs (40,000

cells) or hNSCs (25,000 cells) were grown in monoculture in a 24-

well plate using 50:50 EC:NSC coculture media (500 ml). Glass

coverslips (VWR, 89015-724) in the wells were coated either with

collagen I or laminin. This condition provides a key comparison to

establish how cellular signaling and behavior within single cell type

is influenced by the presence of specific molecules (secreted and/or

juxtacrine). It therefore provides an important control condition

compared to conditions where different cell types are cultured

together. Culture medium was replaced every other days and cells

were fixed after 7 days with 4% paraformaldehyde (PFA) or 95%

ethanol for 10 minutes, rinsed with phosphate buffered saline

(PBS), and stored in PBS at 4uC.
hCMEC–hNSC transwell assay – modeling the influence

of secreted factors only. The use of a transwell allows secreted

(autocrine & paracrine) factors to distribute in the culture media

and influence cell behavior without the contribution of juxtacrine

factors. Here, transwell inserts (Transwell with 0.4 mm pore

polyester membrane insert, Corning, 3470) were coated with

mouse laminin (Sigma-Aldrich, L2020) at a concentration of

10 mg/ml at 37uC in 5% CO2 for 2 h. Then STROC05 cells were

seeded into transwell inserts at a density of 5,000 cells per 0.33 cm2

area, for proliferation to 80% confluency. Meanwhile, D3 cells,

with a seeding density of 40,000 cells/well, were grown separately

on collagen-coated coverslips in 24-well plates for 7 days. The

transwell inserts containing STROC05 cells were then transferred

to the wells containing D3 cells, and these were cultured together

in serum-free coculture medium. The distance between the

transwell membrane and the bottom of the monolayer of D3 cells

was about 850 mm.

hCMEC:hNSC coculture of undifferentiated cells –

modeling the effects of proliferating cells on each

other. To model the interactions between hCMECs and

hNSCs, while both are proliferating and undifferentiated, 40,000

D3 cells and 25,000 STROC05 cells were combined and seeded

together onto glass coverslips (VWR, 89015-724) coated with a

mixture of 150 mg/ml collagen I and 10 mg/ml laminin in 24-well

plates, using serum-free coculture medium which did not contain

mitogens or tamoxifen to promote the continued proliferation of

hNSCs.

hNSC/hCMEC – modeling the effects of proliferating

endothelial cells on brain tissue. To model how proliferating

hCMECs affect brain cells, undifferentiated hCMECs (40,000

cells/well) were added to hNSC cultures (seeded at a density of

25,000 cells/well) that had been differentiated on laminin-coated

coverslips in 24-well plates for 7 days when there was an absence

of proliferating cells.

hCMEC/hNSC – modeling the effects of hNSCs implants

on host vasculature. To model the interactions hNSCs exert

on the host brain vasculature, undifferentiated hNSCs were added

to 7-day differentiated D3 cells. For this, D3 (40,000 cells/well)

were seeded on glass coverslips (VWR, 89015-724) coated with rat

tail collagen type I (BD Biosciences), using D3 EC medium, in 24-

well plates for 7 days. STROC05 (25,000 cells/well) were added

on day 8 in the presence of coculture medium. Only this condition

formed ‘‘spontaneous’’ VLS (Figure 2B), hence indicating that the

dynamic interactions between differentiated hCMECs and undif-

ferentiated hNSCs provided the sufficient signaling conditions for

novel neurovascular units to form. This condition was further

characterized as an assay to investigate how hNSCs induce the

formation of VLS by hCMECs.

Time course of vasculature-like structure formation
To establish a time course of VLS formation, hCMECs were

seeded (40,000 cells/well) and allowed to differentiate for 7 days

before hNSCs (25,000 cells/well) were added (hCEMC/hNSC

condition) and cocultured for 7 days. To investigate cytoarchitec-

tural changes resulting from cell movements, a series of time-lapse

images were photographed under a digital inverted microscope

(EVOS f1, AMG) by phase imaging. Coverslips were fixed each

day with 4% PFA, as described above.

Immunocytochemistry and image acquisition
For immunocytochemistry, cells were blocked with 10% normal

goat serum in PBS containing 0.1% Triton X-100 (Sigma) for

30 min prior to incubation with primary antibodies for 18 h at

4uC. The mouse anti-glial fibrillary acid protein (GFAP) (1:3000;

Sigma, G3893) specifically detected the astrocytic differentiation of

hNSC in vitro (,10% of undifferentiated cells were positive),

whereas the polyclonal chicken anti-glial fibrillary acid protein

(GFAP) (1:3000; Abcam, ab4674) was unspecific, detecting almost

100% of undifferentiated and .80% of differentiated hNSCs. The

polyclonal antibody was therefore used here to distinguish vascular

from neural compartments, whereas the monoclonal GFAP was

used to determine differentiation. Either the rabbit (1:200; Abcam,

ab28364) or mouse (1:200; Abcam, ab119339) anti-CD31/platelet

endothelial cell adhesion molecule 1 primary antibodies were used

to visualize endothelial cells representing the ‘‘vascular compo-

nent’’. Additionally, mouse anti-microtubule associate protein-2

(MAP2) (1:500; Abcam ab11267), mouse anti-galactocerebroside

(GalC) (1:200; Millipore MAB342), mouse anti-vascular endothe-

lial-cadherin (VE-cad) (1:200; Abcam ab7047), rabbit anti-zonula

occludens 1 (ZO1) (1:500; Zymed 40-2200), rabbit anti-occludin

(1:200; Abcam ab64482), rabbit anti-claudin-5 (1:200; Abcam

ab53765), mouse anti-intercellular adhesion molecule 2 (ICAM-2)

(1:200; Santa Cruz sc-9987), mouse anti-podocalyxin-like 1 (1:200;

Santa Cruz sc-23904), chicken anti-laminin (1:500; Abcam

ab14055), and goat anti-collagen IV (1:200; Millipore ab769)

primary antibodies were used for investigating differentiation

status of monoculture and coculture. After removal of primary

antibodies and washing with PBS (3x), cells were incubated with

appropriate secondary antibodies (goat anti-mouse Alexa 488-
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labeled, 1:1000; goat anti-rabbit Alexa 555-labeled, 1:1000,

Invitrogen) for 1 h at room temperature (22uC). Stained coverslips

were rinsed in PBS and mounted with Vectashield for fluorescence

with DAPI (Vector Laboratories). Fluorescence images were

captured using a fluorescence microscope (AxioImager M2, Zeiss),

a confocal laser-scanning microscope (Fluoview 1000, Olympus),

and a digital inverted microscope (EVOS f1, AMG).

Expression of endothelial markers, especially junctional pro-

teins, such as CD31, VE-cadherin, ZO1, ICAM-2, occludin,

claudin-5, exhibit a heterogeneous appearance that can reflect

typical in vivo localization of these markers at cellular junctions,

but can also reflect a cytoplasmic expression (Figure 3). The

cytoplasmic localization of these molecules is untypical of the

in vivo expression pattern of these markers on endothelial cells. It

is hence important to note that merely demonstrating the presence

of these proteins is not indicative of functional tight junctions.

Measuring the length of vasculature-like structure
To determine the efficiency of forming VLS (Figure 4A),

quantification of the formation of VLS was achieved using the

Stereo Investigator (MBF Bioscience) software. The extent of VLS

formation was evaluated by measuring the length of segments

between branching points (Figure 4B), as well as counting the

number of branching points. The total length of segments, as well

as the number of branching points were calculated to compare the

efficiency of VLS formation [33]. A few capillary-like segments

comprised a single layer of CD31+ cells between which a lumen-

like space formation were observed (Fig. 4C), but were not

representative of the overall formation of VLS.

Statistics
All experiments consisted of 3 biological replicates, each

consisting of 3 technical replicates. For each technical replicate,

5 images were taken from different areas on the coverslip prior to

calculating a mean value of cell counts for each coverslip. Using

SPSS 17 for Mac (IBM), a non-parametric Kruskall-Wallis was

used to compare different conditions followed by a Dunn’s post-

hoc comparison to determine which conditions were significantly

different (p,0.05). A Mann-Whitney U test was used to compare

the markers of differentiation between mono- and cocultures.

Graphs were drawn in Prism 5 (GraphPad) with data points

representing the median and bars reflecting the value range.

Results

Vasculature-like structures only form in direct contact
between differentiated endothelium and
undifferentiated neural stem cells
Monocultures of hCMECs on collagen I form a homogenous

cobblestone-like monolayer of cells, but do not organize into VLS

(Figure 2B). The organization of hCMECs into in vitro tubular

structures is therefore lacking the appropriate signaling. In the

NVU, endothelial cells interact with brain cells to form new

vessels. Therefore co-culturing these will allow us to determine

what signaling interactions are key to the organization of hCMECs

into new VLS. Secreted factors can be selectively investigated by

using a transwell approach, but these did not provide sufficient

signaling for hCMECs to form VLS (hCMEC-hNSC condition in

Figure 2B). As hCMECs form CLS in Matrigel, contact-mediated

factors, in addition to those secreted from hNSCs, might therefore

be required to form VLS. Combining undifferentiated hCMECs

and hNSCs or differentiated hNSCs with undifferentiated

hCMECs resulted in the formation of some VLS, although these

did not organize into a net-like connected structure. hCMECs only

efficiently formed VLS and net-like structures when first differen-

tiated and combined with undifferentiated hNSCs, indicating that

specific signaling conditions are required to induce a vasculogenic

process and that secreted factors by themselves are insufficient to

induce this process.

The co-culture of initially juxtaposed monolayers of differenti-

ated hCMECs and undifferentiated hNSCs resulted in a major

reorganization of cells. hCMEC organized into a vasculature-like

structure that formed a network interspersed by neural patches,

akin to the appearance of a neurovascular tissue (Figure 4A). To

assess the efficiency of the formation of VLS, the length of

individual segments of the network of VLS were measured

(Figure 4B). There was also occasionally evidence of the formation

of capillary-like structures (Figure 4C) that in contrast to VLS

were much thinner (1–2 endothelial cells in width), but these were

unrepresentative and only found in areas where endothelial cells

were mostly absent. The quantification of VLS segment length

supported the qualitative observation of VLS formation with no

VLS forming in the EC only or transwell condition, but some VLS

forming in contact-medicated co-culture conditions (undifferenti-

ated hCMEC and hNSC intermixed, differentiated hNSCs with

undifferentiated hCMEC seeded on top) (Figure 5, Kruskall

Wallis = 13.04, p,.01). However, these VLS formed very ineffi-

ciently compared to undifferentiated hNSC being seeded on top of

differentiated hCEMC. An almost 8 fold increase in efficiency

could be observed to the other contact co-culture conditions.

Cytoarchitectural characterization of vasculature-like
structures
Upon co-culturing of hNSCs with differentiated hCMEC,

hCMEC organize into a 3 dimensional structure of 8–10 hCMECs

in width (Figure 6A) with diameters ranging from 8–50 mm.

hNSCs cover the coverslip with hCMECs assembling and rising

above these into VLS (Figure 6B). Average length of VLS was

approximately 300 mm on day 7, but some longer structures up to

800 mm were also observed. hNSCs differentiated into astrocytes

(GFAP+ cells) overlying the 3 dimensional VLS (Figure 6C&D), a

specific anatomical feature of microvessels in the brain. Never-

theless, the VLS did not form a hollow lumen (Figure 6E).

VLS were clearly distinguishable based on their cellular density

and presence of CD31, an intercellular junction marker present in

endothelial cells, with astrocytes tightly bound around these

(Figure 7A). Nevertheless, CD31 was mostly localized within the

cytoplasm rather than at the intercellular junction typically

Figure 2. Protocols for EC/NSC coculture. (A) Schematic description of the protocols for monoculture and coculture of D3 human cerebral
microvascular endothelial cells (hCMECs) and STROC05 human neural stem cells (hNSCs). (B) 1. hCMECs (CD31+ cells) formed a dense monolayer on
the collagen-coated surface, but did not form vasculature-like structures (VLS). hNSCS (polyclonal GFAP+ cells) did not form any VLS. 2. In a transwell
coculture, only a dense monolayer of hCMECs without significant VLS could be found at the bottom of the lower chamber after 7 days of coculture. 3.
No significant VLS was found when hCMECs were seeded in combination with hNSCs. 4. No VLS emerged when hCMECs were seeded on 7-day
differentiated STROC05 cells. 5. A distinctive cytoarchitecture composed of CD31+ VLS and GFAP+ cells was observed when hNSCs were seeded on 7-
day differentiated hCMECs for a further 7 days of coculture. Diamidino-2-phenylindole (DAPI, blue) serves as a nuclear counterstain. Scale bars
represent 200 mm.
doi:10.1371/journal.pone.0106346.g002
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observed in endothelial cells in vivo. Only VLS expressed the

intercellular adhesion molecule 2 (ICAM-2) indicating ongoing

vessel formation, although parts of the VLS no longer expressed

ICAM-2 (Figure 7B). Conversely, parts of the VLS that appeared

more robust expressed Podocalyxin on the apical aspect of the

structure (Figure 7C), although these are devoid of a lumen.

Expression of Claudin-5 (Figure 7D) and Occludin (Figure 7E) is

evident, but is localized mostly inside the cells rather than the pints

of cell-cell contact. Nevertheless, the presence of these junctional

proteins by themselves is not an indication that functional tight

junctions are being formed in these VLS.

Figure 3. Immunohistochemistry of junctional markers on endothelial cells. Localization of ZO1 expression/detection was heterogeneous,
with it being only visible as part of the membrane (i.e. cellular junctions) on elongated and arranged endothelial cells (red arrows), but being mostly
cytoplasmic in clumped and non-elongated cells (yellow arrows). As the cytoplasmic expression is decreased (grey arrow), it gradually shifts towards
being exclusively present in the membrane.
doi:10.1371/journal.pone.0106346.g003
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A further cytoarchitectural feature of the neurovascular unit is

the formation of a basement membrane that separates the vascular

structure from the neural tissue. The non-apical aspect of the VLS

presented the characteristic basement membrane molecules

laminin, vitronectin, as well as collagen I & IV (Figure 8), further

indicating that the VLS are forming vascular elements of the

NVU. Collagen I was also expressed in approximately 50% of

non-endothelial cells, whereas the other 3 extracellular membrane

molecules were only found within the VLS.

Neurovascular morphogenesis is a gradual process
To visualize the process of endothelial morphogenesis leading to

the formation of VLS, a series of time-lapse images of hCMEC/

hNSC coculture were taken every 24 hrs for 7 days (Figure 9).

These images revealed that hCMECs responded to the presence of

hNSCs by increasing their spatial density through alignment, as

well as by adopting an elongated shape. This endothelial

morphogenesis, defining the emergence of VLS, was evident

within 72 hrs of coculture. In contrast, hNSCs infiltrated the

vacant space and further formed patches that increasingly defined

the VLS by providing mural support for hCMEC stacking. On

day 7 (168 hrs), the endothelial and neural space is distinctly

defined into two separate compartments. This time line indicates

that hCMECs adapt from a differentiated phenotype adhering to

the tissue culture substrate to preferentially adhering to other

endothelial cells and providing a substrate for adhesion of some

hNSCs.

A quantification of the VLS by immunohistochemistry over

7 days indicated a gradual process of VLS formation (Figure 10).

Initially, no defined VLS were readily identified, although an

interaction and movements of hCMECs and hNSCs were evident.

Figure 4. Quantification of endothelial morphogenesis. (A) A distinctive neurovascular cytoarchitecture emerged in which hCMECs (CD31+)
formed vasculature-like structures (VLS) resembling a vascular network in between patches of hNSCs (polyclonal GFAP+). (B) The efficiency of VLS
formation was quantified by measuring the length of segments between VLS branching points. (C) In a few samples, singular capillary-like structures
comprising single layers of CD31+ cells between which a lumen-like space formation was observed. Diamidino-2-phenylindole (DAPI, blue) serves as a
nuclear counterstain. Scale bars represent 50 mm.
doi:10.1371/journal.pone.0106346.g004

Figure 5. Comparison of efficiency to form vasculature-like
structures. Total length of VLS in hCMEC/hNSC coculture was more
efficient than any of the other culture conditions, including hCMEC
monoculture (hCMEC only), the transwell coculture (hCMEC-hNSC),
seeding of hCMECs and hNSCs simultaneously (hCMEC:hNSC), and
seeding hCMECs on differentiated hNSCs (hNSC/hCMEC). Data points
on the graph represent the median with bars reflecting the value range
(post-hoc pairwise comparisons: * p,.05; **p,.01).
doi:10.1371/journal.pone.0106346.g005
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Figure 6. 3-dimensional cytoarchitecture of vasculature-like structures. (A) A 3-dimensional cytoarchitecture composed of hCMECs (CD31+
cells in red) and hNSCs (polyclonal GFAP+ cells in green) was visualized using confocal microscopy. (B) At the base of the coculture, hNSCs were seen
in a monolayer on which hCMECs formed VLS that was characterized by a multicellular organization that extended beyond the monolayer to form a
unique structure. (C) Some hNSCs with an astrocytic phenotype were associated with these VLS by forming a layer of cells around the tubular walls in
some cases with an elongated morphology and endfeet on the VLS (yellow arrows). The astrocytes were ensheathing the VLS. (D) A higher
magnification 3D confocal image clearly demonstrates structural differences in astrocytes’ morphology upon interfacing with the VLS rather than
being inside the neural patch. (E) A 3-dimensional cut through this area further indicates that astrocytes provide structural support (white arrows) to
the VLS. The orange line indicates the monolayer formed by hNSCs onto which the VLS rests. Nevertheless, no hollow lumen is formed by the VLS. It
hence here remains unclear if a 3-dimensional support structure is required to create a lumen and if they are inflatable in a flow system. Diamidino-2-
phenylindole (DAPI, blue) serves as a nuclear counterstain. Scale bars represent 100 mm.
doi:10.1371/journal.pone.0106346.g006
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Hence the two juxtaposed monolayers gradually interchanged.

Clear structural differences between hCMECs and hNSCs

emerged that indicated a persisting endothelial morphogenesis in

which hNSCs accumulated in patches in between hCMECs and

gradually refined the endothelial morphogenesis. Eventually, a

well-defined network of VLS was evident with well-defined

patches of hNSCs. This gradual organization was also evident in

the linear increase in the length of VLS between 1 and 7 days, as

well as the number of branches in between these. However, the

slope of VLS length and the number of branches was significantly

different (F(1;38) = 121.068, p,.001) indicating a stepper increase

in the number of branches than the length of segments.

Figure 7. Cytoarchitectural characterization of vessel-like structures. (A) Astrocytes (monoclonal GFAP+ cells) form a layer of support
around endothelial cells that organize into tubular structures readily identified by phalloidin. (B) Tubular structures are tightly packed with
endothelial cells expressing intercellular adhesion molecule-2 (ICAM-2), although there is a degree of inconsistency in along the VLS indicating
different stages of development/maturity. (C) Endothelial cells organized into VLS are polarizing as indicated by the expression of the apical marker
podocalyxin that influences astrocytes positioning of endfeet. (D) Endothelial cells within the VLS also express markers indicative of tight junctions,
such as Claudin-5 and Occludin.
doi:10.1371/journal.pone.0106346.g007
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hCMECs increase neuronal differentiation of hNSCs
Apart of the formation of VLS, coculture of hCMECs with

hNSCs also affected their phenotype (Figure 11). Specifically,

neuronal differentiation (MAP2+ cells) of hNSCs significantly

increased by a factor of 3 in the presence of hCMECs (U=0, p,

0.05), whereas differentiation into oligodendrocytes (GalC+ cells)

or astrocytes (GFAP+ cells) was not significantly affected. CD31

(U= 0, p,0.05) and VE-cadherin (U= 0, p,0.05) on hCMECs

were downregulated in the presence of hNSCs indicating that the

integrity of intercellular junctions was not yet fully restored after

7 days of coculture, although ZO1 was expressed equally in co-

and monoculture. The phenotypic consequence of coculturing

therefore predominately affected neuronal differentiation for

hNSCs, whereas in hCMECs some intercellular junction proteins

were reduced reflecting the state of VLS maturation.

Discussion

The neurovascular unit (NVU) defines the organizational

principle of the brain by highlighting the importance of

interactions between the vascular and neural compartments [1].

We here present a novel, yet simple, in vitro model of human

brain neurovascular interactions that affords the investigation of

autocrine, paracrine and juxtracrine signaling between neural and

endothelial cells during the formation of VLS. Indeed, these

cocultures appear to model the neurovascular environment in

which VLS form a ‘‘vascular network’’ in between which neural

elements form patches of ‘‘neural tissue’’. This in vitro assay will

be essential to provide a detailed study of the cellular and

molecular interactions between these different cell types to validate

or generate novel hypotheses about neovascularization and the

NVU in the human brain [34].

In vitro models of the neurovascular environment and
the BBB
A key feature of neovascularization is the formation of novel

vessel structures from existing blood vessels. In the brain, this

process is evident in the case of growing tumors, but also after

brain damage, such as stroke, as well as injection of NSCs to

promote repair [35]. Although the basic mechanisms of neovas-

cularization in the brain are consistent with vasculogenesis,

angiogenesis, arteriogenesis or collateral growth in other organs,

important differences exist, specifically in terms of the stabilization

of vessels, where astrocytic endfeet directly interact with endothe-

lial cells with tight junctions being created to form the blood-brain

barrier [36]. Increasing evidence also suggests that processes

involving Wnt signaling and pericytes in the early phases of

neurovascular development are crucial for BBB formation [37,38].

Modeling of the BBB indeed has been the main focus of in vitro
models to determine its specific characteristics that afford transport

of molecules into the brain, a quintessential limitation for

delivering therapeutics to the brain by systemic administration

[30,39–41].

In vitro assays of the BBB, however, are mostly focused on the

barrier properties and hence these in vitro systems often rely on a

single endothelial layer or a dual layer system, where endothelial

cells form one layer and astrocytes form a second adjacent layer

[42–44]. In some cases, a tri-cellular environment is created by

adding pericytes to the astrocytes’ cell layer to more closely mimic

the cellular environment present at the BBB [22]. The formation

of a basement membrane is also considered a crucial characteristic

of this environment [44]. These approaches provide useful model

systems to study the barrier properties between the endothelial-

astrocytes complex, but they do not model the dynamic signaling

between vascular and neural elements during vascularization, nor

do they model the more complex NVU that also includes neural

cells.

The NVU is therefore a more complex structure in which a

multitude of cell-cell, cell-matrix and secreted factors from

different cell populations interact to form a functional network.

Indeed, this complexity is a challenge to examine these interac-

tions in vivo. In vitro models of cells derived from brain tissue are

hence indispensible to thoroughly analyze signaling interactions in

the NVU. To this end, it is imperative that not only astrocytes are

present in the ‘‘neural’’ compartment, but also neurons and

oligodendrocytes that form patches nested in between the vascular

tubules forming a network-like structure, as is observed in actual

brain tissue [23]. Indeed, after 7 days of coculture, we here

Figure 8. Deposition of a basement membrane and presence of tight junction molecules. Characteristic extracellular matrix molecules,
such as laminin, vitronectin, collagen I and IV, delineate the basement membrane which separates the vascular-like structures from the neural
environment.
doi:10.1371/journal.pone.0106346.g008
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observe these features that emerge due to the specific interaction

between hCMECs and hNSCs. Astrocytic and oligodendrocyte

differentiation was unaffected by endothelial morphogenesis, but

neural differentiation increased more than three-fold. Neverthe-

less, it remains unclear if this is a direct effect of endothelial cell

signaling on neural stem cells through the Notch-Delta pathway

[45] or if it is indirectly modulated through endothelial cells

affecting signaling from astrocytes and oligodendrocytes. Never-

theless, these questions can now be addressed using this in vitro
assay.

The formation of vasculature-like structures and
vasculogenesis
Understanding the role of vascularization in the adult brain is

essential to develop novel therapeutics; be it to block angiogenesis

in the case of brain tumors, to enhance neovascularization in the

case of stroke, or to promote vascularization of tissue engineered

structures [6]. Indeed, vascularization processes, such as vasculo-

genesis, angiogenesis, arteriogenesis, and collateral growth, share

many common molecular signaling pathways, although cellular

behavior in these processes is distinct due to their microenviron-

mental interactions [5,46]. To this end, it is essential that we

develop an understanding of the cellular and molecular processes

involved in forming novel vessel structures. The formation of

Figure 9. Time-lapse of vasculature-like structure formation. Time-lapse images revealed the gradual development of a neurovascular
cytoarchitecture in hCMEC/hNSC coculture. Arrowheads indicate the border of VLS that became prominent after coculture for 72 h. This solid
cytoarchitecture was fixed after an observation period of 168 h. The contrast at borders between hCMECs (CD31+ in red) and hNSCs (polyclonal
GFAP+ in green) areas was enhanced computationally. Diamidino-2-phenylindole (DAPI, blue) serves as a nuclear counterstain. Scale bar, 200 mm.
doi:10.1371/journal.pone.0106346.g009
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vasculature-like structures (VLS) in vitro is a process reflecting

vasculogenesis [5].

It is evident here that specific conditions are required in vitro
for this process to occur. The inability of secreted factors to

generate VLS is suggesting that additional components are

Figure 10. Time course of endothelial morphogenesis. Immunocytochemistry using antibodies against CD31 (red) and polyclonal GFAP
(green) revealed vascular morphogenesis in hCMEC/hNSC coculture with different culture durations of 1 to 7 days. The efficiency of endothelial
morphogenesis that produced vasculature-like structures, where hCMECs (CD31+) align to form rods, was assessed by measuring the length of these
rods (white lines), as well as the number of branching points between these for each image. Based on these quantifications, it was evident that total
length of all individual rods and the number of branching points increased over 7 days in a linear fashion. A linear regression allowed the calculation
of the slope of this progression and afforded a statistical comparison between both to indicate a significant difference in slope between VLS length
and branching points. Diamidino-2-phenylindole (DAPI, blue) serves as a nuclear counterstain. Scale bar, 100 mm. Data points on the graph represent
the median with bars reflecting the value range.
doi:10.1371/journal.pone.0106346.g010
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essential to induce endothelial morphogenesis. Merely adding

endothelial and neural cells together, however, to provide

juxtacrine, as well as paracrine and autocrine signals, is still

insufficient to promote novel vessel structures to form, although

endothelial – NSC cocultures have been demonstrated to provide

insight into their signaling interactions [19,45,47]. For endothelial

morphogenesis to occur, ECs and NSCs require specific signaling

which is dependent on their differentiation state leading to a

cascade of interactions involving autocrine, paracrine and

juxtacrine signals.

Specifically, a differentiated endothelium here was a necessary

condition for NSCs to induce VLS formation. The requirement of

close contact between both types of cells further indicates the

involvement of juxtacrine factors as key enablers. Interference with

juxtacrine factors, such as the vitronectin receptor avb3, prevents

angiogenesis [48]. Vitronectin is one of the earliest extracellular

matrix proteins deposited in the formation of the basement

membrane, providing a motif for NSCs to attach, but also

governing interactions between ECs, as they align for endothelial

morphogenesis. A variety of additional juxtacrine factors (e.g.

laminin) have been identified, but it remains unclear if all these

molecules define necessary conditions to induce VLS or if some of

these are merely modulating factors that influence the efficiency

and urgency of vessel formation [49].

A further complication is the potential synergistic effects of

secreted and juxtacrine factors. It remains currently unclear if

paracrine, autocrine and juxtacrine factors act as independent ‘‘go

– no go’’ signaling points for different processes (e.g. migration,

proliferation) or if the combination of these is required to control a

specific process. For instance for paracrine factors, it is already

Figure 11. Differentiation status in hCMEC/hNSC coculture. To determine the phenotypic effects of the coculture of hCMECs with hNSCs,
specific markers relevant to the differentiation of hNSCs into neurons (MAP2+), astrocytes (monoclonal GFAP+) and oligodendrocytes (GalC+), as well
as junction proteins in hCMECs (CD31, VE-cadherin, ZO1) were measured. There was a 3-fold increase in neuronal differentiation in coculture versus
monoculture, but no significant effect on astrocytic or oligodendrocyte differentiation. Apart of ZO1, the percentage of hCMECs expressing CD31 and
VE-cadherin was significantly reduced in coculture with hNSCs.
doi:10.1371/journal.pone.0106346.g011
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known that a combined signaling of transforming growth factor

(TGF)-b1 and bFGF is required to stabilize a vessel construct [50].

The specific timing of these factors at a particular site is pivotal to

facilitate subsequent steps involved in endothelial morphogenesis

[51]. Paracrine signaling might therefore provide the general

stimulus for a process (due to its more diffuse nature), but local

control over specifically which cells are responsive might be

controlled more tightly by juxtacrine factors. An in vitro system, as

described here, with human cell lines that can be modified to

provide ‘‘no go’’ points, as well as administration of blocking

agents at different decision points, will be a crucial tool to unravel

these processes further.

Limitations of the assay
It is important to point out that the assay described here is only

using human cell lines and hence provides a consistent source of

cells to reliably produce VLS embedded within neural compart-

ments. The availability of NSCs from different regions of the

human brain [27,28] further affords modeling of the NVU

representing different brain regions. Especially studies investigat-

ing hypoxia will benefit from these aspects, as it is known that, for

instance, hippocampal cells are more vulnerable than cortical cells

[52].

The formation of VLS in hCMEC/hNSC coculture suggests

that these two cell types provide the sufficient conditions to

produce an endothelial morphogenesis. Nevertheless, it is known

that additional cell types, such as pericytes and microglia, populate

the NVU in the brain [1]. Specifically, pericytes have been

associated with functions of the BBB [53] with measurements of

trans-endothelial electrical resistance being required to determine

barrier functions [26]. To serve as a ‘‘complete’’ model of the

BBB, it would be essential that the formed capillaries can be

perfused to determine if indeed a lumen can be formed and if

there is transfer of molecules from the vascular to the ‘‘neural’’

compartment [54]. Microglia have also been reported to be

involved in the formation of novel blood vessels and are a key

modulator of signaling that involves inflammatory cytokines [55].

Therefore to truthfully model the NVU to study, for instance,

signaling in hypoxia, it is essential to further expand the assay

described here to also include these types of cells.

A general limitation of in vitro NVU or vasculogenesis assays

are that they are conceived in 2 dimensions for ease of use, as well

as analysis. Although the VLS here expanded beyond the

monoculture during endothelial morphogenesis, this cannot truly

be considered a 3 dimensional environment, but rather a 2D+
culture environment [56]. As the NVU in the brain is a 3D

environment, a further advance will be to use, for instance,

biomaterials to create an artificial 3D environment in vitro [57].

However, care needs to be taken in developing these assays, as

biomaterials themselves can provide signaling, as in the case of

Matrigel. Eventually these further technical developments will

provide more realistic in vitro models of vessel formation and the

NVU in the human brain.

Conclusion

In vitro models of vessel formation and the NVU using only

human cells derived from brain tissues are essential to gain a more

thorough understanding of the molecular and cellular processes

that govern these in the living human brain. The assay described

here relies on human cell lines that afford an abundant availability

and high reproducibility. Most importantly, they form vasculature-

like structures defined by neural patches containing astrocytes,

oligodendrocytes and neurons and provide a model to study

neurovascular interactions in vitro. However, there are limitations

to this assay, specifically the lack of pericytes and microglia, as well

as a 3 dimensional tissue structure, which are key elements of the

neurovascular unit. Nevertheless, this assay of a neurovascular

environment will provide a useful tool to investigate the dynamic

interactions between human endothelial and neural stem cells

while forming and maintaining vasculature-like structures.
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