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Abstract: Herpes simplex virus (HSV) keratitis is one of the leading causes of blindness worldwide.
Additionally, up to 90% of the population in some countries is seropositive for HSV. HSV can
cause a wide spectrum of ocular disease ranging from blepharitis to retinitis. Although the initial
clinical expressions of HSV-1 and HSV-2 are similar, HSV-2 has been reported more frequently in
association with recurrent HSV disease. Besides irreversible vision loss from keratitis, HSV also
causes encephalitis and genital forms of the disease. Despite these statistics, there remains no vaccine
against HSV. Current treatment therapies for related ocular diseases include the use of oral and topical
antivirals and topical corticosteroids. While effective in many cases, they fail to address the latency
and elimination of the virus, making it ineffective in addressing recurrences, a factor which increases
the risk of vision loss. As such, there is a need for continued research of other potential therapeutic
targets. This review utilized several published articles regarding the manifestations of HSV keratitis,
antiviral immune responses to HSV infection, and clinical management of HSV keratitis. This review
will summarize the current knowledge on the host–virus interaction in HSV infections, as well as
highlighting the current and potential antiviral therapeutics.
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1. Introduction Epidemiology, and Disease Burden

The herpes simplex virus (HSV), particularly HSV-1, is the leading cause of blindness
due to infection in the developed world. It is estimated that approximately 50% of adults
in the United States are seropositive for HSV, and up to 90% in regions such as Africa [1,2].
Globally, 67% of people under 50 years of age have been exposed to HSV1 and 11% to
HSV 2 [3,4]. HSV related keratitis occurs in 149 per 100,000 in the developed world, and
higher in less developed countries. New cases of HSV keratitis are estimated to be , and
recurrences of 50% at 5 years and 60% or greater at 20 years [5,6]. Globally, it has been
estimated that approximately 1.5 million cases of HSV related ocular infection occur every
year, with 40,000 of those ending up with longstanding visual detriment [5].

The virus’s ability to spread through airborne droplets contributes to its high degree
of transmissibility, often leading to blinding corneal ulcers. While HSV can affect any part
of the eye, in the United States alone, 30,000 people suffer from recurrent corneal HSV
involvement [7,8]. Besides the ocular sequelae of HSV-1, systemic manifestations also
include encephalitis and genital herpes [9]. In addition to the risk of severe vision loss
related to HSV keratitis, it impacts quality of life and poses a significant economic burden.
A study in 2003 estimated a cost of 17.7 million dollars annually due to HSV keratitis [10].
This obviates the need for safe and effective treatment options, as there is no existing HSV
vaccines at this time.

2. Host–Virus Interaction

HSV is an enveloped, double-stranded DNA virus that belongs to the Alphaherpesviri-
nae subfamily of the Herpesviridae family [11]. The structure of HSV-1 includes the viral
envelope with glycoproteins, viral tegument, capsid, and DNA genome [12]. It has tropism
for mucoepithelial cells and neurons. It causes lytic infection of epithelial cells and latent
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infection of most neurons. There is about 50% sequence homology between HSV-1 and
HSV-2 [11,13,14].

2.1. Virology

Primary HSV infection is initiated by HSV glycoprotein B (gB), gC, gD, gH, and gL
playing a role in HSV entry and fusion with the plasma membrane of host cells [15,16].
Glycoprotein B and glycoprotein C interact with heparan sulfate proteoglycans (HSPG)
expressed on the surface of host cells to mediate the initial attachment of the HSV with the
host cell. This results in a conformational change that triggers an interaction between gD
and host cell receptors, such as nectin-1 expressed on neurons and herpes virus entry media-
tors (HVEM) expressed on epithelial cells [16,17]. This interaction triggers a conformational
change in gD that mobilizes gH and gL to form the HSV multiglycoprotein complex, which
results in the fusion of the viral envelope with the plasma membrane of the host cell, and
subsequent endocytosis of HSV. Viral endocytosis is followed by viral uncoating which
releases the nucleocapsid with tegument protein into the host cytoplasm [15–17]. Following
uncoating of HSV, viral protein 16 (VP16) is released into the cytoplasm of host cells. VP16
is a structural protein that binds to host cell factor-1 (HCF) to form a VP16-HCF complex.
It has been demonstrated that HCF plays a role in the trafficking of VP16 to the nucleus,
and as such, it promotes the nuclear localization of VP16 as well as the assembly of the
TRFC. Interaction between Oct-1 and the VP16-HCF complex results in the assembly of the
transcription recognition factor complex (TRFC) [18]. The nuclear localization of VP16 as
part of the transcription complex is necessary to activate the transcription of HSV immedi-
ate early genes [18]. Delivery of the viral DNA into the nucleus of the host cell is followed
by production of HSV genes and genome replication [12,19]. Immediate early genes, early
genes, and late genes are HSV-1 viral gene expressions that encode immediate early protein,
early protein, and late proteins, respectively. HSV alpha genes are responsible for encoding
immediate-early/alpha proteins such as infected cell protein 47 (ICP47), ICP0, and ICP4
which play a role in transactivation of early genes essential for HSV replication [19–22].
HSV early proteins are encoded by HSV early genes, and these early proteins play a role in
HSV DNA genome replication [21,22]. Following genome replication, gamma genes are
expressed to play a role in encoding structural and capsid proteins. The gamma or late
proteins are responsible for assembling the capsid and membrane of the virus [22,23]. The
capsid proteins are transported to the nucleus to be assembled into pro-capsids and filled
with HSV DNA. The HSV nucleocapsid buds into the cytoplasm followed by synthesis
of viral glycoprotein and viral envelope acquisition. Then, HSV is released by exocytosis
or cell lysis [5]. The process of HSV replication in permissive corneal epithelial cells takes
about 12 h, followed by local cell-to-cell spread [11,13,14,24] and syncytia formation [25,26].
The virus traverses the neuroepithelial gap to enter nearby sensory neurons. The nucleo-
capsid is transported to the neurons of the trigeminal ganglion to establish latent infection
with intermittent reactivation of HSV [27]. During HSV-1 latency, there is no genome
transcription; however, there is the generation of latency-associated transcripts (LAT) by
HSV latently infected sensory neurons, which are required to maintain latency [28]. LAT is
required to inhibit HSV lytic gene expression as well as suppressing the apoptosis of HSV
infected sensory neurons [29] via preventing the effector function of Granzyme B secreted
by trigeminal ganglion CD8+T cells [27,30]. Cell-mediated immunity against HSV-1 is
responsible for inducing immune pressure on HSV, which drives the virus to latently infect
neurons of the trigeminal ganglion. CD8+T cells are required to prevent reactivation of
latent HSV in the neurons of the trigeminal ganglion. Th1 cells mediate type 1 immunity
against HSV-1 [28]. Reactivation of HSV infected neurons results in the non-destructive
replication of HSV in latently infected neurons, and the release of virions that reach the
epithelial cells of the ocular surface via anterograde transport to cause HSV shedding and
recurrent HSV keratitis [11,13,14].



Diagnostics 2022, 12, 2368 3 of 14

2.2. Innate Immune Response in HSV Keratitis

During primary HSV infection of the cornea, viral glycopeptides and HSV DNA
activate the innate and adaptive arms of the immune system. During HSV infection
of the ocular surface, pattern recognition receptors (PRRs) are responsible for detecting
the viral pathogen-associated molecular patterns (PAMPs) in infected cells, as well as
damage-associated molecular patterns generated from damaged infected cells following
HSV replication. The activation of these innate immune sensors, such as Toll-like receptors
(TLRs) and retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs), will induce down-
stream signaling transduction pathways, this culminates in the production of interferons
and pro-inflammatory cytokines [31,32]. The innate immune response to infection of the
ocular surface by HSV includes the generation of type I interferon (IFNα and IFNβ) by HSV
infected epithelial cells of the ocular surface. Corneal epithelial cells express pattern recog-
nition receptors, such as TLR2, TLR3, and TLR9 [33]. HSV-1 generates dsRNA during their
replication in the corneal epithelium [34]. These dsRNA are released from HSV-infected,
dying epithelial cells, and they are readily recognized by TLR3 expressed by corneal ep-
ithelial cells [35]. The interaction between dsRNA and TLR3 culminates in a downstream
signaling cascade, in which, TIR-domain-containing adapter-inducing interferon-β (TRIF)
is recruited and activated. The activated TRIF binds to tumor necrosis factor receptor associ-
ated factor 3 (TRAF3) and TRAF6. TRAF3 and TRAF6 engages and recruits TANK-binding
kinase 1 (TBK1) and Inhibitory kappaB kinase (IKK), respectively. The recruited TBK1 and
IKK phosphorylate interferon regulatory factor 3 (IRF3) and nuclear factor-kappaB (NF-κB),
respectively. The activated IRF3 and NF-κB translocate to the nucleus where they stimulate
genes required for coding interferons (type I IFN) and other cytokines [36–41]. Type I
interferon induces an antiviral microenvironment, activates NK cells, and inhibits viral
replication. The binding of type I IFN to its cognate receptor results in the recruitment and
phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT2
proteins. Binding of the phosphorylated STAT1 and STAT2 proteins to IFN-regulatory
factor 9 (IRF9) yields the generation of interferon-stimulated gene factor 3 (ISGF3). In the
nucleus of the HSV-infected cell, ISGF3 binds to interferon-stimulated response element
(ISRE) on DNA, which triggers the transcription of interferon-stimulated genes (ISG). ISGs
induce an antiviral response to control the HSV infection of the cornea [41–45]. Myeloid
dendritic cells (DC) and plasmacytoid DC have a role to play in the immune response to
HSV infection. Myeloid dendritic cells secrete IL-12 and IL-15, whereas plasmacytoid DC
secrete type I interferons in response to interaction between HSV PAMPs and pattern recog-
nition receptors on these dendritic cells [31,46,47]. The cellular innate immune response
against HSV is mediated by NK cells, which secrete TNF-α and IFNγ that mediate the
noncytolytic control of HSV infection [48]. Perforin and granzyme secreted by natural killer
cells are cytolytic enzymes that destroy HSV-infected host cells [49]. There is a crosstalk
between dendritic cells and natural killer cells when dendritic cells bind to Nkp30 receptors
on NK cells [50]. IL-12 and IL-15 produced by myeloid dendritic cells activate NK cells, and
activated NK cells secrete IFNγ and TNFα that reciprocally promote the antigen presenting
capability of DC [46,47].

2.3. Adaptive Immune Response in HSV Keratitis

Myeloid dendritic cells migrate to the regional lymph node where they encounter
naïve T cells in the paracortex area of the lymph node. In the paracortex area, myeloid
DC present viral antigenic peptides complexed to MHC class II molecules to naïve CD4+T
helper cells. These activated CD4+T helper cells undergo proliferation, and subsequently
in response to IL-12 secreted by myeloid DCs differentiate into Th1 cells that secrete IFN-γ,
IL-2, and TNFα. Th1 cells assist in priming the CD8+T cell response and activating myeloid
DC via the action of IL-2 and IFNγ, respectively. IL-2 drives the proliferation of CD8+T
cells. IFNγ enhances the antigen presenting capability of myeloid DC, which in turn
secrete IL-12 that drives the differentiation of CD8+T cells into Cytotoxic T lymphocytes
(CTL). Additionally, Th1 cell-derived IFNγ promotes the differentiation of HSV-specific
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B cells into HSV-specific IgG-secreting plasma cells. Because of the direct cell to cell
transmission of HSV, it often escapes the neutralizing antibodies produced against HSV. As
such, these antibodies have a lesser role in immune protection [31]. T cells are involved
in the immunopathology of HSV keratitis. In HSV infection, HSV-specific CD8+T cells
perform noncytolytic and cytolytic functions to mediate clearance of HSV and destruction
of HSV-infected cells, respectively [51,52]. Cytolysis of HSV infected corneal epithelial cells
is mediated by perforin and granzyme B secreted by CTL. Noncytolytic clearance of HSV
is mediated by IFNγ, which favors the generation of antiviral microenvironments. In these
antiviral microenvironments, viral replication is inhibited [53,54]. The cytolytic mechanism
of HSV clearance involves the activity of Fas ligand, perforin, and granzyme expressed by
HSV-specific CD8+T cells. The Fas/FasL-mediated clearance of HSV infected corneal cells
is mediated by HSV-specific CD8+T cells that express Fas receptors which interact with
FasL expressed on HSV infected corneal cells. This interaction induces the apoptosis of
HSV infected corneal cells. The Fas-mediated apoptosis involves the activation of caspase-8
and caspase-9 and subsequent activation of downstream caspase-3, -6, and -7, which cause
cell death [55,56]. Perforin and granzyme B released by HSV-specific CD8+T cells induce
apoptosis of HSV infected corneal cells via granzyme B cleaving pro-caspase [57,58].

3. HSV Keratitis

Primary HSV infection of related anterior segment conditions, such as conjunctivitis
or keratitis, is acquired through direct contact through mucous membranes. The virus,
even following resolution, remains harbored in the trigeminal ganglion, where there is
ophthalmic distribution. As such, recurrence is common; 40% of patients experience
2–5 relapses and 11% experience 6–15 relapses [59–61]. Although there is no definite
gender or race predilection for HSV keratitis, some reports claim an increase in incidence
for women, but a higher risk of recurrences in men [7].

Due to the recurrent nature of the infection, vision loss is common and typically occurs
with stromal corneal involvement. HSV can manifest anywhere in the eye, but is most
commonly presented in the cornea, specifically the epithelium as a dendritic keratitis. Once
it invades the corneal stroma, it results in a more severe visual compromise and risk of
recurrence [62]. It has been reported that over a 30-year period, 11% of patients end up
with a best corrected visual acuity of 20/200 or worse [63]. In patients who do retain good
visual acuity (VA) following HSV ocular infection, the quality of vision is often affected.
This is due to aberrations from corneal scarring or induced astigmatism. Bilateral disease is
also possible, though rare, and more severe [64].

3.1. Epithelial Keratitis

Epithelial keratitis from HSV infection presents variably from a punctate corneal
keratitis to dendritic keratitis or geographic ulcer. Symptoms of epithelial keratitis manifest
clinically as eye pain, redness, tearing, and foreign body sensation. Decreased corneal
sensitivity is also a common manifestation, due to damage to corneal nerves, leading to
neurotrophic keratopathy, further exacerbating the disease, and yielding visually damaging
effects such as corneal perforation and melt [62]. Dendritic keratitis has a characteristic
branching epithelial lesion with terminal end bulbs that harbor the live virus. As the disease
progresses, the dendritic ulcer begins to coalesce and form geographic ulceration that is
characterized by discrete flat edges (Table 1) [62].
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Table 1. Summary of corneal manifestations of HSV.

Corneal Location Type Presentation Other Clinical Findings

Epithelium
Dendritic keratitis Branching lesion with terminal end

bulbs [62].
Punctate keratitis, Decreased

corneal sensitivity, Neurotrophic
keratitis or ulcer [62,65].Geographic ulcer Coalesced dendrite with discrete flat

edges [62].

Stroma

Necrotizing
Fulminant stromal invasion of the virus,

with or without epithelial
ulceration [62,66,67].

Scarring, neovascularization,
corneal thinning, and lipid

deposition [68,69].Non-necrotizing/
disciform

Disciform ring of virus; stromal
inflammation without epithelial

compromise [62,66,67].

Epithelial keratitis is typically mild and self-limiting, lasting from two to three weeks
depending on severity and treatment. Non-pharmacological treatment approaches for
HSV epithelial keratitis include debridement, which is used as a solitary approach or in
conjunction with antiviral use to treat and prevent recurrences. Studies on efficacy are
inconclusive and variable [70]. Some have shown that both antivirals and debridement can
ease symptoms and shorten the course of the infection [70–72]. Amniotic membranes are
also a potential treatment approach in patients with recurrent disease, in conjunction with
antivirals, due to their anti-inflammatory effects [73]. Persistent epithelial keratitis is often
due to poor compliance with antiviral administration or, rarely, from antiviral resistance.
Another consideration for persistence is metaherpetic keratitis, following ulceration in
the absence of active viral infection. The reason for this is neurotrophic in nature and can
be managed by the use of topical lubricants, temporary tarsorrhaphy, therapeutic ptosis,
amniotic membrane, topical autologous serum, or recombinant human nerve growth
factor [65,74,75].

Diagnosis of epithelial keratitis is made through clinical examination with slit lamp
biomicroscopy. The typical, dendritic lesion contains terminal end bulbs with swollen
borders and intraepithelial cellular infiltration. The use of vital dyes can aid in identifying
these lesions. Both lissamine green and rose Bengal staining enhance the appearance of
the dendrite, facilitating diagnosis [76]. Yokogawa et al. utilized confocal microscopy
to map out epithelial lesions and evaluate cellular changes such as the appearance of
hyperreflective, irregular epithelial cells surrounded by multinucleated giant cells [77].
For less typical presentations that are not as readily identifiable on clinical presentation,
polymerase chain reaction (PCR) has been used to confirm the diagnosis of epithelial
HSK. Additional, more recent methods include tear collection to determine viral load and
immunofluorescence antibody assay (IFA) to detect the viral antigen. PCR is the most
sensitive method, and far superior to viral culture. However, this must be utilized prior to
initiating antiviral treatment for best accuracy. It has been reported that using vital dyes
may also interfere with PCR accuracy and inhibit HSV DNA detection [78].

3.2. Stromal Keratitis

Once the virus invades the stroma, it is deemed a stromal keratitis, which accounts for
20–48% of all ocular HSV infections [79]. Stromal keratitis is a result of a combination of
the toxic, local effects of the virus as well as the host’s immunological response [64]. In this
context, there is a higher risk of permanent vision loss due to deep corneal scarring and
stromal neovascularization. Those who develop stromal disease are also at increased risk
of recurrences, further increasing risk of vision loss (Table 1) [62].

The stromal forms of HSV keratitis can be classified as necrotizing and non-necrotizing,
or disciform, keratitis. The necrotizing form of stromal keratitis appears as a fulminant
stromal invasion of the virus, with or without epithelial ulceration. Due to the severity
of the inflammatory response to the virus, patients who suffer from this form of stromal
keratitis are at risk of corneal melt. The more common form is the non-necrotizing immune
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stromal keratitis. This is distinguished from the other form in that there is no necrosis,
despite the presence of stromal inflammation, and a less likelihood of epithelial compromise.
Clinically, this may manifest as a disciform lesion or ring, representing the deposition of the
immune complex within the stroma. Edema is also commonly present in the inferior region
of the corneal stroma, with or without the presence of keratic precipitates. Chronicity
and recurrence of stromal disease leads to scarring, neovascularization, corneal thinning,
and lipid deposition. HSV can penetrate further into the anterior segment, leading to
endotheliitis and uveitis that is unique in that it often raises intraocular pressure and may
present with iris atrophy [62,66,67].

Diagnosis of stromal HSV keratitis is primarily made through clinical examination
and identification of the aforementioned characteristics. PCR is not as accurate or helpful
in the diagnosis of the stromal form as it is for epithelial keratitis. Instead, enzyme-linked
immunosorbent assay (ELISA) and viral cultures are sometimes utilized. ELISA works
by detecting the virus from tears, but a caveat is that viral load often decreases after
approximately 11 days, making time of diagnosis an important factor. Viral culture is
considered the gold standard for diagnosis. With any method of diagnosis, timing and
accuracy are critical to be able to promptly initiate treatment and prevent risk of permanent
vision loss [76].

Although during primary infection, the virus undergoes replication within the corneal
structures, it is later transported back through the ophthalmic nerve in a retrograde manner
to the trigeminal ganglion where it causes latent infection. As such, HSV can be reactivated
at any point, and is usually triggered by stress or immunosuppression. This leads to
recurrences and further aggravation of the disease, as well as a greater likelihood to
negatively impact vision [68].

Another complication of stromal keratitis and cause of vision loss is the development
of stromal neovascularization. In order to accurately assess the degree and presence of
neovascularization, multimodal imaging utilizing fluorescein and indocyanine green is
superior to slit lamp examination alone, as this may underestimate the degree of the
condition. Specific interventions include angiography guided fine needle diathermy of
afferent feeder vessels, which is highly effective in cases where few feeder vessels are readily
identified. This treatment is repeatable, with patients usually requiring approximately
three or less sessions in total [69].

For multiple feeder vessels that are not as readily localized, anti-vascular endothelial
growth factor (anti-VEGF) has been attempted with varying results. Its efficacy for corneal
disease, especially neovascularization, which is already present, is questionable [64]. One
study using both fine needle diathermy and anti-VEGF agent, bevacizumab, yielded no
improvement in visual outcome despite minimizing the degree of neovascularization [80].

4. Clinical Management of HSV Keratitis
4.1. Antivirals

Antivirals are the treatment of choice to combat HSV related ocular manifestations.
Nucleoside analogues include acyclovir, ganciclovir, and trifluorothymidine, with acyclovir
the most commonly used antiviral agent. Antivirals are available in oral and systemic
forms. Acyclovir, valacyclovir, and famciclovir are Food and Drug Administration (FDA)
approved for the treatment of HSV in their oral form, along with two topical antivirals:
trifluridine and ganciclovir gel (Table 2) [55].
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Table 2. Summary of current treatment for HSV keratitis.

Class Drugs Uses

Antivirals

Topical: trifluridine,
ganciclovir gel [62]

Oral: acyclovir, valacyclovir,
famciclovir [62,81–84].

Treatment of epithelial keratitis,
treatment of stromal keratitis and

prophylactic use preventing
recurrence in stromal

keratitis [82,83,85].

Corticosteroids Prednisolone Stromal keratitis, endotheliitis,
trabeculitis, and uveitis [86–89].

Acyclovir is a nucleoside analog that inhibits DNA polymerase and viral replication.
It is a prodrug that enters the host and undergoes phosphorylation by various enzymes,
such as thymidine kinase, to morph into its active form, acyclovir triphosphate [81]. Since
it is phosphorylated by HSV thymidine kinase, mutations in thymidine kinase can lead
to acyclovir resistance. Topical forms of acyclovir are available in Europe, but not in the
United States at this time. It is the most commonly used antiviral due to its high affinity for
HSV infected cells and an overall good safety profile [62].

Oral antiviral agents are effective in HSV keratitis. The Herpetic Eye Disease Study
(HEDS) concluded that oral acyclovir was effective in reducing the risk of recurrence of
stromal keratitis by 50% when used prophylactically. It was found that patients who were
treated with oral acyclovir at a dose of 400 mg twice a day had a reduced risk of both
epithelial and stromal keratitis by 45%. Caution should be exercised due to risk of devel-
oping antiviral resistance with prolonged use [82]. However, in active epithelial keratitis
undergoing topical treatment already, the addition of oral acyclovir did not demonstrate
further benefit [83]. Acyclovir is safe and well tolerated, making it an effective treatment
option for HSV infection. Oral acyclovir possesses good bioavailability, but it is inversely
proportional to its dosage amount. Absorption can be facilitated by the addition of a valine
moiety. Though safe and well tolerated, acyclovir and other drugs in its class are subject to
viral drug resistance and are not effective in latent disease [85].

Valaciclovir is a prodrug of acyclovir but has a greater bioavailability that is 3–5 times
greater than acyclovir and comparable to intravenous forms. Famciclovir is a guanosine
analog and is the least commonly used of the three [62].

Foscarnet is a pyrophosphate analogue DNA polymerase inhibitor. Because of its
mechanism of action, it is often used in cases of acyclovir resistance because it is not
metabolized by viral thymidine kinase. It does also, however, pose an issue of resistance
attributed to mutations in viral DNA polymerase gene [64,84].

Trifluridine is a topical antiviral that is a pyrimidine nucleoside, used for epithelial
keratitis. The frequency of administration limits its use, as it is prescribed up to nine times
per day and may thus lead to epithelial toxicity. On the other hand, ganciclovir gel, a
purine nucleoside, is dosed less at five times per day, with less propensity for epithelial
toxicity. Both topical forms of antivirals appear to be comparable in efficacy, despite their
differences [62].

4.2. Topical Corticosteroids and Immunological Agents

Stromal keratitis with trabeculitis and/or uveitis is complex in management, often
necessitating the use of topical and oral antivirals, as well as topical corticosteroids. In
order to penetrate the anterior chamber, acyclovir at a dose of 800 mg five times daily is
warranted, in addition to the normal topical therapeutic dose [86]. To dampen the signifi-
cant inflammatory effects of HSV, particularly in stromal keratitis, endotheliitis, trabeculitis,
and uveitis, topical corticosteroids are the first line treatment. HEDS also demonstrated the
efficacy of combining a topical antiviral, trifluorothymidine, with topical corticosteroids.
Despite improvement in treatment efficacy with the addition of prednisolone in this study,
half of treatment failures occurred within 6 weeks of discontinuing the steroid, suggesting
the importance of a very slow and drawn-out taper. The ultimate endpoint visual acuity
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between the antiviral and placebo group versus antiviral plus corticosteroids was the same.
As such, delaying or forgoing the use of corticosteroids does not bear any additional visual
detriment. HEDS ultimately concluded that the use of topical corticosteroids reduced
inflammation by 68% as compared to placebo [87]. Because of the known adverse effects of
corticosteroids, particularly raised intraocular pressure and cataract, alternative treatments
such as topical cyclosporine have offered some benefit in non-necrotizing infections [88,89].
Topical cyclosporine may be helpful for patients who respond poorly to corticosteroids.
Additionally, interferon use in HSV can potentially mitigate the effects of viral replication
and activity. While topical interferon α2B has shown promise in the treatment of HSV
epithelial keratitis, it is not yet approved by the Food and Drug Administration (FDA) at
this time (Table 2) [62].

4.3. Potential Drug Therapies and Targets

While the current treatment options are effective and viable approaches to HSV kerati-
tis, there are limitations to efficacy as well as the problem of emerging antiviral resistance.
Furthermore, current treatments do not address the virus in its latent form or offer full
elimination of the infection. There is also no current treatment for the neurotrophic effects
that HSV has on the corneal surface.

A novel class of antivirals, known as helicase-primase inhibitors, works by preventing
viral DNA synthesis. Examples of drugs in this class include protelivir and amenamevir,
which have shown efficacy in herpes zoster and genital herpes. Both amanavir and prite-
livir inhibit helicase-primase and decrease viral shedding and replication. SC93305 and
BX795 may also potentially suppress viral replication (Table 3) [90,91]. This opened the
door for further investigative therapies that target and inhibit viral helicase-primase and
peptides [92,93]. One study suggested the use of BX795, which is a TANK-binding kinase
1 inhibitor, to block HSV-1 in infected cells [94]. Its impact on HSV and related ocular
infections is not yet established and warrants further research [95].

Table 3. Summary of potential therapeutic options for HSV keratitis.

Mechanism Result

Helicase-primase inhibitors Inhibit viral DNA synthesis [90–93].
BX795 TANK-binding kinase 1 inhibitor [94].

Aganirsen Antisense oligonucleotide inhibiting insulin receptor substrate-1 expression [96].
CRISPR-Cas9 Blocks viral replication [97–100].

3-O-sulfated heparan sulfate Prevents viral entry into host cell [16].
G2 Binds to 3-O-sulfated heparan sulfate to prevent viral entry [101].

Src kinase inhibitor molecule and Robo4 Reduced corneal angiogenesis [102].

6-thioguanine Suppresses GTPase Rac1 causing anti-inflammatory and immunosuppressive
effects [103–107].

Harringtonine Blocks peptide bond formation and aminoacyl-tRNA binding and protein
synthesis [108–112].

Another drug, aganirsen, showed similar results, in that it significantly reduced
corneal neovascularization, but did not show improvement in measured visual acuity.
However, patients did report improvement in overall quality of life. Aganirsen works as an
antisense oligonucleotide, inhibiting insulin receptor substrate-1 expression (Table 3) [96].

CRISPR-Cas9 was effective in blocking viral replication and showed promise in the
removal of the virus from latency. This has shown promise in many of the herpes fam-
ily viruses, including Epstein–Barr virus, human cytomegalovirus, and HSV-1 [97]. Re-
cently, clustered regularly interspaced short palindromic repeats (CRISPR) was approved
by the FDA for the treatment of diseases such as β-thalassemia, sickle cell disease, and
Leber Congenital Amaurosis 10 (LCA-10) (ClinicalTials.gov: NCT04208529; NCT03745287;
NCT03872479). Using this approach for infectious disease, both CRISPR and antiviral
prodrugs were able to demonstrate viral clearance where latent HIV-1 infections were
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harbored in mice [98]. In another study specific to latent HSV-1 in mice, a targeted endonu-
clease using AAV did not show loss of viral genome or subsequent therapeutic effect [99].
Later on, however, utilizing an improved adeno-associated virus (AAV) vector and dual-
meganuclease, there was found to be significant viral genome elimination and subsequent
therapeutic effect (Table 3) [100].

Yin et al. documented the first in vivo study using mRNA-based CRISPR delivery to
achieve a therapeutic effect against HSV-1 in human-derived corneas. Furthermore, using
HSV-1-erasing lentiviral particle (HELP), evidence suggests that HSV-1 may be effectively
eliminated from the trigeminal ganglion. HELP was administered in the same fashion as
anti-VEGF when used to prevent stromal neovascularization in HSV keratitis [68].

Potential solutions include targeting the host cell receptors, such as 3-O-sulfated
heparan sulfate and HSV envelope glycoproteins. Inhibition of viral entry utilizing these re-
ceptors can halt the spread of HSV and reduce the associated damaging effects (Table 3) [16].

Park et al. reported a peptide-acyclovir combination that was efficacious against HSV
ocular infection. The use of G2 with acyclovir had greater antiviral activity. G2 is a cationic
membrane penetrating peptide that binds to 3-O-sulfated heparan sulfate, which ultimately
prevents HSV entry into cells. This was further demonstrated in a study using slow release
of G2 through a contact lens in pig and human corneas. Other potential therapeutic targets
include HSV glycoprotein gD and enzyme heparanase to prevent viral entry and spread
(Table 3) [101].

Further anti-inflammatory and anti-angiogenic agents are under investigation for their
efficacy in the detrimental effects of HSV keratitis. Azacytidine, which is FDA approved
for the treatment of myelodysplastic syndrome, and retinoic acid have been shown to
stabilize regulatory T cells and reduce inflammation in mice with HSV keratitis [113,114].
Other promising targets include immune modifying nanoparticle therapy and pigment
epithelial-derived factor (PEDF) and docosahexaenoic acid (DHA), which can assist with
preserving corneal sensitivity and reducing inflammation and neovascularization, respec-
tively [115,116]. Lipid mediator resolvin D1 and microRNAs, particularly Mirl 55, can also
ease stromal keratitis and neovascularization [117,118]. Mirl 132 inhibitory nanoparticles
have shown evidence of reducing neovascularization in mouse models with HSV stromal
keratitis [119].

In addition to VEGF, an Src kinase inhibitor molecule was shown to reduce the degree
of HSV keratitis and subsequent corneal angiogenesis in mice models. Another molecule,
Robo4, when administered, had a similar result, due to its role in anti-angiogenesis and
VEGF signaling (Table 3) [102].

6-thioguanine (6-TG) is a thiopurine drug which is FDA approved as an anticancer
drug specifically for acute lymphoblastic leukemia and other hematological malignancies.
It works through the conversion of thioguanine deoxynucleotides into cellular DNA to
kill cancer cells [103–105]. These drugs have also been used in the treatment of inflamma-
tory bowel disease, which evidenced their mechanism of suppressing the small GTPase
Rac1, yielding anti-inflammatory and immunosuppressive effects (Table 3) [104,106,107].
Chen et al. investigated the use of 6-TG in HSV ocular infection and found it to be more
potent than both acyclovir and ganciclovir. When applied topically to the ocular surface, it
alleviated the effects of HSV and, moreover, was effective in acyclovir resistant strains [105].

Harringtonine is a natural alkaloid and homolog which exhibits antitumor activ-
ities, giving for its use in leukemia. Its mechanism of action is that it blocks peptide
bond formation and aminoacyl-tRNA binding, ultimately preventing protein synthesis
(Table 3) [108]. More recently, its antiviral effects have been recognized, particularly against
chikungunya virus [109], Singapore grouper iridovirus [110], varicella-zoster virus [111],
and Zika virus [112]. Liu et al. demonstrated its efficacy against five HSV-1 strains, two
of which were resistant to acyclovir. This was accomplished by harringtonine’s ability
to suppress the herpes virus entry mediator expression, thus preventing viral entry of
HSV-1 [9]. Finally, in 2021, Zhang et al. found that Ras-related C3 botulinum toxin substrate
1 could be a novel therapeutic target against HSV-1 [108].
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5. Conclusions

While antivirals are a viable treatment for HSV keratitis, there continues to be profound
vision loss due to HSV. As there is no vaccine at this time, there is a need for effective
therapies that not only safely treat the active HSV infection but aim to prevent latent
infection. Understanding the pathogenesis and virulence features of HSV can give rise to
novel therapeutic targets to prevent viral entry, shedding, and replication.
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