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The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be es-
tablished. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires 
expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use 
outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found signifi-
cant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model 
as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective 
alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further cul-
ture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and 
thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesi-
cles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.
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Introduction

During mammalian preimplantation development, the fertilized 
zygote undergoes a continuous series of cleavage steps and a series 
of morphological changes as it becomes a blastocyst. Prior to attach-
ment and implantation into the maternal uterine endometrium, the 
blastocyst should hatch from the zona pellucida. Hatched blastocysts 
are also able to attach onto a culture dish as a form of in vitro implan-
tation through outgrowth [1]. The morphological features of the peri-
implantation development of mouse embryos to the outgrowth 

stage are presented in Figure 1. The implantation process is highly 
complex and difficult to mimic in vitro, and a reliable research model 
has yet to be established. Many researchers have used embryo trans-
fer (ET) to assess implantation potential, but ET into pseudopregnant 
mice requires expert experimental skills and numerous sacrificial ani-
mals [2,3]. To overcome these economic and ethical problems, sever-
al researchers have tried to use outgrowth models to evaluate the 
implantation potential of embryos. Mammalian embryos, including 
mouse and human embryos, can attach to an extracellular matrix 
(ECM) protein-coated culture dish, and develop to peri- and postim-
plantation stages [4-6].

The initial stages of implantation are poorly understood in humans 
due to ethical limitations on experimentation. Most of our under-
standing of blastocyst development and early trophoblast differenti-
ation derives from work with animal models, including non-human 
primates, livestock, and rodents [7]. The location of the implantation 
site is difficult to find when in utero biochemical approaches are used 
due to its small diameter within the relatively large uterine lumen. To 
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explore the embryonic side of implantation, in vitro culture of blasto-
cysts has provided a useful experimental model. 

The outgrowth model provides an in vitro implantation assay that 
can be used to characterize the effects of various factors on invasion 
and proliferation in peri-implantation embryos [8,9]. Culturing be-
yond the blastocyst stage and assessing outgrowth development 
provide a more sensitive assay for toxins present in in vitro fertiliza-
tion (IVF) laboratories than traditional quality control assays such hu-
man sperm motility and the mouse two-cell embryo assay [10]. 
However, a more refined approach than the blastocyst outgrowth 
model is required to investigate the regulation of signaling and ad-
hesion molecules at the apical surface of mural trophoblast cells be-
fore they dissociate and migrate outward [11].

The fibronectin-binding assay is ideal for investigating the onset of 
adhesion at the apical surface of trophoblast cells, since it is per-
formed rapidly and detection does not require any cellular activity 
beyond ligand binding. Image analysis is effectively used to quantify 
the spreading area of trophoblasts and the inner cell mass (ICM). The 
fibronectin-binding assay provides a useful model for assessing the 
adhesive activity of integrins on the blastocyst surface during peri-

implantation development. This model is applicable for a compara-
tive analysis of adhesion throughout development if embryos are 
treated with various biological molecules and reagents. Some ago-
nists capable of accelerating the rate of blastocyst outgrowth con-
comitantly shift the onset of fibronectin-binding activity, providing 
evidence for the physiological relationship between this activity and 
the adhesion competence of blastocysts [12-15].

In this review, we provide an overview of significant reports regard-
ing historical and functional blastocyst outgrowth models, and sug-
gest that the outgrowth model might be an effective alternative 
method to ET for analyzing experimental culture conditions or treat-
ments. Furthermore, advanced researches with the blastocyst out-
growth model is proposed to investigate extracellular vesicles (EVs) 
and microRNAs (miRNAs) as bioactive molecules and biomarkers.

History of research using the outgrowth model 
of mammalian blastocysts

We searched for the keywords “blastocyst” and “outgrowth” in the 
PubMed database, and found that 472 papers had been published. 

A

B

Figure 1. Morphology of hatched blastocyst and the outgrowth stage. (A) Serial images of hatched blastocysts were captured by a time-lapse 
monitoring system for 3 days. Scale bar, 50 μm. (B) Scanning electron microscopic image of outgrowth embryos. The cluster of the inner cell 
mass is presented in blue and the spreading-out trophoblasts are presented in brown.
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Table 1. Summary of early studies (1966–2000) on outgrowth of mammalian blastocysts 		

Author (year)/journal  Model 
system Significant finding

Gwatkin and Meckley (1966)/Ann Med Exp Biol Fenn Mouse First report on the attachment and outgrowth of blastocysts in vitro
Menke and McLaren (1970)/J Reprod Fertil Mouse Carbon dioxide production and trophoblast outgrowth
Spindle and Pedersen (1973)/J Exp Zool Mouse Fixed nitrogen requirements in outgrowth of blastocysts
Dunn (1974)/J Reprod Fertil Mouse Inhibition of blastocyst outgrowth in vitro by serum from mice with ascites teratoma
Searle et al. (1976)/J Exp Med Mouse Loss of antigen on the trophectoderm at the time of implantation and prevention of 

  maternal immune rejection during the establishment of the fetal allograft
Surani (1977)/J Cell Sci Rat Outgrowth of rat blastocysts in vitro with extracellular uterine luminal components, 

  serum, and hormones
Shaffer and Wright (1978)/J Anim Sci Swine Attachment and trophoblastic outgrowth of swine blastocysts in vitro
Atienza-Samols and Sherman (1978)/Dev Biol Mouse Outgrowth-promoting factor for the inner cell mass of the mouse blastocyst
Surani (1979)/ Cell Mouse Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in mouse 

  blastocysts outgrowth
Shalgi and Sherman (1979)/J Exp Zool Mouse Scanning electron microscopy of the surface of normal and implantation-delayed mouse 

  blastocysts during development and in vitro outgrowth
Wordinger and McGrath (1979)/Experientia Mouse In vitro hatching and attachment of the mouse blastocyst on the collagen substratum 

  with serumless medium             
Copp (1980)/Placenta Field vole Field vole (Microtus agrestis) outgrowth in vitro for a study of trophoblast cell migration
Gonda and Hsu (1980)/J Embryol Exp Morphol Mouse Correlative scanning electron, transmission electron, and light microscopic observation 

  of mouse blastocyst outgrowth and early-egg-cylinder development in vitro
Kubo et al. (1981)/J Exp Zool Mouse Inhibition of mouse blastocyst attachment and outgrowth by protease inhibitors
Van Blerkom and Chavez (1981)/Am J Anat Mouse Morphodynamics of outgrowths of mouse trophoblast in the presence and absence of 

  a monolayer of uterine epithelium
Glass et al. (1983)/J Cell Biol Mouse Degradation of extracellular matrix by mouse trophoblast outgrowths in a model for 

  implantation
Chavez and McIntyre (1984)/J Reprod Immunol Mouse Abnormalities in mouse peri-implantation blastocysts outgrowth with sera from women 

  with histories of repeated pregnancy losses
Armant et al. (1986)/Dev Biol Mouse Promotion effects of fibronectin and laminin on attachment and outgrowth of mouse 

  blastocysts
Armant et al. (1986)/Proc Natl Acad Sci U S A Mouse The effect of hexapeptides and the Arg-Gly-Asp tripeptide on attachment and outgrowth 

  of mouse blastocysts cultured in vitro 
Dealtry and Sellens (1987)/Roux Arch Dev Biol Mouse Expression of lectin receptors on peri- and early post-implantation mouse embryos
Menino and Williams (1987)/Biol Reprod Bovine Activation of plasminogen by the early bovine embryo in blastocysts and outgrowth 

  embryos
Carson et al. (1988)/Dev Biol Mouse Collagens and Arg-Gly-Asp supported embryo attachment and outgrowth in vitro
Nieder and Caprio (1990)/Mol Reprod Dev Hamster In vivo and in vitro development of blastocysts and outgrowth in the Siberian hamster
Haimovici et al. (1991)/Biol Reprod Mouse Effects of cytokines from activated lymphocytes and macrophages on blastocyst 

  implantation and outgrowth in vitro
Suzuki et al. (1993)/Reprod Fertil Dev Guinea

  pig
Hatching of the blastocysts and trophoblast outgrowth of guinea pig embryos in 
  serum-free media

Yelian et al. (1993)/J Cell Biol Mouse Recombinant entactin promoted mouse primary trophoblast cell adhesion and 
  migration through the Arg-Gly-Asp recognition sequence

Haimovici and Anderson (1993)/Biol Reprod Mouse Platelet-derived growth factor and fibroblast growth factor enhanced trophoblast 
  outgrowth with the fibronectin matrix coating of the culture wells

Stachecki et al. (1994)/J Reprod Fertil Mouse Mouse blastocyst outgrowth and implantation rates following exposure to ethanol 
  or A23187 during culture in vitro

Juneja et al. (1995)/Endocrine Mouse Early embryonic development and trophoblastic outgrowth by activated and inactivated 
  macrophages

Bartlett and Menino (1995)/Biol Reprod Sheep Evaluation of extracellular matrices and the plasminogen activator system in sheep inner 
  cell mass and trophectodermal outgrowth in vitro

Yelian et al. (1995)/Mol Reprod Dev Mouse Molecular interactions between fibronectin and integrins during mouse blastocyst 
  outgrowth

Drakakis et al. (1996)/J Assist Reprod Genet Mouse In vitro development of mouse embryos beyond the blastocyst stage into the hatching 
  and outgrowth stage using different energy sources

(Continued to the next page)
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The oldest paper was “Chromosomes of the mouse blastocyst follow-
ing its attachment and outgrowth in vitro” published by Gwatkin and 
Meckley in 1966 [16]. This outgrowth model of in vitro implantation 
was developed by culturing blastocysts under various conditions. Af-
ter breakdown of the spherical morphology of the blastocyst, tro-
phoblast cells can spread out as a monolayer of cells around the base 
of the embryo concomitantly with ICM (Figure 1). The outgrowth rate 
is calculated by the identified number of blastocysts. The grading of 
outgrowth embryos is determined by the size of the ICM, the num-
ber of cells, and the area of trophoblasts, which are spreading out. 
This in vitro experimental model was developed to overcome the 
complications of in vivo and ex vivo implantation models, and has 
been used by several laboratories to evaluate the effects of morpho-
logical and biochemical factors on the peri-implantation develop-
ment of blastocysts [17-19].

Significant papers related to blastocysts and outgrowth published 
through 2000 are summarized in Table 1. Most of the early papers fo-
cused on the outgrowth of mouse blastocysts, but they also encom-
passed such as rat, bovine, swine, field vole, guinea pig, sheep, ham-
ster, and monkey models, and some were even conducted in hu-
mans. In addition, studies reported the morphological changes ex-
perienced by blastocysts during outgrowth, the effects of serum and 
serum-derived components on various conditions, and the effects of 
inhibiting outgrowth using antibiotic components. In particular, the 
functional role of the Arg-Gly-Asp (RGD) peptide in the process of 
implantation and outgrowth was thoroughly studied by the Armant 
group. The RGD sequence of various ECM proteins intervene in their 
binding to integrins during the cell adhesion and peri-implantation 
process [20,21]. The antagonistic peptide Gly-Arg-Gly-Asp-Ser-Pro 
(GRGDSP) inhibits blastocyst outgrowth on various ECM proteins 
such as fibronectin, vitronectin, type II collagen, and entactin/nido-
gen [4,22,23]. In the adhesion and invasion of trophoblast cells to the 
maternal endometrium, the diverse array of adhesive ECM proteins 

and integrins could provide functional redundancy to increase the 
likelihood of successful implantation. 

Since then, molecular biological methods have been introduced to 
study the genes that are specifically expressed during outgrowth 
and their mechanisms of action. Major outgrowth studies from 2000 
to the present have focused on evaluating the effects of various ami-
no acids, growth factors, cytokines, and biological and chemical 
components, and on identifying the mechanisms of action [24-28]. 
The outgrowth model has also been used in studies to effectively 
separate and to efficiently produce embryonic stem cells from blas-
tocysts [29-31]. Studies have been conducted to identify and charac-
terize miRNAs and EVs derived from blastocysts and outgrowth em-
bryos in mouse and bovine models, as well as humans. It was shown 
that the miRNAs and EVs had significant effects on pre- and peri-im-
plantation embryonic development and regulation of the implanta-
tion process.

Recent papers have used the mouse blastocyst outgrowth model 
as an efficient method for assessing the developmental competence 
of in vitro cultured embryos and peri-implantation viability. Kelley 
and Gardner [32] published a paper entitled “Individual culture and 
atmospheric oxygen during culture affect mouse preimplantation 
embryo metabolism and post-implantation development.” They 
found that peri-implantation development was not affected by indi-
vidual culture under 5% oxygen, but under 20% oxygen, individual 
culture resulted in smaller outgrowths than embryos that had been 
cultured in groups, indicating they were less viable. We similarly 
showed that a dynamic oxygen concentration (decreasing from 5% 
to 2%) had beneficial effects on mouse pre- and peri-implantation 
development using an outgrowth model [33]. 

In a knock-out model in mice, an outgrowth assay was applied to 
evaluate early embryonic lethality and impaired trophoblast func-
tion. The blastocysts from dUTPase knock-out mice could not ad-
vance to the outgrowth stage [34]. It was also shown that the med20 

Author (year)/journal  Model 
system Significant finding

Rappolee et al. (1998)/Mol Reprod Dev Mouse Expression of fibroblast growth factor receptors in peri-implantation and outgrowth 
  mouse embryos

Shiokawa et al. (1998)/Mol Hum Reprod Mouse Outgrowth of embryos on the decidual cells was inhibited by the addition of herbimycin 
  A in a dose-dependent manner

Nowak et al. (1999)/Biol Reprod Mouse Transforming growth factor-beta stimulates mouse blastocyst outgrowth through 
  a mechanism involving parathyroid hormone-related protein

Wuu et al. (1999)/Biol Reprod Mouse Tumor necrosis factor-alpha allowed implantation in vitro and decreased the ability 
  of embryos to differentiate into fetuses after implantation.

Shiokawa et al. (1999)/Biol Reprod Mouse Functional role of Arg-Gly-Asp–binding sites on beta-1 integrin in embryo implantation 
  using mouse blastocysts and human decidua

Mishra and Seshagiri (2000)/Reprod Biomed Online Golden 
  hamster

Heparin binding-epidermal growth factor improved blastocyst hatching and trophoblast 
  outgrowth in the golden hamster.

Table 1. Continued
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gene is essential for early embryogenesis and regulates nanog ex-
pression in mouse blastocysts and outgrowth embryos [35]. Mcrs1 
mutant preimplantation embryos exhibited normal morphology at 
the blastocyst stage, but did not progress to the gastrulation stage, 
resulting in embryonic loss. Outgrowth assays revealed that the mu-
tant blastocysts did not form a typical ICM colony, the source of em-
bryonic progeny [36]. 

Developmental competence of mouse 
blastocysts in outgrowth in vitro and 
implantation in utero

The in vitro blastocyst outgrowth model mimics implantation in the 
uterus in vivo and enables experimental studies on implantation 
events and mechanisms. This model has also revealed the relation-
ship between metabolism—based on morphokinetic findings of 
preimplantation embryos—and implantation potential, and has 
been used as an alternative tool to study trophoblastic invasion and 
motility [37-40]. 

Lane and Gardner [41] reported quantitative findings on various 
parameters of embryo development in vitro, which were correlated 
with fetal development after the transfer of cultured blastocysts. 
Morphology, as assessed by blastocyst formation and hatching, was 
not correlated with subsequent developmental competence. In con-
trast, significant positive correlations were found between the num-
ber of blastocyst cells and the number of ICM cells and subsequent 
fetal development. Similarly, the attachment ability of blastocysts 
and ICM outgrowth were also positively correlated with fetal devel-
opment. Glycolytic activity of blastocysts appeared to be negatively 
correlated with fetal development after transfer.

In our previous studies, we confirmed a correlation in the develop-
mental competence of preimplantation embryos between blastocyst 
outgrowth in vitro and implantation in utero [42,43]. We established a 
novel coculture system with outgrowth and preimplantation embry-
os, and investigated how this coculture system improved preimplan-
tation and peri-implantation embryonic development both in vitro 
and in utero. In the coculture system, it was observed that outgrowth 
embryos secreted EVs by time-lapse monitoring and scanning elec-
tron microscopy. Coculture with outgrowth embryos significantly in-
creased the percentage of outgrowth in vitro, which was correlated 
with implantation rates in utero after ET [42]. 

A time-lapse monitoring system has been applied to select trans-
ferrable embryos and to predict the developmental competence of 
preimplantation embryos in human IVF-ET programs. We studied 
blastocyst development and implantation potential in utero based 
on the third cleavage and compaction times using a mouse model 
[43]. Our results provided evidence that analyzing morphokinetics by 

a time-lapse monitoring system may improve the efficacy of selec-
tion of transferrable embryos with high implantation potential in hu-
man IVF-ET programs. In that study, we found that the times of the 
third cleavage to the four-cell stage and compaction to the morula 
stage were useful morphokinetic parameters for predicting the po-
tential of mouse preimplantation embryos to develop into out-
growth in vitro and implantation in utero [43].

Future research using the outgrowth model

Recently, many studies have investigated the role of EVs in repro-
ductive events, including oogenesis, embryo development and 
death, oviduct–embryo crosstalk, IVF and others [44-47]. Saadeldin 
et al. [48] demonstrated that porcine embryos secreted EVs in culture 
medium that contained mRNA sequences of pluripotency genes. 
They suggested that EVs carrying embryotrophic signals could act as 
mediators to improve preimplantation development. 

It was proposed that EVs from pre- and peri-implantation embryos 
might also communicate with maternal immunological factors by 
presenting and processing antigens [49,50]. EVs were found to con-
tain major histocompatibility complex molecules, cytokines, and 
miRNAs. Of particular note, HLA-G-positive EVs from healthy term 
pregnant women’s plasma have been found to bind with T lympho-
cytes and regulate peripheral T lymphocyte STAT3 phosphorylation 
and activation [51]. As a way to induce a favorable immune system 
response, EVs from embryos bind to CD8+ and increase the number 
of interleukin-10+ cells among peripheral CD8+ cells. By producing 
interleukin 10, an anti-inflammatory cytokine, CD8+ T lymphocytes 
might alleviate the antigen-induced inflammatory responses. Using 
immunoelectron microscopy, it was observed that progesterone-in-
duced blocking factor containing EVs from embryos communicated 
with immune cells [52].

We also isolated and identified EVs and miRNAs from blastocysts 
and outgrowth embryos [53]. The EVs from outgrowth embryo-con-
ditioned media have rounded membrane structures that range in di-
ameter from 20 to 225 nm. Incubation with EVs improved preimplan-
tation embryonic development by increasing cell proliferation and 
decreasing apoptosis in blastocysts. Moreover, the implantation rate 
following ET was significantly higher in EV-supplemented embryos 
than in the control group [54]. This finding suggests that since EVs 
contain bioactive molecules from outgrowth embryos, they could 
enhance embryonic developmental competence and even implan-
tation potential in mice. Giacomini et al. [54] showed that the EVs se-
creted from cultured embryos not only seemed to improve develop-
mental competence by exchanging embryotrophic messages, but 
could also send bioactive molecules to the maternal endometrium, 
supporting a favorable endometrial environment for implantation.



� https://doi.org/10.5653/cerm.2019.03216

� Clin Exp Reprod Med 2020;47(2):85-93

90

EVs play a role in cell-to-cell communications because their cargo 
contains potentially bioactive molecules relevant for physiological 
responses and pathological conditions. Since miRNAs in EVs have 
been well characterized, bioinformatic research into the miRNA ex-
pression profiles of EVs will be helpful to explore their physiological 
functions and pathological biomarkers. The numerous suggested 
biomarkers that could be used to predict the developmental compe-
tence of embryos include miRNAs secreted from in vitro cultured pre- 
and peri-implantation embryos. In particular, the miRNA profile has 
been reported to show correlations with fertilization using IVF and 
intracytoplasmic sperm injection, chromosomal abnormalities of 
embryos, and pregnancy outcomes [55,56].

Recently, we performed the first profiling study on miRNAs of EVs 
from blastocysts, non-outgrowth embryos, and outgrowth embryos 
in mice [57]. A total of 3,163 miRNAs were detected in the blastocysts 
and outgrowth embryos, and the miRNA expression profiles were 
significantly different between non-outgrowth and outgrowth em-
bryos. Ten miRNAs (let-7b, miR-23a, miR-27a, miR-92a, miR-183, miR-
200c, miR-291a, miR-425, miR-429 and miR-652) were identified as 
significant differentially expressed miRNAs in outgrowth embryos by 
microarray and in silico analysis. The expression of these miRNAs 
markedly changed during preimplantation embryo development. In 
particular, let-7b-5p, miR-200c-3p and miR-23a-3p were significantly 
upregulated in outgrowth embryos compared with blastocysts and 
non-outgrowth blastocysts [57]. This study suggested that differen-
tially expressed miRNAs in outgrowth embryos compared with blas-
tocysts and non-outgrowth embryos could be involved in embryo 
attachment and interactions between the embryo proper and ma-
ternal endometrium during the implantation process. We conclude 
that EVs secreted from outgrowth embryos could improve the devel-
opmental competence of in vitro cultured mouse preimplantation 
embryos. Findings of specific embryotrophic factors and miRNAs 
from outgrowth embryos might be valuable for advancing reproduc-
tive technologies in the future.

Conclusion

Blastocyst outgrowth has proven to be a useful and efficient model 
for investigating the adhesion and invasion of trophoblast cells dur-
ing the implantation process of mammalian embryos. The develop-
mental program of blastocysts and trophoblast cells is regulated by 
transcripts or proteins produced at an earlier stage by preimplanta-
tion embryos. Post-translational modifications of specific proteins, 
rather than biosynthesis, regulate the onset of trophoblast differenti-
ation in preparation for blastocyst implantation and outgrowth in vi-

tro. The regulation of blastocyst development and outgrowth adhe-
sion independently of gene activation enables cells to adapt to alter-

ations in the conditions of in vitro culture. It was recently suggested 
that spent embryo culture medium metabolites might be related to 
the ability of blastocysts to undergo outgrowth [58]. In a metabolite 
analysis of embryo culture medium, non-outgrowth blastocysts that 
lacked the ability to adhere in vitro had increased requirements for 
lactate and pyruvate, and showed a significant reduction of the pyru-
vate-alanine ratio. Thus, it was proposed that the aforementioned 
metabolites from the spent medium should be further analyzed us-
ing proper experimental models to substantiate their potential as 
biomarkers for predicting the implantation competence of embryos 
in clinical IVF-ET programs [58]. 

Supplementation of specific molecules in culture media could im-
prove pre- and peri-implantation development. Treatment with the 
well-known appetite hormone leptin increased the blastocyst out-
growth rate of ICM during embryonic stem cell derivation [59]. This 
year, Truong and Gardner [60] reported that addition of a combina-
tion of three antioxidants (acetyl-L-carnitine, N-acetyl-L-cysteine, and 
α-lipoic acid) to vitrification and warming solutions resulted in a sig-
nificant increase in the outgrowth area, which was correlated with 
higher fetal weight, crown rump length, and limb development after 
ET than were found in embryos that did not receive antioxidant 
treatment. 

In many previous studies and our experiments, a significant correla-
tion was found between blastocyst implantation in vitro by an out-
growth assay and implantation in utero by ET. This review suggests 
that the outgrowth blastocyst assay might be an alternative to ani-
mal experimentation involving ET in utero. Using the outgrowth as-
say could reduce the number of sacrificed animals needed to assess 
the developmental competence of peri- and postimplantation em-
bryos [61]. Therefore, we suggest that the outgrowth model might 
be a cost- and time-effective alternative method to ET for evaluating 
effective culture conditions or treatments. To analyze placental and 
fetal development in utero, the ET approach will still be required. 
However, implementing screening tests using the outgrowth model 
described herein will effectively reduce time, cost, and the number of 
surgical procedures and sacrifices in animals. 

Recently, we found that outgrowth embryos secreted EVs contain-
ing specific miRNAs. The function of miRNAs from outgrowth embry-
os should be elucidated in further research. An advanced outgrowth 
model and further culture of outgrowth embryos could provide a 
subtle and valuable research model of peri- and postimplantation 
development, with implications for progress in assisted reproductive 
technologies.
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