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Abstract: The precise role played by the tumor suppressor gene NF1 in melanocyte biology and
during the transformation into melanoma is not completely understood. In particular, understanding
the interaction during melanocyte development between NF1 and key signaling pathways, which
are known to be reactivated in advanced melanoma, is still under investigation. Here, we used
RNAseq datasets from either situation to better understand the transcriptomic regulation mediated
by an NF1 partial loss of function. We found that NF1 mutations had a differential impact on
pluripotency and on melanoblast differentiation. In addition, major signaling pathways such as
VEGF, senescence/secretome, endothelin, and cAMP/PKA are likely to be upregulated upon NF1
loss of function in both melanoblasts and metastatic melanoma. In sum, these data bring new light
on the transcriptome regulation of the NF1-mutated melanoma subgroup and will help improve the
possibilities for specific treatment.
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1. Introduction

The implication of the NF1-encoded protein neurofibromin (NF1) in melanocyte bi-
ology has been investigated for more than 20 years. Despite its ubiquitous expression,
NF1 has been described as regulating lineage-specific mechanisms by interacting with
melanocyte-associated genes such as MITF or cKIT [1]. Indeed, NF1 germline mutations
induce neurofibromatosis type 1 syndrome, manifestations of which include defects in
neural crest-derived cells such as melanocytes [2]. The embryological origin of these de-
fects was previously described in Nf1 mouse models. In fact, Nf1+/− or Nf1−/− mice in
which mutations were specifically induced in the melanocyte lineage showed hyperpig-
mentation [3,4]. Moreover, a partial rescue of the belly spot phenotype in MitfMi-wh/+ or
cKitW/+ mice was observed when the latter were crossed with Nf1+/− mice [5,6]. These
“café-au-lait” macules, which are benign melanocytic lesions, can be observed in almost all
patients [7,8], and the cells located in the macules usually carry a second somatic mutation
on the wildtype NF1 allele suggesting a selective advantage to the cell subpopulation [9].

The main described function of NF1 is a GTPase activity which inactivates RAS [10],
and RAS deregulation in the melanocyte lineage is known to lead to pigmentation de-
fects [11]. This phenotype can be explained at least in part by the fact that pigmentation’s
main regulator, MITF, can be phosphorylated by an active RAS-ERK pathway [12]. NF1
can also be phosphorylated by the protein kinase A (PKA), whose pathway is activated by
cAMP and plays an important role during melanogenesis [13]. Another NF1 function is to
interact with the cytoskeleton structures in order to control lamellopodia formation and
actin polymerization. These processes are mainly regulated by RAC1 signaling, and it was
recently observed that variable NF1 expression levels changed the cell migration rate of
melanoblasts in an RAC1-dependent manner [14]. Moreover, microtubule network fluctua-
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tion as well as FAK activity may also be influenced by NF1 [15–17]. Furthermore, NF1’s
interaction with cKIT signaling leads to a dysregulation of the melanoblast migration [6].

Interestingly, the migration and invasive phenotype of melanoblasts during devel-
opment closely resemble the aggressive behavior of melanoma metastases [18–20]. The
cell plasticity of lineage-committed melanoblasts is also observed in certain clones of
melanoma tumors which have undergone dedifferentiation and which are usually refrac-
tory to treatments [21,22]. Recently, miRNAs identified in a human model of melanoblasts
were described as potential drivers of melanoma development [23]. Malignant melanoma
has been classified in four subgroups according to its main genetic drivers by The Cancer
Genome Atlas: mutant BRAF, mutant NRAS, mutant NF1, or triple wild-type tumors [24].
In general, mutant NF1 melanoma contain WT BRAF and WT NRAS, and rather carry
comutations in the so-called RASopathy genes (PTPN11 or RASA2). These tumors typically
appear on chronically sun-exposed skin or in older individuals [25,26]. However, NF1
mutations can sometime appear concurrently with BRAF or NRAS mutations. Indeed, a
classification in three subgroups has also been suggested: mutant BRAF, mutant NRAS,
non-BRAFmut/non-NRASmut [27]. These co-occurring mutations lead to a higher RAS
GTPase activity and resistance to BRAF inhibitors [28]. For example, the treatment of
melanoma cells with the combination of BRAF inhibitor and MEK inhibitor showed either
a loss of NF1 expression or an acquired mutation [29]. Mutations cooperation between
NF1 and BRAF was also described in melanocytic nevi to explain the bypass of oncogene-
induced senescence (OIS) and the progression to transformed melanoma [30]. Nevertheless,
although 15% of sporadic melanoma bear NF1 somatic mutations, no targeted treatment
has been developed for this patient’s subgroup, mainly due to the complexity of the protein.

In this report we intended to analyze the NF1-controlled transcriptome and identify
regulated signaling pathways in two independent models: NF1+/− induced pluripotent
stem cell-derived melanoblasts and their late stage transformed counterpart, NF1+/−

metastatic melanoma.

2. Materials and Methods
2.1. Cell Lines

Three human induced pluripotent stem cell (hiPSC) lines were generated from fibrob-
lasts obtained from skin biopsies of two patients with Neurofibromatosis Type 1 carrying
NF1 mutations (University of Ulm, Ulm, Germany) (one clone from the first patient and
two clones from the second patient), and three hiPSC lines were generated from three
healthy donors (University Medical Center Mannheim, Mannheim, Germany) (one clone
from each patient) according to the ethical regulation. Patients with NF1 mutations did
not present melanoma tumors. The reprogramming protocol was already described by
Larribere et al. [31]. Melanoblasts were derived from either NF1-mutated or NF1-wildtype
hiPSC lines following a previously published protocol [1].

2.2. RNA Sequencing and Analysis

Briefly, total RNA was isolated with an RNeasy kit (Qiagen, Hilden, Germany), and
DNase I digestion was performed to remove genomic DNA. Illumina sequencing libraries
were prepared using the TruSeq Stranded mRNA Library Prep Kit (Illumina, Eindhoven,
Netherland) according to the manufacturer’s protocol. Briefly, poly(A)+ RNA was purified
from 500 ng of total RNA using oligo(dT) beads, fragmented to a median insert length
of 155 bp, and converted to cDNA. The ds cDNA fragments were then end-repaired,
adenylated on the 3′ end, adapter-ligated, and amplified with 15 cycles of PCR. The
libraries were quantified using a Qubit ds DNA HS Assay kit (Life Technologies-Invitrogen,
Darmstadt, Germany) and validated on an Agilent 4200 TapeStation System (Agilent
technologies, Waldbronn, Germany). Based on the Qubit quantification and sizing analysis,
multiplexed sequencing libraries were normalized, pooled (4plex), and sequenced on
HiSeq 4000 single-read 50 bp with a final concentration of 250 pM (spiked with 1% PhiX
control). The tool bcl2fastq (version 2.20.0.422, Illumina, Eindhoven, Netherland) was used
for generating the fastq files and demultiplexing.
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Gene set enrichment analyses were performed with Ingenuity Pathway Analysis
(IPA) (Ingenuity® Systems, Redwood City, CA, USA, www.ingenuity.com) using a Log2-
threshold = 2, p-value < 0.05.

2.3. Data from cBioportal Database

The melanoma sample’s genomic dataset originated from the Skin Cutaneous Melanoma
study (TCGA, Firehose Legacy) in the cBioportal database (Memorial Sloan Kettering Cancer
Center, New York, NY, USA). Selected metastatic melanoma samples included patients with
distant metastases or metastases in regional lymph nodes, as established by the American Joint
Committee on Cancer (AJCC). These samples were divided in two groups according to a high
(NF1-high, n = 25) or low (NF1-low, n = 26) expression level of NF1 with a z-score threshold
of 1. Accordingly, these filtered samples bore either loss-of-function SNPs or heterozygous
deletions (NF1-low) or no NF1 mutations (NF1-high).

The genomic dataset from the Cancer Cell Line Encyclopedia (Broad, 2019) contained
a large range of tumor entities including melanoma cell lines (about 6%). As before, these
samples were divided in two groups according to a high (NF1-high, n = 64) or low (NF1-low,
n = 61) NF1 mRNA expression (z-score relative to diploid samples, threshold = 1).

3. Results and Discussion
3.1. NF1 Mutations Have Differential Impact on Pluripotency and on Differentiation

The transcriptome of NF1-mutated human induced pluripotent stem cells (hiPSCs) was
analyzed by RNA sequencing and compared to wildtype control hiPSCs, in order to specifically
study the impact of NF1 mutations during reprogramming. The top 20 regulated genes are
represented in Figure 1A. Among these genes, one can find regulators of DNA replication
(histones), transcription and gene regulation (transcription factors), genes involved in cellular
(cytoskeleton) and extracellular matrix structures (cadherin). Genes were also involved in
intracellular signal transduction (G protein-coupled receptor (GPCR) and GTPases) or in ion
or glucose transport. Genes involved in the WNT, Retinoic Acid, or Fatty Acid Biosynthesis
pathways were also reported. We observed genes involved in biological functions such as
apoptosis, inflammation, or immune response. Finally, many genes were involved in blood
vessels or cardiac function, which is in line with the observed main defects leading to the short
survival of Nf1−/− mice [32].

A pathway analysis of the most regulated genes with the IPA software resulted in the
following signalings (Figure 1B). Genes involved in pluripotency such as SMAD6, TGFB,
WNT2B, WNT3, WNT5A were retrieved, although no phenotypic differences have been
observed between NF1-mutated hiPSCs and NF1-WT hiPSCs [31]. These data may argue
for a role of WNT and SMAD pathways during NF1-mutated stem cell reprogramming
that is less important than other pathways such as FGFR2. Indeed, FGFR signaling controls
cell survival, proliferation, embryonic development, and organogenesis by activating
MAPK, PI3K/AKT, PLCγ, and STAT pathways [33]. These pathways are also described
as interacting with WNT and TGFβ and could in this situation play redundant functions.
ILK and more generally the integrin pathway promote several cellular functions such as
adhesion, growth, and migration. The involvement of NF1 in migration has for example
been established [14,17]. Rho GTPases belong to a subfamily of the Ras superfamily
and are therefore expected to interact with NF1 [34]. This study from Upadhyaya et al.,
already discussed the role of the Rho GTPase pathway in NF1 tumorigenesis. Epithelial-to-
mesenchymal transition (EMT) is a biological process that occurs during embryogenesis but
also in cancer metastases. During reprogramming, cells will also undergo sequential EMT
and mesenchymal-to-epithelial transition (MET), the latter being required for pluripotency
acquisition [35]. Pathways activated by RAS (and likely by NF1 loss) have been described
as playing a crucial role during EMT and MET. For instance, Arima et al., described the loss
of NF1-activated EMT-related signalings and, additionally, that an excessive mesenchymal
phenotype may play a role in the development of NF1-associated neurofibromas [36].
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Figure 1. NF1 mutations have a differential impact on pluripotency and on differentiation. (A) Top 20 regulated genes
in NF1-mutated hiPSCs compared to NF1-WT hiPSCs. (B) Main regulated signaling pathways in NF1-mutated hiPSCs
compared to NF1-WT hiPSCs. (C) Main regulated signaling pathways in NF1-mutated melanoblasts compared to NF1-WT
melanoblasts. (D) Common regulated signaling pathways in NF1-mutated hiPSCs and in NF1-mutated melanoblasts.

Next, we analyzed the transcriptome of melanoblasts differentiated from NF1-mutated
hiPSCs and compared it to that of wildtype control melanoblasts [1]. A similar IPA pathway
analysis presented the following results (Figure 1C). In contrast to NF1-mutated hiPSCs,
regulated genes in NF1-mutated melanoblasts were mainly involved in the senescence,
IL-6/8, VEGF, and GPCR pathways. Interestingly, oncogene-induced senescence (OIS)



J. Clin. Med. 2021, 10, 3350 5 of 10

generated by the loss of NF1 expression was described in melanoma cells before [30]
and was also observed specifically in melanocytes located in the NF1-associated “café-au-
lait” macules [31]. OIS leads to the secretion of a panel of cytokines in the extracellular
environment, which includes IL-6/8 acting as a paracrine activation loop, as previously
described [37,38]. These data bring additional confirmation of NF1′s role in the senescence
of melanocytes precursors and in the regulation of the secretome. The involvement of NF1
during melanocyte differentiation was reproduced in a study using NF1+/− embryonic
pluripotent stem cells [39]. This NF1 model allowed one to link NF1 mutations to the
hyperpigmentation of melanocytes and to replicate the loss of heterozygosity specifically
in CALMs.

Although the VEGF pathway does not play a major role in melanoblast differentiation,
an essential role of NF1 in controlling endothelial cell proliferation was described [40].
Indeed, the authors of this study showed a reduction of NF1 expression upon VEGF
stimulation and the consequent activation of MAPK and PI3K-AKT pathways. Finally,
the activation of the GPCR superfamily was observed. In particular, the coupled Gα12/13
protein subunit regulates cellular proliferation, movement, and morphology and is also
involved in cancer [41]. For example, after the binding of endothelin to its receptor
EDNRA, coupled Gαq/Gα11 and Gα12/Gα13 proteins are activated [42]. However, the
function of neural crest cells and their derived melanoblasts is dependent on EDNRB
activation and on the involvement of coupled Gαi/Gα0, Gαq/Gα11, or Gα13 subunits. The
endothelin signaling leads to the activation of phospholipase Cβ, inhibition of adenyl
cyclase, activation of plasma membrane Ca2+ channels, and activation of nonreceptor
tyrosine kinases [43,44]. Of note, genes encoding for some members of associated G
proteins (GNAS, GNAQ, and GNA11) have been described as being mutated in tumors
and as being oncogenic drivers of uveal melanoma [45]. It is interesting to retrieve the
endothelin receptor coupled G protein since the complex relationship between endothelin
signaling and NF1 has already been discussed based on pigmentation transgenic mice
models [4]. Indeed, NF1 is likely to play different roles in skin and fur pigmentation [46].

We also analyzed common NF1-induced pathway regulation in hiPSCs and in
melanoblasts (Figure 1D). Overlapping regulated genes belong to signalings involved in
general cellular functions such as cell differentiation, migration, and adhesion, confirming
the pleiotropic role of NF1. For example, collagen, laminin, or sulfated glycosaminoglycans
families, which are expressed at the cell membrane and in the extracellular matrix, or the
actin network were commonly regulated. The Rho GTPase family, which was described
above as being potentially associated to pluripotency function, is also likely to be involved
in more general cellular functions concerning Nf1-mutated melanoblasts [34]. Last, the
RXR family of nuclear receptors could be regulated by NF1 signaling. For instance, similar
ventricular myocyte defects were observed in Rxrα−/− mouse embryos and in embryos
with homozygous mutations on Nf1 [47].

3.2. Role of NF1 in the Gene’s Regulation of Melanoblasts and Melanoma

Next, we used the RNAseq dataset of the TCGA Firehose melanoma cohort from the
publicly available cBioportal database [48,49]. 161 metastatic melanoma samples were
divided in two groups according to a high or low expression level of NF1 mRNA (z-score
threshold of 1). Surprisingly, the number of regulated genes between the two groups
was not very high (n = 229, log2-FC threshold: 2). Consequently, a discrete number of
pathways appeared to be overrepresented in NF1-low expressing metastatic melanoma
samples: Paxillin, cAMP, and PKA (Figure 2A). The influence of the cAMP/PKA pathway
in melanoma development has been described. The MC1R/cAMP pathway controls UV-
mediated melanin synthesis, and certain mutations in the MC1R gene lead to pigment
defects in people with red hair and fair skin, therefore increasing the risk of melanoma [50].
More recently, structural biology studies on the MC1R/cAMP signaling pathway have
focused on its mechanisms for enhancing genomic stability, suggesting pharmacologic
opportunities to reduce melanoma risk [51]. The role of the cAMP pathway in melanoma
treatment resistance has also been described before. Systematic gain-of-function resistance
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studies have revealed a cAMP-dependent melanocytic signaling network associated with
drug resistance, including GPCR, adenyl cyclase, PKA, and cAMP response element
binding protein (CREB) [52]. More recently, an alternative activation of the cAMP pathway
in melanocytes has been shown downstream of the G protein-coupled estrogen receptor.
This activation led to melanoma cell vulnerability to immunotherapy [53]. However, the
specific role of NF1 in melanoma treatment resistance is still unclear. Earlier sensitivity
assays of MEK inhibitors in BRAF-WT, NRAS-WT, and NF1-mutated melanoma did not
show a high correlation [25,54]. More experimental studies focusing on the exact role of
NF1 and cAMP in the context of treatment resistance are needed. Paxillin is involved in
cellular adhesion to the extracellular matrix (via binding to focal adhesion kinases, FAK)
and therefore contributes to migration. A defect in the paxillin expression can provoke
cancer progression [55,56]. Along this line, NF1 is described as interacting with FAK, and
its deregulation influences cellular migration [17]. Recently, the loss of NF1 in melanoma
cells led to increased migration and metastases formation in vivo [14].

1 
 

 
Figure 2. Role of NF1 in the gene’s regulation of melanoblasts and melanoma. (A) Main regulated signaling pathways in
NF1-low expressing metastatic melanoma. (B) Main regulated signaling pathways in NF1-low expressing tumor cell lines.
(C) Venn diagram including NF1-low expressing metastatic melanoma, NF1-mutated melanoblasts, and NF1-low expressing
tumor cell lines. (D) Common regulated signaling pathways in NF1-mutated melanoblasts and NF1-low expressing
metastatic melanoma.

Similarly, we addressed the same question in the panel of tumor cell lines from the
Cancer Cell Line Encyclopedia (CCLE). We filtered NF1-low and -high expressing cell lines
in cBioportal and compared the two groups for gene regulation. The PKA and Paxillin
pathways were redundant with the metastatic melanoma samples (Figure 2B). Integrins
and Rho GTPases were also regulated, as we observed in hiPSCs samples, arguing for a
more general role of NF1 in proliferating cells. In addition, three other pathways known to
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play crucial roles in transformation and tumor progression were found: Notch, Hippo, and
PTEN. Evidence for an NF1 role in the transforming activity of the Notch pathway has been
gathered in the context of Schwann cells transformation [57]. The modulation of the Hippo
pathway has been reported to be mediated by NF1 loss in neurofibroma [58]. Despite being
major tumor suppressors, PTEN and NF1 may not play redundant functions. Indeed, the
concurrent loss of PTEN and NF1 in different tumor settings has been reported [59,60].

Last, we wanted to focus on the 263 genes which were regulated in both NF1-mutated
melanoblasts and in NF1-low expressing metastatic melanoma (Figure 2C) because genes
involved in melanocyte development are likely to be reactivated during melanoma pro-
gression [23,61]. The genes likely regulated by NF1 were involved in common signalings.
Again, we found IL-6/8 and senescence/UPR signalings pathways (Figure 2D). Indeed,
the Unfolded Protein Response (UPR) pathway plays a role in the cellular equilibrium
between senescence and apoptosis [62]. Although not deeply investigated, NF1 could play
a role in this pathway. In an Nf1-mutated mouse model of malignant peripheral nerve
sheath tumors (MPNSTs), increased levels of UPR-associated genes (p-eIF2α, XPB1s, and
GRP78) have been shown [63]. VEGF signaling, which we found regulated in NF1-mutated
melanoblasts, is also associated with melanoma progression [64]. The endothelin pathway
seems to play a role in melanoma. Recently, it was described how endothelin signaling pro-
moted melanoma tumorigenesis driven by constitutively active GNAQ [65]. Additionally,
the inhibition of EDNRB receptor signaling synergizes with MAPK pathway inhibitors in
BRAF-mutated melanoma [66].

Finally, we mentioned above the redundant role of cAMP/PKA signaling during
melanogenesis [13]. The implication of NF1 in this pathway has also been studied. Loss
of NF1 leads to the activation of the cAMP/PKA pathway, which consequently phospho-
rylates the melanocyte-associated transcription factor MITF [46]. Such post-translational
modifications of MITF leading to varying expression levels have been described in tumor
cell subpopulations which respond differently to melanoma treatments [67,68].

4. Conclusions

In conclusion, we here describe transcriptomic signatures found not only in metastatic
melanoma tumor cells but also in melanocyte progenitors, melanoblasts, in the case of
an NF1 partial loss of function. These signatures included the activation of VEGF, senes-
cence/secretome, endothelin, and cAMP/PKA signaling pathways. More clinical research
focusing on NF1-mutated melanoma, one of the four molecular subgroups classified by The
Cancer Genome Atlas, is expected since no efficient targeted therapy has so far been avail-
able, unlike for the BRAF-mutated subgroup (BRAF/MEK inhibitors) or NRAS-mutated
subgroup (MEK inhibitors clinical trials).
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