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ABSTRACT: Cobalt oxide (CoOx) catalysts are widely applied in CO2 hydrogenation
but suffer from structural evolution during the reaction. This paper describes the
complicated structure−performance relationship under reaction conditions. An
iterative approach was employed to simulate the reduction process with the help of
neural network potential-accelerated molecular dynamics. Based on the reduced
models of catalysts, a combined theoretical and experimental study has discovered that
CoO(111) provides active sites to break C−O bonds for CH4 production. The analysis
of the reaction mechanism indicated that the C−O bond scission of *CH2O species
plays a key role in producing CH4. The nature of dissociating C−O bonds is attributed
to the stabilization of *O atoms after C−O bond cleavage and the weakening of C−O
bond strength by surface-transferred electrons. This work may offer a paradigm to
explore the origin of performance over metal oxides in heterogeneous catalysis.
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■ INTRODUCTION
The efficient utilization of greenhouse gas CO2 has always
been of considerable attraction. CO2 hydrogenation is a
mature technology, which not only can convert CO2 into high
value-added chemicals but also mitigate the greenhouse effect
by the consumption of CO2.

1−3 Co-based CO2 hydrogenation
catalysts are widely applied in methanation,4 methanol
production,5 and C−C coupling reactions, i.e., the synthesis
of long-chain alkanes6 and higher alcohols.7,8 However, the key
factors that affect catalytic performance are still controversial,
which are possibly related to, for instance, size dependence,9

metal−support interaction,10 crystal facet dependence,11,12

surface segregation,13 and coverage effect.14

In particular, the structures of Co-based oxide catalysts are
complex with variable valence states under reaction con-
ditions.15 Co3O4 is a typical representative that exhibits
structure sensitivity during CO2 hydrogenation.16,17 To be
more specific, variations in catalyst morphology lead to
significant differences in product distribution. Co3O4 nano-
particles display high selectivity for CH4, while Co3O4
nanorods tend to produce CO. In the meantime, Co3O4 is
not stable during the reaction. Phase transformation induced
by H2 occurs, where Co3O4 is reduced to CoO or even metallic
Co. As a result, CoO is believed to be the main active phase
during CO2 hydrogenation.18 The complexity of dynamically
structural evolution in bulk and surface makes it challenging to
interpret the origin of performance over cobalt oxides (CoOx).

Limited by current in situ characterization techniques, it is
hard to accurately identify the complex feature sites and
perceive the evolution of feature structures. Although density
functional theory (DFT) calculations can provide atomic-scale
insights into the rational design of catalysts, the expensive
computational cost prevents realizing large-scale and long-term
simulations, leading to a large gap between simulated models
and real catalytic systems. Hopefully, machine learning
techniques19,20 enable breaking through the dilemma and
surmount the spatial and temporal limitations of DFT by
accelerating the time-consuming simulation with an affordable
computational cost, pointing out a promising route to describe
the dynamic catalyst behavior at the atomic level during the
reaction.21,22

Here, neural network potential-based molecular dynamics
(NN-MD) simulations were carried out to probe the
dynamically structural evolution from Co3O4 to CoO
according to experimental reduction conditions. With the
application of DFT calculations, kinetic Monte Carlo (kMC)
simulations, and experimental studies, the correlation between
structure and selectivity was established at the atomic level. We
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revealed the nature of C−O bond dissociation on feature
structures and provided a clear perspective on the reaction
mechanism of CoO verified by our experiments. This work can
offer a theoretical guidance for rational design of CoOx
catalysts in CO2 hydrogenation by a practical multiscale
research method for establishing the structure−performance
relationship of metal oxides in heterogeneous catalysis.

■ RESULTS AND DISCUSSION

Structural Evolution
In order to understand the dynamically structural evolution of
Co3O4 under the reaction condition, NN-MD simulations
were employed to simulate the reduction process of the
precursor, i.e., Co3O4. The commonly exposed crystalline
surfaces of experimentally synthesized nanostructure catalysts,
i.e., Co3O4(100), Co3O4(110), and Co3O4(111),

18 were
chosen as the model surfaces prior to the reduction with a
scale of about 1000 atoms in one unit cell. The reduction
process was simulated by two iterative steps, which are surface
reduction and reconstruction (Figure 1a).23 To begin the

reduction process, O vacancy formation free energies (GOv) of
surface O atoms under experimental reduction conditions were
calculated, and the ones with negative values were removed to
mimic surface reduction reactions. Afterward, the partially
reduced surface reached equilibrium by 1.5 ns NN-MD
simulations with a canonical ensemble (NVT), during which
some subsurface O atoms might diffuse to the surface. Then,
another round of reduction-reconstruction simulation started,
until GOv values of all surface O atoms are greater than 0 eV,
implying that the surface cannot be further reduced
thermodynamically (Scheme S1 and Figures S1−S9). The
feature structures after reduction were consequently confirmed
via NN-MD.

It is gratifying that the obtained reduced surface model is
consistent with the experimental observations that the CoO
phase is the main active phase of CoOx catalysts in CO2
hydrogenation.24 From the simulated surface structures where
the ratio of Co and O atoms is about 1:1.(Figure 1b), the
regular CoO(100) facet is observed after the reduction of
Co3O4(100). The reduced Co3O4(110) mainly exposes
CoO(110)- and CoO(100)-like structures, accompanied by
few defective sites, like grain boundaries and oxygen vacancies.
The CoO(111) facet with a small portion of oxygen vacancies
and clusters is obtained after the reduction of Co3O4(111). So
far, three feature structures after reduction, CoO(100),
CoO(110), and CoO(111), have been obtained via our
iterative reduction simulations.
Structure−Performance Relationship
On the basis of these surface structures, small slab models were
selected for accurate DFT calculations. Over the oxide
catalysts, hydroxyl groups (OH) and oxygen vacancies (Ov)
may form, induced by the H2 atmosphere. Hence, thermody-
namic phase diagrams were calculated with consideration of
the possible presence of OH and Ov, and the stable structures
were confirmed under the reaction condition (T = 573 K and
pH2 = 0.2 atm), which are clean CoO(100), CoO(110) with 1/
4 ML OH, and CoO(111) with 7/9 ML OH (Figures S10 and
S11).

We further explored the structure−performance relationship
of CoO and compared it with the metallic Co that may appear
after the reaction.16,25 CO2 activation, as the initial step of CO2
hydrogenation, has an essential impact on subsequent
reactions. After adsorption, the CO2 molecule tends to be
bent as it acquires electrons from the surface. Straightfor-
wardly, the changes in configurations can visualize the
activation ability of different structures. Among them, the
most obvious variation of CO2 configuration occurs on
CoO(111). The C�O bond length increases from 1.18 to
1.39 Å and ∠OCO decreases from 180 to 122°, indicating that
CO2 could be easily activated on CoO(111) (Figure 2a).
Analyzed by charge transfer, the CO2 molecule adsorbed on
CoO(111) acquires the most electrons (1.11 e) (Figure S16).
The transferred electrons fill in the antibonding orbitals of
CO2, which can activate the C�O bond and promote the CO2
molecule to be adsorbed in the form of bending rather than
linear.26

The reaction mechanisms of CO2 hydrogenation are mainly
divided into the formate pathway, carboxyl pathway, and direct
C−O dissociation pathway,27 while it is generally accepted that
direct dissociation of the C−O bond is very difficult without
the involvement of H.28,29 In the first place, the carboxyl
pathway (RWGS reaction + CO hydrogenation) was taken
into account, because CO is the reaction product and key
reaction intermediate for cobalt oxides,15 and its further
hydrogenation is believed as an efficient route that is
responsible for the formation of deep reduction products.30

Here, we started with CO hydrogenation to *CHO, as well as
its competition step CO desorption, to explore deep reduction
capacity (Figure 2b). Surprisingly, our calculated barriers of
further hydrogenation are always higher than corresponding
CO desorption barriers over all the cobalt oxide module
surfaces. Therefore, the CO intermediate is hard to be reduced,
which prefers desorption as a product.

CH4 is another main product of cobalt oxides in CO2
hydrogenation besides CO.18,25 As a deep reduction product,

Figure 1. (a) Principle of surface reaction-reconstruction to simulate
the reduction process of Co3O4. μO represents the chemical potential
of O atoms. (b) NN-MD simulations of the reduction process on the
Co3O4 model. Color code: blue-Co; red-O.
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CH4 tends to be generated via the formate pathway as analyzed
above. The C−O bond dissociation of *CHxO is critical to
produce CH4 under the formate pathway, suggesting that
*CHxO intermediates serve as key species to determine CH4
selectivity.15,31−33 Since *CHO needs to cross the relatively
high barrier to be dissociated (Figure S39), *CH2O and
*CH3O species were selected as possible precursors for the C−
O bond scission.30 As shown in Figure 2c, for *CH2O and
*CH3O species adsorbed on CoO(100) and CoO(110), the
reaction is highly endothermic, which is thermodynamically
unfavorable for C−O dissociation. In consequence, CoO(100)
and CoO(110) need to overcome high barriers to break the
C−O bond. On the contrary, CoO(111) is easy to dissociate
the C−O bond with low barriers, which are even lower than
metallic Co, effectively facilitating CH4 production.
The C−O bond cleavage is usually related to the C−O bond

length, the longer C−O bond length is more prone to break
the C−O bond.34 Interestingly, the adsorption energies of *O
atoms (E(*O)) have a good linear relation with the C−O
bond length (Figure 2d), implying that E(*O) may be used to
reveal the nature of C−O bond scission. To further quantify
the chemical bond strength, we calculated the integrated
crystal orbital Hamilton population (ICOHP) of the C−O
bond, where the smaller value of -ICOHP means the weaker
C−O bond strength. Apparently, the stronger the *O atom is
adsorbed on the surface, the smaller the -ICOHP is, indicating
easier breaking the C−O bond and thereby promoting the
production of CH4. Hence, E(*O) can be a simple descriptor
to measure C−O bond scission (Figure 2e).
We further explored essential factors that may lead to the

difference in E(*O). The phenomenon can be explained by the
analysis of geometric structures (Figure 2f). CoO(111) and
Co(111) provide three-fold hollow sites to efficiently stabilize
*O atoms after dissociation of *CHxO intermediates.
However, *O on CoO(110) and CoO(100) can only be

adsorbed on top and bridge sites, resulting in the instability of
*O atoms with high barriers for breaking the C−O bond, and
thereby inhibiting the formation of CH4. In addition, the
electron transfer is equally vital. Compared with other surfaces,
the *O atom on CoO(111) acquires more electrons (1.06 e)
from the surface. The transferred electrons can fill in the
antibonding orbitals of the C−O bond of *CHxO to weaken
the C−O bond strength, promoting to break C−O bonds.
Therefore, the nature of C−O bond dissociation is attributed
to the stabilization of *O atoms after C−O bond cleavage, and
the weakening of C−O bond strength via surface-transferred
electrons.
Kinetic Investigation

To gain a comprehensive insight into the catalytic mechanism
of CoO in CO2 hydrogenation, the whole reaction networks
were constructed by the combination of DFT calculations and
kMC simulations with CoO(111) as a representative that
exhibits wonderful capacities of CO2 activation and C−O bond
cleavage. As it is hard to break C−O bonds directly without
the assistance of H,28,29 the formate pathway and carboxyl
pathway that involves H to assist in dissociating C−O bonds
are considered as dominant reaction routes. The reaction
network involves 21 different intermediates and 46 elementary
steps. The relevant reaction energies and barriers, along with
lateral interactions of coadsorption species, are listed in Tables
S1 and S2.

As shown in Figure 3a,b, the CO2 hydrogenation reaction is
dominated by the production of CH4 through the formate
pathway, because the event frequency of *HCOO formation is
between 2 and 3 orders of magnitude greater than that of
*COOH production. After hydrogenation and dissociation of
*HCOO, *CH2O is favorable to be formed without any high
barrier to overcome. The formation of CH4 mainly relies on
the C−O bond dissociation of *CH2O and *CH3O. The

Figure 2. (a) Bond lengths and bond angles of adsorbed *CO2 on different surfaces. (b) Energy profile for CO hydrogenation and desorption on
different surfaces. (c) Energy profile for C−O bond dissociation on different surfaces. (d) Red: The relationship between E(*O) and the C−O
bond length; blue: the relationship between E(*O) and -ICOHP of the C−O bond. (e) Relationship between E(*O) and C−O bond dissociation.
(f) Electron transfer of adsorbed *O on different surfaces.
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frequency of breaking the C−O bond of *CH2O is almost 4
times higher than that of *CH3O, implying that the task on
dissociating C−O bonds is mainly completed via *CH2O
(R33, Eact_fwd = 0.72 eV), rather than *CH3O (R34, Eact_fwd =
1.10 eV). Thus, the C−O bond scission of *CH2O becomes
the critical step to determine the CH4 selectivity. In addition,
as the other product, the main bottleneck for CO to be deeply
reduced is that the desorption of *CO (R35, Eact_fwd = 1.51
eV) is more favorable than further hydrogenation or cleavage
of *CO to generate *C (R14, Eact_fwd = 3.75 eV), *CHO (R19,
Eact_fwd = 1.94 eV) or *COH (R9, Eact_fwd = 2.72 eV),
suggesting that CO tends to be the product, which is
consistent with the above analysis.
It is also worth noting that the removal of surface O species

(*O and *OH) to form H2O(g) plays a crucial role in the
overall reaction rate. The process of *O hydrogenation to form
*OH occurs frequently, but only a small portion of *OH on
the surface can be further hydrogenated to produce H2O
(Eact_fwd = 1.56 eV). Hence, a high coverage of *OH is shown
on the surface when the reaction reaches equilibrium (Table
1). The analysis of degree of rate control35 indicates that *OH
hydrogenation to H2O controls the rate of the whole reaction
(XRC = 0.825), which is the rate-determining step (Table S3).

Experimental Verification
To verify the structure−performance relationship of CoO
catalysts in CO2 hydrogenation, we synthesized CoO catalysts
with relevant feature structures, matched with theoretical
calculation models. Foremost, we prepared Co3O4 samples as
the precursors via a hydrothermal method, where nanoparticles
expose {111} + {001} facets and nanorods are enclosed with
{110} + {001} facets.18 Moreover, {111} and {110} facets take
up most of the surface of nanoparticles and nanorods,
respectively (Figure S31).36 Though the treatment of H2 at
573 K, the samples display CoO diffraction peaks from X-ray
diffraction characterization (Figures S33 and S34). In addition,
Co 2p3/2 peaks tested by X-ray photoelectron spectroscopy
(XPS) shift from about 779.4 to 780.1 eV. Both of them
indicate that Co3O4 is reduced to CoO (Figure S35).37−39

After reduction, CoO catalysts retain nanoparticle and nanorod
morphology, while preferential facets are altered. Co3O4(111)
is transformed into CoO(111), and Co3O4(110) is converted
to CoO(110) (Figure S32), which is consistent with the
structural evolution from Co3O4 to CoO via NN-MD
simulations.

Afterward, CoO catalysts were tested under the reaction
condition (p = 1 atm, T = 573 K and CO2/H2 = 1:3) (Figure
4a). Reaction activity and product distribution change

Figure 3. (a) Reaction networks of CoO(111) for CO2 hydro-
genation toward CO, CH4, and CH3OH based on DFT calculations.
The values are barriers of hydrogenation and C−O dissociation. All
values are in eV with ZPE correlation. The most favorable pathway
toward CH4 is highlighted with green bold arrows. (b) Event
frequency for elementary steps on CoO(111) based on kMC
simulations in CO2 hydrogenation.

Table 1. Surface Species Coverage for the Reaction
Equilibrium

species θ (ML)a species θ (ML)a

*CO2 31/3200 *H2COOH 95/3200
*H 92/3200 *CH3O 2/3200
*OH 2328/3200 *CH 4/3200
*HCOO 217/3200 *CH2 10/3200
*H2COO 2/3200 *CH3 14/3200

aθ is the coverage of surface species; ML represents the monolayer.

Figure 4. Experimental results of the synthesis catalysts. (a) Catalytic
performance of CoO-NP and CoO-NR catalysts. Reaction conditions:
p = 1 atm, T = 573 K, 0.15 g catalyst, CO2/H2 = 1:3. (b) O 1s XPS
spectra of CoO-NP, CoO-NP-used, CoO-NR, and CoO-NR-used. In
situ DRIFTS spectra of (c) CoO-NP and (d) CoO-NR. Reaction
conditions: p = 1 atm, T = 573 K, CO2/H2 = 1:3. CoO-NP and CoO-
NR represent CoO nanoparticles and nanorods after the reduction of
Co3O4 by H2; CoO-NP-used and CoO-NR-used represent CoO
nanoparticles and nanorods after the CO2 hydrogenation reaction.
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considerably as the morphology of CoO transforms. Upon
converting nanoparticles to nanorods, CH4 selectivity
decreases from 98 to 23% and CO selectivity increases from
2 to 77%. Meanwhile, CO2 conversion decreases from 46 to
13%. Apparently, CoO nanoparticles are more prone to
catalyze the methanation reaction, possessing a stronger
capacity to promote C−O bond cleavage with a higher
reaction activity. Nevertheless, methanation on CoO nanorods
is significantly inhibited. As a consequence, CO is the main
product.
Notably, compared with CoO nanorods, a high fraction of

hydroxyl O occurs on CoO nanoparticles after the reaction,
where the binding energy of O 1s on about 529.5 and 531.5 eV
is assigned to lattice O and hydroxyl O on surfaces (Figure
4b).37,44−46 It suggests that the removal of hydroxyl O over
CoO(111) exposed on nanoparticles is hard and has a key
impact on the overall reaction rate, in agreement with kMC
simulations.
To demonstrate the accuracy of our proposed reaction

mechanism, in situ DRIFTS was employed to observe surface
intermediates (Figure 4c,d). The peaks at 2832, 1588, and
1367 cm−1 are assigned to stretching vibrations of the C−H
bond, stretching, and bending vibrations of OCO, respectively,
indicating the existence of *HCOO species.40−42 In addition,
compared with the weak peak at 1450 cm−1 over CoO
nanoparticles, there is an obvious peak at 1458 cm−1 over CoO
nanorods. They might correspond to the vibrational mode of
*CHx in *CHxO species,43 since the similar peaks are obtained
by DFT calculations, which are related to the bending
vibration of *CH2 in *CH2O on CoO(111) (1431 cm−1)
and CoO(110) (1440 cm−1). The phenomenon indicates the
accumulation of *CHxO species on CoO nanorods
(CoO(110)), due to the poor capability for C−O bond
scission. Inversely, it is easy for CoO nanoparticles
(CoO(111)) to break C−O bonds, leading to rapid
consumption of *CHxO. As a result, the signal peak of CH4
on 3016 cm−1 can be clearly observed.

■ CONCLUSIONS
In summary, this paper presents a multiscale calculation
method to deal with a complex structure−performance
relationship over CoOx catalysts. Through employing the
surface reduction-reconstruction approach to simulate the
reduction process of cobalt oxides via NN-MD, three
theoretical models have been obtained with the application
of the surface phase diagram, which are clean CoO(100),
CoO(110) with 1/4 ML OH, and CoO(111) with 7/9 ML
OH. DFT calculations, kMC simulations, and experimental
studies were combined to reveal the correlation between the
structure and selectivity at the atomic level, wherein CoO(111)
contributes to CH4 production and CoO(110) promotes CO
formation. We have provided a clear perspective on the
reaction mechanism of CoO and found that the C−O bond
scission of the *CH2O intermediate plays a key role in
determining CH4 selectivity. The nature of dissociating C−O
bonds was unveiled, which is attributed to the stabilization of
*O atoms after C−O bond cleavage and the weakening of C−
O bond strength by surface-transferred electrons. These
discoveries could give a deep insight into the origin of
performance over CoOx catalysts in CO2 hydrogenation.

■ COMPUTATIONAL AND EXPERIMENTAL
METHODS

NN-MD Simulations
All calculations with NN-MD were performed by LASP, which is
generally applied in large-scale simulation for complex chemical
systems via NN potential.47 The details of the surface reduction-
reconstruction method to simulate the reduction process of Co3O4
can be found in the Supporting Information.
DFT Calculations
DFT calculations were carried out via Vienna ab initio simulation
software.48,49 The electron exchange and correlation effects were
described by the Perdew−Burke−Ernzerhof functional form of the
generalized gradient approximation (GGA).50 In consideration of van
der Waals correction for all systems, the DFT-D3 method with
Becke−Jonson damping was utilized.51 The projector augmented
wave method was used to describe the interaction between atomic
cores and electrons.52 To solve the Kohn−Sham equations, the plane-
wave basis set was employed with a cutoff energy of 400 eV. In
addition, the atomic force convergence criterion of force was set to
0.02 eV/Å. For metal oxides, the DFT + U method was applied to
better describe the localized 3d electrons of cobalt in CoO, where an
effective U value (Ueff = UCo−JCo = 3.7 eV) was adopted.53−55 More
details are described in the Supporting Information.
kMC Simulations
Based on the thermodynamic and kinetic parameters calculated by
DFT over CoO(111) (Table S1), the kMC method56 that can
simulate the system evolution during the reaction at the molecular
level was carried out by software package Zacros57,58 to simulate the
CO2 hydrogenation reaction. To perform kMC simulations under
experimental reaction conditions, the total pressure and the
temperature of our reaction system are set to 1 atm and 573 K,
respectively. More details are described in the Supporting
Information.
Experimental Details
The CoO catalysts were synthesized via a hydrothermal method. To
be more specific, 2.4 g of C4H6O4·Co·4H2O and 60 mL of (CH2OH)2
were added into a three-port round-bottomed flask. The mixture was
then heated up to about 433 K. Afterward, 20 mL of 0.5 M K2CO3
solution was added. Under constant stirring and a continuous N2 flow,
the slurry was further aged for 0 h and 3 h, respectively. Then, the
solid was recovered by centrifugation. We used ultrapurity water and
anhydrous ethanol to wash the solid, until the supernatant is neutral
(pH = 7). After drying at 343 K overnight, the solid is calcined at 723
K for about 4 h in air. At the moment, as the precursor of CoO,
Co3O4 catalysts were obtained. Though the further treatment of H2 at
573 K for 1 h, we finally prepared the CoO catalysts.

The catalytic performance of CoO was tested in a fixed-bed reactor.
The reaction condition was set to 573 K and 1 atm. The molar ratio
of CO2 and H2 was 1:3. In addition, N2 was the internal standard gas
during the reaction. The exhaust streams were analyzed via an online
gas chromatograph (GC, Agilent 7890A).

More experimental details are described in the Supporting
Information.
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K.; Szenti, I.; Gómez-Pérez, J.; Varga, G.; Kiss, J.; Halasi, G.;
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