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ABSTRACT
Purpose: This study investigated the segmentation metrics of different segmentation networks trained on 730 manually annotated lateral 
lumbar spine X‑rays to test the generalization ability and robustness which are the basis of clinical decision support algorithms.

Methods: Instance segmentation networks were compared to semantic segmentation networks based on different metrics. The study cohort 
comprised diseased spines and postoperative images with metallic implants.

Results: However, the pixel accuracies and intersection over union are similarly high for the best performing instance and semantic 
segmentation models; the observed vertebral recognition rates of the instance segmentation models statistically significantly outperform the 
semantic models’ recognition rates.

Conclusion: The results of the instance segmentation models on lumbar spine X‑ray perform superior to semantic segmentation models 
in the recognition rates even by images of severe diseased spines by allowing the segmentation of overlapping vertebrae, in contrary to the 
semantic models where such differentiation cannot be performed due to the fused binary mask of the overlapping instances. These models 
can be incorporated into further clinical decision support pipelines.

Keywords: Convolutional neural networks, deep neural networks, instance segmentation, lumbar vertebrae, machine 
learning, postoperative image analysis, semantic segmentation, X‑ray

INTRODUCTION

Various supervised and nonsupervised image segmentation 
algorithms are utilized in biomedical image segmentation;[1,2] 
typically, these are semantic segmentation or instance 
segmentation models.[3] Semantic segmentation algorithms 
are a subset of supervised learning algorithms that control 
the training of convolutional neural network classifiers 
from a set of labeled training image data. These types of 
algorithms produce only one label for every pixel in an input 
image. Instance segmentation models can serve multiple 
per‑pixel labels, denoting overlapping instances from the 
same or differing class. This can be beneficial by X‑rays, 
where due to the projection, vertebral instances can overlap 
each other, so the same pixel can belong to two different 
vertebral instances. X‑rays are still one of the most commonly 
requested diagnostic imaging modalities, accounting for 1, 
7 procedures on each inhabitant in Germany per year.[4] It 

is of utmost importance in the process of image analysis to 
acquire the position and the form of the vertebral bodies, 
since these often determine the pathology on the image: if 

Convolutional neural network‑based automated 
segmentation and labeling of the lumbar spine X‑ray
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relation or contour of the outer borders is deranged, it may 
represent fracture or tumor of the vertebral body. In order 
to create an automated system that performs morphometric 
analysis of the X‑rays, the exact segmentation of the vertebrae 
is mandatory. There are degenerative conditions that modify 
the overall appearance of the vertebral body, making it 
difficult to delineate the contour of the vertebra such as 
fractures but also osteophytes that are present in almost 
every moderately or severely degenerated spine. In order 
to find a suitable model for this purpose, the performance 
of state‑of‑the‑art semantic and instance segmentation 
algorithms was compared.

Material
For the training, validation, and testing, a set of 830 lateral 
lumbar spine radiographs were selected and retrieved from 
the picture archiving and communication system (PACS). 
All DICOM (Digital Imaging and Communications in 
Medicine)  objects contained 12‑bit depth image data and were 
saved as noncompressed grayscale PNG (Portable Network 
Graphics) images with histogram equalization. The image 
sizes ranged between 511 × 1177 and 1100 × 2870 pixel. 
The DICOM images contained preoperative and postoperative 
studies, before and after mono‑ or multisegmental interbody 
fusion and posterior instrumentation. Therefore, on the 
images, at least one but usually multiple severely diseased 
intervertebral spaces – i.e., many overlapping areas of 
vertebral instances on the lateral radiograph – were present.

The annotations were performed using the standalone, 
browser‑based, open‑source VIA (VGG annotation tool[5]) by 
trained radiologists and spine surgeons having experience 
of more than 5 years. Each vertebra was labeled with a 
polyline polygon up to 15 distinct points. Cages, screws, and 
instrumentation were also labeled, but these classes were not 
utilized for the present study. Figure 1 shows the graphical 
user interface of the annotation software. The authors 
chose to create two distinct classes, one for lumbar and one 
for sacral vertebrae instead of five distinct classes for each 
lumbar vertebra. The justification for this design decision is 
based on the similarity between the lumbar vertebrae and the 
differently shaped sacral vertebra. The resulting annotations 
were exported in JSON format and were further processed in 
Jupyter Notebook with pandas and OpenCV.

METHODS

The aim of the study was to compare the performance of 
different segmentation models. The pynetdicom[6] library 
running on the portable local WinPython[7] with the 
anaconda environment was used for training with different 

libraries (Keras, TensorFlow, or PyTorch). For the qualitative 
statistical analysis, four pixel‑based metrics based on the 
merged binary masks of the model predictions and two 
observation‑based metrics were collected. For the statistical 
analysis, the open‑source SciPy and Statsmodels[8] packages 
were used. ANOVA was performed on continuous variables 
where applicable. The assumption of normal distribution 
was tested with the Shapiro–Wilk test of normality. 
For nonnormal distributed variables and binary data 
nonparametric tests: Kruskal–Wallis test and post hoc either 
Tukey’s multiple‑comparison‑method or Holm–Bonferroni 
method were performed.

Data retrieval and preparation
As shown in the workflow, Figure 2, the first step was data 
retrieval from the PACS. Eight hundred and thirty images were 
retrieved, anonymized, and annotated manually from the 
archive. Each model required different input formats (JSON, 
image masks with two distinct classes, or raw image material), 
and the resolution constraints also had to be fixed, which are 
features and special requirements of each model.

Model training
The authors used a GeForce RTX 2080 Ti graphic card for the 
k‑fold training. The entire dataset was split into 730 images 
for training and validation, and the remaining 100 images 
remained always the same for testing. The k‑fold validation 

Figure 1: Screenshot of the VIA annotation tool with manual annotations 
of a lumbar vertebra including implants
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was performed 5 times with splitting the 730 images: 80% for 
the training set and the remaining 20% for the validation set. 
We have selected 5 different segmentation models for the 
training of the dataset, each of them trained and tested with 
the same seed for each k‑fold validation training. The models 
are categorized into semantic and instance segmentation 
models. U‑Net,[9,10] PSPNet,[11,12] and DeepLabv3[13] are 
semantic segmentation models, whereas Mask R‑CNN[14‑16] 
and YOLACT[17] are instance segmentation models. For further 
information about the models see Supplementary Material 1.

Results and inference
Once all the models had completed training (training time 
varied from 10 to 20 h for each fold), the predictions were 
made for the test set. The tests for each fold for each model (so 
25 altogether) were performed one after another, and different 
metrics for comparison studies were obtained for each test 
image which are described further down in this article.

Metrics used
In order to evaluate the segmentation models, we have used 
different performance metrics inspired by Long et al.[18] from 
the repository of Martin Keršner.[19] Since these pixel‑based 
metrics do not mirror the clinical usability of the models, 
a simple recognition rate was utilized to determine which 
model is superior in recognizing the distinct, nonoverlapping 
vertebrae on an image and another recognition metric was 
used that excluded from these images the ones where the 
model falsely segmented the vertebrae as nonoverlapping 
areas on the predictions, however, the vertebrae were 
overlapping on the projection (ground truth) [Table 1].

Pixel accuracy
Pixel accuracy can be calculated as the percentage of pixels 
in the generated labeled mask that are classified correctly 
when compared with the original labeled mask.

Intersection over union
The most common metric for the evaluation for segmentation 
models is the intersection over union (IoU) (also known 
as the Jaccard Index), calculated as the overlapping area 
between the predicted labeled mask and the original 
labeled mask [Figure 3]. For a multi‑class segmentation 
such as ours, the mean‑IoU is calculated by averaging the 
IoU of each class.

Mean accuracy
Mean accuracy is defined as the mean of number of pixels 
of class i predicted to class i over the total number of pixels 
of class i for all classes i.

Frequency weighted intersection over union
In frequency weighted IoU, the IoU for each class is computed 
first and then average over all the classes is computed.

Recognition rate
A radiologist with 10 years of practice selected all the 
images where the model recognized all lumbar and one 
sacral vertebra as a distinct, unique area on the image. All 
the images were labeled binary (1 if every vertebra present 
and 0 if at least one is not recognized). Note that the 
recognition rate does not score the quality of the annotations. 
This means it does not reflect how well each vertebra is 
delineated or whether the distinct vertebrae are detected 
as nonoverlapping areas. To address this problem, a further 
criterion was added:

Composite recognition rate
Additionally to the above criteria, all the images were labeled 
as 0 if overlapping vertebral instances falsely as distinct 
instances appeared on the binary mask.

RESULTS

The density plot of the four pixel‑based metrics is shown 
in Figure 4. Moreover, the density plots for each model are 
visible in electronic Supplementary Material 2. The test for 
normal distribution failed in at least one of the model’s 
variables by every metric, so the nonparametric Kruskal–
Wallis test was performed for testing whether samples 
originate from the same distribution. All of the tests for all the 
metrics showed statistically significant differences within the 
models [Table 2]. The results of the post hoc analysis are shown 
in electronic Supplementary Material. Post hoc analysis of 
the IoU showed statistically significant difference (P < 0.01) 
between all models with relatively wide range of the 
results (80.97%–87.77%). Statistically significant result was 
observed even between the best performing DeepLabv3 and 
YOLACT in this metric (P < 0.001). By frequency weighted 
IoU, however, no statistically significant difference was shown 
between these two models (P = 0.294). Mean accuracy and 

Figure 2: Workflow of the data retrieval and processing
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pixel accuracy showed no statistically difference between 
these two models either. The results for the pairwise 
comparison are in electronic Supplementary Material 2.

In Figure 5, we show two cases: (a) where the semantic 
models deliver better delineation of the vertebrae, and failure 
of Mask R‑CNN due to an “extra vertebrae” as an example 
for the sources of failure. In case (b), all models but YOLACT 
deliver an under average pixel accuracy, whereas the reasons 

are two‑fold: first, there are two overlapping vertebrae that 
had been recognized correctly in the instance segmentation 
models, and as one large fused blob in the semantic models, 
and second, an extra, thoracic vertebra (11th thoracic vertebra) 
that had been at least partially delineated on all models but 
YOLACT. Only vertebrae caudally from Th12 are present on 
the ground truth masks. In consequence, if there are more 
vertebrae in the predicted mask than in the ground truth 
mask, it lowers the accuracy.

Since the internal metrics of each model are based on slightly 
different methods, for the current study a common metric 
was chosen based on a merged binary mask of the prediction. 
This method is imperfect and in many cases results in accuracy 
loss for instance segmentations. This shortcoming gets 
particularly obvious in cases where the predicted binary masks 
of the vertebral instance are overlapping. To overcome this 
limitation, we visually inspected the vertebral instances and 
excluded the falsely identified contours: (a) wrong labeling 
as overlapping (=recognition rate) and (b) false marking as Figure 3: Visual explanation of the intersection over union

Figure 4: Density plots of the metrics

Table 1: Metrics

Metric\model Mask R‑CNN U‑Net DeepLabv3 YOLACT PSPNet
Mean IoU average (%) (SD) 85.87 (4.45) 82.20 (4.75) 83.23 (4.40) 87.77 (3.59) 80.97 (4.69)
Pixel accuracy average (%) (SD) 96.27 (1.39) 95.39 (3.17) 95.48 (2.94) 96.94 (1.12) 95.13 (3.10)
Mean accuracy average (%) (SD) 92.47 (4.00) 91.00 (4.32) 91.56 (4.02) 94.15 (2.77) 91.34 (4.00)
Frequency weighted IoU (%) average (SD) 93.74 (1.86) 94.49 (2.11) 94.53 (1.92) 94.33 (2.01) 93.97 (2.14)
Recognition rate (%) 99.0 91.0 70.0 98.0. 43.0
Composite recognition rate (%) 89.0 71.0 55.0 82.0 36.0
SD-Standard deviation, IoU-Intersection over union
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nonoverlapping (=composite recognition rate). There was no 
difference in the recognition rate between the folds within the 
same model, so these were not statistically tested. The recognition 
rates between the models were compared with Kruskal–Wallis test 
to test for differences between the groups. Due to the statistically 
significant (H = 142.96, P < 0.001) result of the test, post hoc 
testing was used to determine which groups are significantly 
different from others [Table 3]. Holm–Bonferroni test was 
performed that showed statistically significant difference between 
the best performing semantic model in the recognition (U‑Net) 
and the best performing instance segmentation model (Mask 
R‑CNN), whereas no statistical difference could be shown between 
U‑Net and YOLACT and between Mask R‑CNN and YOLACT in 
terms of recognition rate. Since the Kruskal–Wallis test on the 
composite recognition rate also showed statistically significant 
difference between the models (H = 82.067, P < 0.001), here 
also a post hoc Holm–Bonferroni test was performed [Table 4]. This 
showed no statistically significant difference between the Mask 
R‑CNN and YOLACT but strong statistical significance between 
all other semantic and instance segmentation models, thus also 
mathematically proving the observed superior performance of 
the instance segmentation models. The contours of the vertebrae 
annotations are irregular by the YOLACT model (a) and smoother 
by the U Net model (b) [Figure 6],  also smooth contours were 
observed by the outputs of the Mask R CNN segmentations to 
(not illustrated).

An interesting feature found during testing different 
images was that the YOLACT model was able to partially 

identify beforehand unseen and as such untrained objects, 
such as vertebral body replacement, however, wrongly 
delineated [Figure 7]. Another surprising finding was the 
ability of the YOLACT and partially of the Mask R‑CNN model 
to delineate fractured vertebrae, even though these were also 
not part of the training set [Figure 8.]. This behavior shows 
the universal nature of neural networks.

Table 2: Metric analytical statistics

Metric Kruskal‑Wallis Test
Mean IoU average Statistics=787.299, P<0.001

Different distributions (reject H0)
Pixel accuracy average Statistics=170.028, P<0.001

Different distributions (reject H0)
Mean accuracy average Statistics=383.056, P<0.001

Different distributions (reject H0)
Frequency weighted IoU Statistics=62.343, P<0.001

Different distributions (reject H0)
IoU-Intersection over union

Table 3: Recognition rate

Model 1 Model 2 Stat pval pval_corr Reject H0
DeepLab Mask R-CNN −6.36 0.00 0.00 True
DeepLab PSPNet 5.30 0.00 0.00 True
DeepLab U-Net −4.85 0.00 0.00 True
DeepLab YOLACT −5.92 0.00 0.00 True
Mask R-CNN PSPNet 11.23 0.00 0.00 True
Mask R-CNN U-Net 2.93 0.00 0.01 True
Mask R-CNN YOLACT 0.58 0.57 0.57 False
PSPNet U-Net −9.56 0.00 0.00 True
PSPNet YOLACT −10.58 0.00 0.00 True
U-Net YOLACT −2.15 0.03 0.07 False

Figure 5: Example of the inference results for the models for the same images. In Row (a) failure of Mask R‑CNN to correctly identify a lumbar vertebra. In 
Row (b) all semantic models fail to delineate both vertebral instances and showing only a fused mask for the lumbar 4th and 5th vertebrae

b

a
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DISCUSSION

The recent development of open‑source segmentation 
networks has enabled researchers to experiment with 
the automation and analysis of biomedical images.[20] 
Thus, creating semi‑ or fully automated image processing 
workflows for segmentation became fast and feasible. The 
human‑level spinal vertebral segmentation is the first and 
essential step for many computational spine analysis tasks, for 
example, different spatial relations of vertebral bodies (Cobb 
angle or lordosis angle) and shape characterization. There 
are only a few published articles that utilize the power of 
convolutional neural networks in the segmentation of spine 
X‑rays; recently, Cho et al.[21] utilized a U‑Net‑based model 
with very good performance on segmenting the lumbar 
vertebrae on their own set although there were some very 
important limitations in their study. First of all, they did 
not consider to include any kind of implants such as cages, 
which limits the utility of the system for practical day‑to‑day 
purposes in outcome evaluation of surgical treatment. 
Further limitation is that no severe deformities of the 
vertebral bodies and intervertebral spaces were included. 
This implies that their algorithm is not applicable for the 
majority of the patients. In our study, we overcome these 
limitations by training on a sample containing over 70% of 
images depicting implants (multiple cage systems, screws, 
rods, and also cement augmentations). In addition to that, 
we included the full spectrum of degeneratively diseased 
intervertebral spaces, which increases the segmentation 
difficulties due to the numerous overlapping areas of the 
same class. Despite this, our metrics show excellent pixel 
accuracies and IoU for all models.

Chan‑Pang et al.[22] used a three‑step system that included 
spine region of interest (RoI) detection, vertebral RoI 
detection, and vertebral segmentation on anteroposterior 
whole‑body images. The image processing steps helped 
to find the RoIs for each vertebra and a U‑Net performed 
the segmentation of the vertebral instances within the RoI. 

The image segmentation was thus performed on a cropped 
image region that resulted in better pixel accuracies. In 
our study, the instance segmentation models accepted the 
full‑resolution images and we performed no RoI cropping, 
thus reducing the detection steps. Ruhan et al.[23] used Faster 
R‑CNN object detection as the first step toward automatically 
identifying landmarks from spine X‑ray images. In their 
work, intervertebral spaces were detected without the 
contour detection of the vertebrae themselves. Although 
our study focuses on the detection of the contour of the 
vertebrae, the delineated endplates draw the exact borders 
of the intervertebral spaces. The extraction and analysis of 
these intervertebral spaces can be simply derived from the 
predicted masks by classical morphological operations such 
as dilation, erosion, or Boolean operations. The fact that the 
best‑ranking instance segmentation model performed better 

Table 4: Composite recognition rate

Model 1 Model 2 Stat pval pval_corr Reject H0
DeepLab Mask R-CNN −7.14 0.00 0.00 True
DeepLab PSPNet 4.09 0.00 0.00 True
DeepLab U-Net −4.34 0.00 0.00 True
DeepLab YOLACT −5.77 0.00 0.00 True
Mask R-CNN PSPNet 10.57 0.00 0.00 True
Mask R-CNN U-Net 4.66 0.00 0.00 True
Mask R-CNN YOLACT 1.97 0.052 0.052 False
PSPNet U-Net −7.30 0.00 0.00 True
PSPNet YOLACT −8.83 0.00 0.00 True
U-Net YOLACT −3.19 0.00 0.00 True

Figure 7: YOLACT identifying unseen and untrained object (vertebral body 
replacement implant) as existing class (Cage)

Figure 8: Mask R‑CNN model delineates fractured vertebrae, even though 
these were not part of the training set

Figure 6: Example for differences between the instance (a) and semantic 
(b) models’ segmentation results

ba
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than all other semantic segmentation models is fortunate 
since the results of an instance segmentation model can be 
used without any extensive postprocessing step, given no 
vertebrae is missed. Removing overlapping class predictions 
for the same class is with nonmaximal suppression is possible.

The semantic segmentation masks contain fused binary masks 
of multiple vertebral instances. The pixels only belong to one 
class, they are not separated onto instances, that makes the 
labeling of each vertebral instance difficult and in every case 
needs morphological postprocessing, especially in severe 
degenerative cases or when cages are present [Figure 9]. The 
postprocessing code of a semantic segmentation model in 
such cases is nontrivial and was not addressed in this article. 
With the results of the instance segmentation, the vertebrae 
can be labeled automatedly, beginning on the lower part of 
the image if an instance of the sacral vertebra is present. 
The consecutive lumbar vertebral instances toward the top 
of the image represent the fifth, fourth, third, second, and 
the first lumbar vertebrae, respectively. Special cases may 
arise in instance segmentation when the segmentation 
model skips predicting an instance (due to low prediction 
score) or predicts multiple overlapping classes or instances. 
The first case can be addressed by lowering the threshold 
score for the prediction in the model. In case of multiple 
overlapping instances, the prediction with the higher 
score can be chosen with nonmaximum suppression.[24] We 
observed that the more severe degenerations are present, the 
better the prediction of the instance segmentation models 
is, due to the correct identification of the overlaps. In cases 
where less degenerative changes are present, the semantic 
segmentation models achieve better accuracies, but these 
observed differences were not addressed for statistical 
analytical testing.

With further conventional morphological postprocessing, 
one will be able to derive clinically important information 
from the postoperative images; this information can serve as 

a decision support tool for clinicians. Every degeneration or 
pathological alteration that causes morphological change of 
the anatomical structures is computable by further analysis. 
This is promising in regard to changes in intervertebral space, 
osteophyte formation, dislocation, or failure of metallic 
implants, especially since it allows analysis of those features 
over time. In Figure 10, possible steps of further information 
extraction are shown: (a) contour segmentation, (b) 
osteophyte and corner detection with erosion, dilation, and 
subtraction, and (c7) endplate approximation. A further step 
will be the analysis of the interobserver agreement of the 
derived clinically important information (like Cobb angle) 
with human observers. This could pave the way for the 
development of a clinical decision support algorithm for the 
automated assessment of postoperative postural changes of 
the vertebrae.

CONCLUSION

In this article, we have compared semantic segmentation and 
instance segmentation models for automated segmentation 
of vertebral instances in standard lateral X‑rays of a real‑life 
clinical cohort with severe degenerative diseases. To our 
knowledge, such an analysis has never been reported 
for real‑life cohort with degenerative spine. Instance 
segmentation models on lumbar spine X‑ray perform superior 
to semantic segmentation models regarding recognition rates 
by allowing the segmentation of overlapping vertebrae. This 
feature puts it well ahead of semantic models where such 
differentiation cannot be performed due to the fused mask of 
the overlapping instances. Instance segmentation therefore 
can be incorporated into further clinical decision support 
and computer‑aided diagnosis pipelines.
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Figure 9: Example for overlapping vertebral instances

Figure 10: Possible    further  processing  steps  for  the  integration 
into  clinical  decision  support  and  computer‑aided diagnosis  pipelines 
(a) contour segmentation, (b) osteophyte and corner detection, (c) endplate 
approximation

cba



Konya, et al.: Deep learning‑based lumbar spine segmentation

143Journal of Craniovertebral Junction and Spine / Volume 12 / Issue 2 / April-June 2021

COMPLIANCE WITH ETHICAL STANDARDS

The present study is based on an institutional retrospective 
analysis. By decision of the ethics committee in charge for this 
type of study, formal consent is not required. All procedures 
performed in studies involving human participants were in 
accordance with the ethical standards of the national research 
committee and with the 1964 Helsinki Declaration and its 
later amendments or comparable ethical standards.[25]
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