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ABSTRACT Alteromonas is an opportunistic marine bacterium that persists in the
global ocean and has important ecological significance. However, current knowledge
about the diversity and ecology of alterophages (phages that infect Alteromonas) is
lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were
isolated and physiologically characterized. Transmission electron microscopy revealed
Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile
tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/
cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains.
Such unique infection kinetics are potentially associated with discrepancies in codon
usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the
three phages are closely evolutionarily related; they clustered at the species level and
represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide me-
tabolism and putative biofilm dispersal were found in these phage genomes, which
revealed important biogeochemical significance of these alterophages in marine eco-
systems. Our isolation and characterization of these novel phages expand the current
understanding of alterophage diversity, evolution, and phage–host interactions.

IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean
with crucial ecological significance; however, little is known about the diversity and
evolution of its bacteriophages that profoundly affect the bacterial communities. Our
study characterized a novel genus of three newly isolated Alteromonas phages that
exhibited a distinct infection strategy of broad host spectrum and small burst size.
This strategy is likely a consequence of the viral trade-off between virulence and
lysis profiles during phage–host coevolution, and our work provides new insight into
viral evolution and infection strategies.

KEYWORDS Alteromonas, burst size, host range, auxiliary metabolic genes,
comparative genomic analysis

Alteromonas is a copiotrophic bacterium of Gammaproteobacteria that is widely dis-
tributed in diverse marine environments worldwide, including coastal waters and

open oceans, ranging from the surface to bathypelagic seawaters and deep-sea sedi-
ments (1, 2). Alteromonas has been considered an r-strategist (emphasizing reproduc-
tion over survival) because of its rapid response to transient organic nutrients during
environmental perturbations such as phytoplankton bloom (3, 4). Moreover, it is
adapted to living as both plankton and particle attachments including biofilms or ma-
rine snow (5, 6). Collectively, the genus Alteromonas is one of the most readily and fre-
quently isolated heterotrophic bacterium, with 29 validated species published to date
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(https://www.bacterio.net/genus/alteromonas). In recent studies, Alteromonas was char-
acterized as a siderophore producer, capable of facilitating iron acquisition from specific
sources in the global marine community (7, 8). Alteromonas is also known as a helper
bacterium of Prochlorococcus, a dominant marine primary producer (9), by protecting it
against damage from hydrogen peroxide (10). Therefore, Alteromonas has received sub-
stantial attention in recent years as a model strain for marine bacterial research because
of its significant ecological roles.

As the most abundant biological agents, viruses play critical roles in structuring mi-
crobial populations and communities; they affect the nutrient cycle and energy flow
within microbial loops, thereby regulating global biogeochemical cycles (11). Although
metagenomic approaches have revealed the vast genetic diversity of marine viruses,
there is still a large number of unknown sequences (“viral dark matter”) because of the
lack of viral reference genomes in the databases, especially for ubiquitous phages that
infect key microbial clades across the ocean (12). Therefore, to further extend our
understanding of the diversity, evolution, and ecology of both phages and their bacte-
rial hosts, it is essential to isolate and characterize novel phages. However, only 14
Alteromonas-infecting phages have been reported to date (Table S1 in the supplemen-
tal material). This is considerably lagging behind the study of phages targeting other
marine bacterial clades, such as cyanophages, vibriophages and roseophages.

The currently known alterophages, including seven podophages, five siphophages, one
myophage, and one filamentous phage, were isolated from the Mediterranean Sea, the
coastal and offshore waters of China, and the North Sea (13–21). The infection strategies
and biogeographic patterns of marine phages are closely related to their host range and
burst size. However, most of these alterophages lack data from intragenus host range
assays, with the exception of vB_AcoS-R7M (R7M) (19) and vB_AmeP-R8W (R8W) (20),
which can infect five and nine different Alteromonas species, respectively. It is noteworthy
that R8W exhibits a wide host range of 35 Alteromonas strains with a strong preference for
deep-sea isolates. Burst size, the number of virions released upon infected host cell lysis, is
another crucial factor for phage infection strategy. In alterophages, limited data revealed
that burst size greatly varies, from 60–600 plaque-forming units (PFU)/cell (13, 14). Overall,
because of the insufficient alterophage isolates and limited physiological data, the infec-
tion strategies of alterophages remain poorly understood.

In this study, three isolates that infect the type strain A. macleodii ATCC 27126T

were isolated and fully characterized. Moreover, we identified two homologous meta-
genome-assembled alterophage-like contigs in the public database. Our experimental
and in silico investigation on this novel phage group provides new insights into altero-
phage evolution and ecology, and phage–host interactions.

RESULTS AND DISCUSSION
R9Y-phages exhibit broad host spectrum and small burst size.We isolated three

phages, vB_AmaS-R9Y1 (R9Y1), vB_AmaS-R9Y2 (R9Y2) and vB_AmaS-R9Y3 (R9Y3), from
aquaculture water samples of three different seafood markets in Guangzhou (23.13°N,
113.30°E; 23.12°N, 113.25°E) and Zhangzhou (23.70°N, 117.42°E). Three R9Y-phages
formed small round plaques (,1 mm in diameter) with a turbid halo on the host lawn
(Fig. 1). Transmission electron microscopy (TEM) inspection revealed their similar mor-
photype to Siphoviridae (Fig. 1), comprising of an oblate head (68.36 6 2.38-nm long
and 64.72 6 1.89-nm wide) and a long noncontractile tail (140.95 6 3.86 nm). Such an
oblate head is similar to that of Rhodobacter capsulatus gene transfer agent (RcGTA) (22),
a tailed phage-like entity exclusively encapsulating random bacterial fragments (23).

To examine the host range of the three phages, a spotting test was performed
against 175 Alteromonas strains (18 type strains of Alteromonas species and 157 non-
type Alteromonas strains including 119 A. macleodii, 16 Alteromonas abrolhosensis, 18
Alteromonas mediterranea, 1 Alteromonas australica, and 3 unclassified Alteromonas sp.
strains). The results showed that R9Y1 could lyse 8 of the 18 type strains, and R9Y2 and
R9Y3 could lyse 11 of them (Fig. 2). Compared with two recently reported alterophages,
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R7M (19) and R8W (20), that can infect 5 and 9 different Alteromonas species, respec-
tively, against the same collection of Alteromonas type strains, R9Y2 and R9Y3 displayed
the broadest host spectrum. Moreover, among 157 nontype Alteromonas strains, the le-
thal rate of phages R9Y1, R9Y2, and R9Y3 reached 67.53%, 72.08%, and 70.13%, respec-
tively (Fig. 2; see also Table S2). These values were significantly higher than that of
another A. macleodii ATCC 27126-targeting phage, R8W (43.48%), against the same col-
lection of 69 strains of various ecotypes determined by Pearson chi-square test or
Fisher’s exact test (Fig. S1). Furthermore, strains that are susceptible to R9Y-phages were
isolated from multiple habitats, including nearshore estuaries and global oceans (Pacific,
Indian, and Atlantic Oceans) ranging from surface to bathypelagic seawaters and deep-
sea sediments. Therefore, R9Y-phages may be prevalent and active killers of Alteromonas
in the ocean, posing significant effects on the fitness and dynamics of the host popula-
tion. Such lytic phages with a broad host range may also have profound ecological sig-
nificance to gene transfer (24).

To further understand the infection kinetics of R9Y-phages, the one-step growth
curve was examined. The results showed ta latent period of 40 min and a rapid grow-
ing period of 40–60 min, with burst sizes of 19, 17, and 15 PFU/cell for R9Y1, R9Y2, and
R9Y3, respectively (Fig. 3A); these are the smallest burst sizes compared with other cur-
rently known alterosiphophages (60–182 PFU/cell) (14, 19). Furthermore, a recent study
analyzed the one-step growth curves of viruses over the past 7 decades and showed
that the burst sizes of viruses spanned a range from 10 to 1,000 PFU per cell (25). That
is, the burst size of R9Y-phages is exceedingly close to the minimum burst size of
known viruses.

Because R9Y-phages lack tRNA genes of their own, codon usage bias adaptation to
their hosts is essential and expected. We calculated 62-codon relative synonymous
codon usage (RSCU) values (except for two encoding Met and Trp) of each phage–host
pair, and rRSCU (correlation between host and phage RSCU values) was used to assess vi-
ral capacity to exploit host tRNA inventory during translation (26). Three R9Y-phages
showed extremely small rRSCU values (0.08–0.11) and imperfect symmetrical distribution
(slope, 0.21–0.23) (Fig. 3B), which indicates poor codon adaptation to the host transla-
tion machinery and limited ability to use the host tRNA inventory. This may explain
their extremely small burst size. Indeed, combined with data from the currently
reported alterophages with known burst size, we observed a significant trend: lower
rRSCU is likely correlated with smaller burst size (P = 0.0166; Fig. 3C).

These results demonstrated that R9Y-phages displayed small burst size but broad
host spectrum. Such distinct infection kinetics correspond to the arms race dynamics
(ARD) model of phage–host coevolution, in which the host resistance and phage lysis
profile iteratively increase through time (27). Namely, phages likely evolved from

FIG 1 TEM images of three R9Y-alterophages. (A) vB_AmaS-R9Y1; (B) vB_AmaS-R9Y2; (C) vB_AmaS-R9Y3. Scale bar, 100 nm. Inset shows phage plaques
formed on the lawn of A. macleodii ATCC 27126; scale bar, 5 mm.
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specialist to generalist at the cost of fewer phage descendants production or slower
replication rate, which reflects the antagonistic pleiotropy of phage mutation (28,
29). Hence, we demonstrated that this physiological trait of R9Y-phages may repre-
sent a replication strategy of alterophages in which phages likely sacrifice the chance
to maximize host resources during infection in exchange for the ability to infect a
wider host range.

General genomic features and comparisons of R9Y-phages. R9Y-phages are dou-
ble-stranded DNA viruses with a genome length ranging from 40 kb to 43 kb and a G1C
content of 54.9% to 55.1% (Table S1). R9Y1, R9Y2, and R9Y3 were predicted to have 50,
55, and 56 open reading frames (ORFs), respectively. According to the BLASTp results,
75%–86% of ORFs were homologous to those predicted in two alterophage-like contigs
(GenBank PBFM01000045.1 and PBYJ01000001.1) of metagenome-assembled genomes
from the Pacific Ocean (30), and these five members shared approximately 93%–95%
pairwise genome-wide average nucleotide identities (ANI) (Fig. 4A). Furthermore, the
recruited metagenomic data indicated that R9Y-phages were present at four sites of
the Tara Oceans expedition at various depths, from the surface to mesopelagic zones, in
the South and North Pacific Oceans (Table S3).

In total, 35 ORFs were conserved among all members, which showed an isomorphic
genomic organization (Fig. 4B). Such great overall synteny also suggested that they were
derived from a common ancestor. Moreover, no lysogeny-related genes (e.g., integrase,

FIG 2 Lysis profiles of alterophages R7M(19), R8W(20), and R9Y1 to R9Y3 (this study) against 175 Alteromonas strains, which included 18 type
strains and 157 nontype strains. Sensitive and insensitive strains are highlighted in orange and brown, respectively. Internal phylogenetic tree
showing the relationships among tested bacterial strains is based on concatenated alignments of 92 core genes. Type strains of Alteromonas
are shown in red.
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transposase, and repressor) were identified, which indicates that these members are
likely to be obligate lytic.

A major difference between the five members is the tail fiber gene; some members
shared a pairwise identity as low as 64%. Previous studies have also shown that base-
plate-related tail genes, especially the tail fiber gene, likely undergo more frequent
horizontal transfers for viral host jumps (19, 31). However, when aligned using HHpred
and BLASTp, both termini of the five phages were found to match to each other well,
both genetically and structurally (Fig. 4C). The conserved N terminus ensures correct
attachment to the megatron fiber-binding domain, whereas the highly similar C ter-
mini are putative receptor-binding domains specific to Alteromonas (19). Although we
found subtle differences in the lysis profiles among three cultivable alterophages, it is
unclear whether these are caused by the difference in the middle segment of the tail
fiber gene. Moreover, the contents of their auxiliary metabolic genes (AMGs) also
slightly differed, which are described in the AMGs identification section.

Phylogenetic and taxonomic analysis reveal R9Y-related phage novelty. To
explore the taxonomy of R9Y-related phages, a marker-gene survey using genes encod-
ing DNA polymerase and major capsid protein was conducted. Both phylogenetic trees
showed that these five R9Y-related phages established distinct clustering (Fig. S2). A
phylogeny of four concatenated RcGTA-like baseplate-related genes (e.g., ORF15–ORF18
in R9Y1), which were found mostly preserved in numerous marine bacterial and viral
genomes (32), was also constructed. Likewise, these five phages again formed a tightly
cohesive cluster (Fig. S3). More importantly, a Genome-BLAST Distance Phylogeny
(GBDP) tree (Fig. 5) based on complete phage amino acid profiles also demonstrated

FIG 3 (A) One-step growth curves of R9Y1, R9Y2, and R9Y3 infecting the trapping host A. macleodii ATCC 27126. The data shown are average values from
triplicate experiments, and the error bars represent standard deviations. (B) Correlation analysis of R9Y1, R9Y2, and R9Y3 RSCU values of 62 codons with
their hosts. Gray shadows indicate the best-fit line with 95% confidence intervals from linear regression. (C) Correlation analysis of rRSCU values and available
burst size data for reported alterophages and three unpublished lytic alterophages (black circle). The gray shadow indicates the best-fit line with 95%
confidence intervals from linear regression.
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that these R9Y-related phages are closely evolutionarily associated and remarkably
novel.

The five related phages share pairwise ANIs of 93.37%–99.25% (Fig. 4A), which indi-
cates that they should be categorized into a single viral species according to the crite-
rion for classification at the viral species rank (;95% ANI [33]). Furthermore, because
no classified virus shared .50% ANI with these members, this viral species should be
further assigned to a novel genus (33). The assignment was also verified by OPTSIL (34)
(Fig. 5), a program commonly used for virus classification.

Based on these results, we propose that R9Y-phages represent a new genus of the
Siphoviridae family. Members of this candidate genus were either isolated from coastal
aquatic sewage or recruited from the metagenomic data sampled from the Pacific
Ocean, and they can infect hosts isolated from various marine habitats. Therefore, we
speculate that these members likely have high adaptability to different ecological
habitats.

FIG 4 Comparative genomic analyses of R9Y-related phages. (A) Whole-genome phylogeny based on the ANI of five R9Y-related alterophages and two
alterophage outgroups using BLASTn. (B) Whole-genome comparisons of five R9Y-related alterophages. Homologous ORFs are connected using shadows of
different colors, which indicates different pairwise BLASTp identities. Phage ORFs are oriented according to the direction of transcription. Gene functions
are colored according to categories noted below. Annotation of phage AMGs are highlighted in red. (C) Protein structure and amino acid sequence
alignments of tail fibers from R9Y-related phages. E-values of HHpred and BLASTp alignments are shown.
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Identification of AMGs related to nucleotide metabolism and putative host bio-
film dispersal. AMGs are recognized as entrenched parts of viral genomes that regulate
host metabolism or stress response during infection (35–37). Therefore, analysis of viral
AMGs could provide further understanding of how viruses potentially affect host metab-
olism and further contribute to the microbial community dynamics. At the space
between the viral lysis-related module and the DNA replication and transcription mod-
ule, three AMGs were found among the five members. All of them shared a nucleoside
triphosphate pyrophosphohydrolase-like domain (MazG). MazG was initially proposed to
optimize virus infection efficiency as a modulator of the stringent host nutrient-deficient
response (38, 39). Nevertheless, as MazG has been increasingly found in viruses that
infect bacteria isolated from diverse eutrophic environments (19, 40), viral MazG was
instead suggested to preferentially hydrolyze dGTP and dCTP; this allows the AT-rich
viruses to recycle and use deoxyribonucleotides from hosts with high GC contents (41).

The AMG unique to the three cultivable isolates is a gene that encodes an adhesin
biosynthesis transcription regulatory protein, the formate channel FocB. FocB is a neg-
ative regulator of the Escherichia coli fim operon encoding type 1 fimbria (42), an
essential adhesive organelle for bacterial biofilm formation (43, 44). Thus, FocB expres-
sion likely negatively regulates biofilm formation of Alteromonas hosts to facilitate viral
infection and transmission.

Another AMG unique to both of the nonculturable alterophages encodes a purine
nucleoside 2-deoxyribosyltransferase (NDT), which plays an important role in the nucleo-
side salvage pathway for DNA synthesis. By catalyzing the transfer of the 29-deoxyribose
moiety between purine bases (45–47), the viral purine NDT may allow the viruses to
recycle host purine nucleosides. Therefore, both nucleotide metabolism-related AMGs
(MazG and the NDT gene) likely help the phage hijack host nucleotide biosynthesis to
enhance the viral biosynthetic capacity.

Notably, all detected AMGs were located in the space between viral functional mod-
ules, which indicates that they were acquired through horizontal gene transfers (48).
Moreover, mazG existed in all five phages, whereas focB and the NDT gene showed only
a limited distribution; therefore, mazG may have been introduced by their common
ancestor, whereas focB and the NDT gene were obtained after differentiation began.

Conclusions. This research elucidated the physiological and genomic characteris-
tics of three similar Alteromonas phages, R9Y1, R9Y2, and R9Y3. These three phages
exhibited a unique infection strategy of small burst size (15–19 PFU/cell) but broad
host spectrum (lethal rates of 65%–71% against 175 Alteromonas strains), which was first
observed in alterophages. This strategy reflects the antagonistic pleiotropy between

FIG 5 Taxonomy of R9Y-phages. The GBDP tree based on the complete amino acid profiles of phages. Pseudobootstrap support values greater than 50/100
replications are shown.
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host generalism and specialism associated with their generalized codon usage bias from
broadly adapted hosts’ tRNA inventory. Together with two similar metagenome-
assembled alterophage-like contigs, these five representatives of a single species can fur-
ther be assigned into a novel genus of the family Siphoviridae. Three AMGs (focB, MazG,
and the NDT gene) putatively involved in host biofilm dispersal and nucleotide metabo-
lism were identified in this new phage group. Our comprehensive study significantly
extends our knowledge of the diversity of alterophages and discloses unique infection
kinetics in alterophages. Further research regarding the effect of the environmental fac-
tors, such as host density and nutrient conditions, on obscure viral infection strategies
and phage–host coevolutionary patterns will allow better insights into the evolution and
ecology of Alteromonas.

MATERIALS ANDMETHODS
Isolation and purification of phages. Alteromonas macleodii ATCC 27126T, the trapping host in this

study, was incubated in rich organic (RO) medium (peptone, 1 g; yeast extract, 1 g; sodium acetate, 1 g;
artificial seawater, 1 L; pH 7.4–7.8) at 28°C with a shaking speed of 180 rpm/min. Then, 1 mL of each
water sample from coastal waters (Xiamen coast, China), marginal seas (South China Sea), and different
seafood markets (Guangzhou, Xiamen, and Zhangzhou, China) was incubated with 20 mL of an expo-
nentially growing culture of A. macleodii ATCC 27126 for 24 h for enrichment. Phage lysate was then fil-
tered through a 0.22-mm pore size syringe filter (Millipore, CA, USA) to collect the infectious virions.
Subsequently, the filtered lysate was diluted and mixed with 1 mL exponentially growing host culture
and 6 mL molten RO agar medium (0.5% wt/vol agar) for double-layer agar plating. After incubating
overnight, a separated clear plaque was selected and further purified five times, and stored in 1 mL of
storage media buffer (50 mM Tris-HCl, 0.1 M NaCl, 8 mM MgSO4, pH 7.5) at 4°C for later use.

To obtain high phage biomass, 1 L phage lysate was treated with 2 mg/L of DNase and RNase for 1 h
at room temperature. Then, 1 M NaCl was also added, and the mixture was placed in an ice bath for
30 min to separate the phage particles from host cell debris. The mixture was then centrifuged at
10,000 � g for 10 min at 4°C, and the supernatant was filtered through 0.22-mm membranes, treated
with polyethylene glycol 8000 (10% [wt/vol]), and stored at 4°C overnight. After centrifugation at
10,000 � g for 60 min at 4°C, the phage precipitate was resuspended in 6 mL of storage media buffer,
which was further purified by CsCl equilibrium gradient centrifugation (200,000 � g, 4°C, 24 h) using an
Optima L-100 XP ultracentrifuge (Beckman Coulter, CA, USA). The visible viral band was extracted and
further desalted through 30-kDa super-filters (Millipore, CA, USA).

Transmission electron microscopy. The purified and desalted phage suspension was deposited
onto copper grids with carbon-coated Formvar film for 30 min in the dark, stained with 1% phosphotungs-
tic acid for 1 min, and further air dried. The sample was observed using a JEM-2100 transmission electron
microscope (JEOL, Tokyo, Japan) at an acceleration voltage of 80 kV. Images were collected using the CCD
image transmission system (Gatan Inc., CA, USA). Each phage particle was measured using ImageJ for at
least five virions (49).

Host range. Lysis profiles were determined by spotting dilutions onto bacterial lawns of 175
Alteromonas strains, including 18 type strains of Alteromonas species, 119 A. macleodii, 16 A. abrolhosen-
sis, 18 A. mediterranea, 1 A. australica, and 3 unclassified Alteromonas sp. strains (Table S2). All type
strains of the Alteromonas genus were obtained from global biological resource centers. The isolates pre-
fixed with “MCCC,” “DSM,” and “A” were obtained from the Marine Culture Collection of China (MCCC),
the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), and the Center for Collection
of Marine Bacteria (CCMB), respectively. Then, 1 mL of exponential growing host culture was mixed with
6 mL molten RO agar medium (0.5% wt/vol agar). The mixture was then poured onto a solidified RO
agar plate (1.5% wt/vol agar), which was left standing at room temperature in the dark for 20 min to so-
lidify. The phages were previously 1:100 serial diluted and then spotted onto the surface of each plate,
incubated at 37°C overnight, and then checked for the presence of clear plaques.

One-step growth curve. To analyze the life cycle and infection kinetics of phages, a one-step
growth curve was examined. The phage was added to 1 mL exponential growing culture of A. macleodii
ATCC 27126 at a multiplicity of infection of 0.01 and then incubated for 5 min at room temperature in
the dark. To remove unadsorbed phage particles, the culture was centrifuged and resuspended in 50 mL
RO medium. The suspension was incubated at 28°C with continuous shaking at a speed of 180 rpm/min.
Viral abundance was quantified with a double-layer agar assay every 20 min. Burst size was calculated as
the ratio of the number of released phage progeny at the plateau to the initial number of host cells at
the beginning of the latent period.

DNA extraction. The high-titer phage concentrate was treated with proteinase K (20 mg/mL), SDS
(10% wt/vol), and EDTA (0.5 M), and incubated at 55°C in water for 3 h. The digested sample was then
added to an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) and centrifuged at 12,000 � g
and 4°C for 5 min. This step was repeated twice. The supernatant was sequentially purified by adding
chloroform:isoamyl alcohol (24:1) and centrifuged at 12,000 � g and 4°C for 10 min. Then, the superna-
tant was mixed with isoamyl alcohol and kept at 220°C overnight. The precipitate was allowed to air
dry after slowly flushing with cold 70% ethanol. Samples were resuspended in 100 mL TE buffer (10 mM
Tris-HCl, 1 mM EDTA, pH 8.0) and stored at 4°C until analysis.
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Genome sequencing and bioinformatic analysis. The genomic DNA was sequenced on the
Illumina Novaseq platform with 300-bp paired-end reads. The sequencing reads were assembled de
novo with Velvet v1.2.03 (50).

The GeneMarkS online server (51) was used to identify putative ORFs of the genome. The predicted
ORFs were annotated by BLASTp search against the National Center for Biotechnology Information
(NCBI) nonredundant database with an e-value of 1023. CD-search (52) was used to inspect protein con-
served domains, and Virfam (53) was applied to confirm our genome-based structural gene predictions.
The tRNAscan-SE program was used to identify tRNA genes (54). The genomic comparison was per-
formed using all-to-all BLASTp, and genome maps were created using a custom Java script.

Phylogenetic analyses. Reference genomes of the Alteromonas isolates for host range assay were col-
lected from the NCBI RefSeq database (by 5 September 2018) or obtained by sequencing. The Up-to-Date
Bacterial Core Gene set (UBGC) (55) pipeline was used to identify the 92 bacterial single-copy core genes
found in most of the known bacterial genomes. The maximum-likelihood phylogenetic tree was con-
structed based on the concatenated nucleotide alignment in UBGC with 100 bootstrap iterations. The de-
marcation of bacterial species was based on a threshold of 95% average nucleotide identity (ANI) (56).

Two viral hallmarks (DNA polymerase and major capsid protein) (57) and four concatenated RcGTA-
like baseplate-related genes were used for phylogenetic analysis. The maximum-likelihood mode with
1,000 bootstrap replicates was employed with auto-assigned best-fit models in IQ-TREE v1.6.12 (58). To
explore phage taxonomic status, complete amino acid sequences of all known alterophages and rele-
vant phages determined by PHAST (59) and BLASTp were submitted to the VICTOR server (https://ggdc
.dsmz.de/victor.php) to build the whole-genome tree using the GBDP method under settings recom-
mended for prokaryotic viruses (60). Taxon boundaries at the species, genus, and subfamily levels were
evaluated using the OPTSIL program with the recommended clustering thresholds (34, 60, 61).

All phylogenetic trees mentioned above were manipulated and visualized with iTOL v5 (62). The
phylogenetic tree based on ANI values was analyzed using OrthoANI (63).

Biogeographic distribution analysis. In total, 110 unassembled metagenomic data sets of the Tara
Oceans project (64) were downloaded from the European Nucleotide Archive (https://www.ebi.ac.uk/ena) to
evaluate the biogeographic distribution of viruses (Data Set S1). BBMap v38.90 (65) was used to map the
reads from the unassembled viromes. It is generally thought that the presence of a phage in a particular
sample can be determined by detecting a threshold of $75% genome coverage with at least 90% identity
for read mapping (66). The relative abundance of viruses was calculated as reads per kilobase per million
mapped reads (RPKM).

Codon usage analysis. The RSCU value for a codon refers to its observed frequency divided by the
expected frequency under the assumption of equal usage of the synonymous codons for an amino acid (67).
The RSCU values of phages and their hosts were calculated using codonW v1.4.2 (https://sourceforge.net/
projects/codonw) for every amino acid. Single-codon families, such as Met coded by TGG and Trp coded by
TGG, were excluded from the analysis because their RSCU value is always equal to 1 regardless of codon
usage. GraphPad Prism v7 (GraphPad, CA, USA) was used to perform correlation analysis and linear regres-
sion between host and phage RSCU values.

Data availability. The complete genome sequences of R9Y1, R9Y2, and R9Y3 were submitted to the
GenBank database under the following accession numbers: OM287554.1, OM732336.1, and OM732337.1,
respectively.
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