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A machine learning‑based model 
analysis for serum markers of liver 
fibrosis in chronic hepatitis B 
patients
Congjie Zhang 1,7, Zhenyu Shu 2,7, Shanshan Chen 3,7, Jiaxuan Peng 4, Yueyue Zhao 5, Xuan Dai 5, 
Jie Li 5, Xuehan Zou 5, Jianhua Hu 6 & Haijun Huang 5*

Early assessment and accurate staging of liver fibrosis may be of great help for clinical diagnosis 
and treatment in patients with chronic hepatitis B (CHB). We aimed to identify serum markers and 
construct a machine learning (ML) model to reliably predict the stage of fibrosis in CHB patients. 
The clinical data of 618 CHB patients between February 2017 and September 2021 from Zhejiang 
Provincial People’s Hospital were retrospectively analyzed, and these data as a training cohort to build 
the model. Six ML models were constructed based on logistic regression, support vector machine, 
Bayes, K-nearest neighbor, decision tree (DT) and random forest by using the maximum relevance 
minimum redundancy (mRMR) and gradient boosting decision tree (GBDT) dimensionality reduction 
selected features on the training cohort. Then, the resampling method was used to select the 
optimal ML model. In addition, a total of 571 patients from another hospital were used as an external 
validation cohort to verify the performance of the model. The DT model constructed based on five 
serological biomarkers included HBV-DNA, platelet, thrombin time, international normalized ratio 
and albumin, with the area under curve (AUC) values of the DT model for assessment of liver fibrosis 
stages (F0-1, F2, F3 and F4) in the training cohort were 0.898, 0.891, 0.907 and 0.944, respectively. The 
AUC values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the external 
validation cohort were 0.906, 0.876, 0.931 and 0.933, respectively. The simulated risk classification 
based on the cutoff value showed that the classification performance of the DT model in distinguishing 
hepatic fibrosis stages can be accurately matched with pathological diagnosis results. ML model of five 
serum markers allows for accurate diagnosis of hepatic fibrosis stages, and beneficial for the clinical 
monitoring and treatment of CHB patients.
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The estimated prevalence of chronic hepatitis B virus (HBV) infection worldwide in 2016 was 3.5%, with approxi-
mately 257 million people living with chronic hepatitis B (CHB)1, in whom up to 40% of HBV infections may 
be progress to decompensated cirrhosis and hepatocellular carcinoma (HCC)2. Timely and appropriate antiviral 
therapy can inhibit viral replication and prevent disease progression, but not all HBV-infected patients require 
antiviral therapy. The American association for the study of liver diseases (AASLD) recommend that patients 
with early liver fibrosis (F < 2) need only follow-up observation, while those with significant liver fibrosis (F ≥ 2) 
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definitely require antiviral therapy3,4. Therefore, there is a pressing, to search for easily available, relatively inex-
pensive and reliable biomarkers to assess the stages of liver fibrosis with non-invasive techniques are an urgent.

At present, liver biopsy is still the gold standard when it comes to determine the degree of liver fibrosis. 
However, biopsy by sampling error, the difference between the observer and the limitation of various potential 
complications, cause for stable and asymptomatic patients with early liver fibrosis5–7. In view of this, non-invasive 
methods are replacing liver biopsy to evaluate the degree of liver fibrosis. In recent years, the serological detec-
tion gets more and more attention, and profit from serum detect is easy to obtain, simple to use, and lower cost, 
especially in the application of routine screening8. Most of these serological detections were developed in viral 
hepatitis or nonalcoholic fatty liver disease (NAFLD). In general, these tests are assessed by combining markers 
such as liver injury, complications of poral hypertension, or markers that measure fibrosis generation9. However, 
it should be noted that the sensitivity and specificity of individual serological biomarkers are significantly differ-
ent, and making them insufficient to accurately evaluate the stages of liver fibrosis in CHB patients. Therefore, 
there is an urgent and unmet clinical need to find biomarkers that are readily available, relatively inexpensive, 
and reliable and that can be assessed with less invasive or even noninvasive techniques for assessing the stages 
of liver fibrosis.

At this stage, the liver fibrosis assessment model combined with multiple serological biomarkers, including 
Fibrosis 4 score (FIB-4), aspartate aminotransferase to platelet ratio index (APRI) and other classic assessment 
indicators, is an effective method. However, these methods have reduced the sensitivity and specificity of the test 
results due to the influence of CHB complications, which can’t accurately reflect the results of liver biopsy10,11. 
Therefore, highly accurate and reliable models are urgently needed in clinical practice to improve decision sup-
port for liver fibrosis assessment in CHB patients. In recent years, the application and development of large data 
and artificial intelligence technology has pioneered the new medical decision-making system, especially the use 
of ML to improve the reliability and accuracy of diagnostic systems for specific diseases. A preliminary study 
applying ML to nonalcoholic steatohepatitis (NASH) histology demonstrated the feasibility of this method in 
assessing liver tissue12,13. In this study, we assumed that using new combination of serological biomarkers to 
construct a predictive model through ML can allows for accurate diagnosis of liver fibrosis in CHB patients. 
The potential utility of the ML-based risk stratification approach may be demonstrated in comparison with the 
results of the traditional classic serological model and pathological evaluation.

In conclusion, the purpose of this study was to identify novel predictors of liver fibrosis staging from clinical 
and serological datasets. Furthermore, a high-flux ML-based predictive model was developed and validated in 
two independent cohorts based on the identified predictors for the accurate identification of liver fibrosis staging 
in CHB patients to aid in clinical decision-making.

Methods
This retrospective study was approved by the Ethics Committee of Zhejiang Provincial People’s Hospital. We con-
firm that all methods were performed in accordance with relevant guidelines and regulations. We retrospectively 
analyzed the clinical data of 1189 CHB patients from two independent centers, including general information 
and laboratory data obtained within 1 week prior to liver biopsy. HBV-infected patients over 18 years old with 
hepatitis B surface antigen (HBsAg) positivity for at least 6 months were included14. The exclusion criteria were 
as follows: ① antiviral therapy; ② incomplete clinical data; ③ other causes of liver disease, such as hepatitis C 
virus (HCV), alcoholic liver disease, NASH, or autoimmune liver disease. The detailed process of liver biopsy 
and pathological diagnosis can be found in the Supplementary Material. In this study, we used the dataset from 
Zhejiang Provincial People’s Hospital as a training cohort to build the model, and we also included 571 HBV-
infected patients from the First Affiliated Hospital of Zhejiang University as an independent external validation 
cohort for the model to further determine the generalizability of the model. We confirm that informed consent 
was obtained from all subjects and their legal guardian. The flowchart of patient enrollment is shown in Fig. 1.

Statistical analyses of the data were performed with SPSS software (version 25.0, SPSS Inc, IBM,) R 3.5.1 
and Python 3.5.6. Quantitative data was tested for normality using the Kolmogorov–Smirnov test and met the 
normal distribution using the independent sample t-test. Non-normally distributed data was analyzed using the 
Mann–Whitney U test. Counting data was expressed as frequency numbers, and between groups were compared 
using χ2 test. The calculated AUC and 95% confidence interval (CI) were used to evaluate the performance of the 
ML model for the prediction of grade liver fibrosis. A two-tailed P value < 0.05 indicated statistical significance.

Results
There were significant differences in Alkaline phosphatase, TBIL, DB, AST/ALT and ALT-square among the 
training cohort and external validation cohort (P < 0.05), but there were no significant differences among other 
characteristics (P > 0.05), and detailed feature analysis can be found in Table 1.

This study first performed maximum relevance minimum redundancy (mRMR) to exclude redundancy 
features, and a total of 10 features remained, includes gender, age, HBV-DNA, International NORMALIZED 
Ratio (INR), thrombin time (TT), Mean erythrocyte volume, albumin, Gamma Glutamyl Transferase (GGT) 
and Alkaline phosphatase. Second, after dimensionality reduction based on GBDT, 5 features remained. Among 
them, the weight of HBV-DNA was the highest at 0.261, followed by PLT (0.214), TT (0.183), albumin (0.179) 
and INR (0.162) (See Figure S2). The variance inflation factor (VIF) is 1.128, 1.01, 1.101, 1.017 and 1.099, which 
shows no collinearity between the features. The detailed process and results of dimensionality reduction can be 
found in the Supplementary Materials.

The model was constructed using the 5 selected features based on the training dataset (Fig. 2). The model 
constructed by the SVM ML method showed the best stability, with a mean AUC and RSD of 0.7848 (SD 0.01223) 
and 1.5583, respectively. The model constructed by the DT ML method showed the best diagnostic performance, 
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with a mean AUC and RSD of 0.8617 (SD 0.02377) and 2.7585, respectively (Fig. 3 and Table S2). To select the 
best-performing model, the SVM and DT models were applied to the training cohort and the external valida-
tion cohort. The RSDs calculated based on the AUC values of the two groups were 1.347 and 0.116, respectively 
(Table S3). Therefore, the DT model showed the best generalized performance among different independent 
datasets, and its mode visualization can be seen in Fig. 4.

The AUC values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the training 
cohort were 0.898, 0.891, 0.907 and 0.944, respectively. The AUC values of the DT model for assessment of liver 
fibrosis stages (F0-1, F2, F3 and F4) in the external validation cohort were 0.906, 0.876, 0.931 and 0.933, respec-
tively. The calibration curve of the model showed good agreement with the ideal curve. The Hosmer–Lemeshow 
test also showed no significant difference between the predicted calibration curve and the ideal curve (P > 0.05) 
(Fig. 5). In addition, Delong’s test showed that the diagnostic performance of the DT model was significantly 
different from those of the mixed features in the training cohort and the external validation cohort, highlighting 
the improvement in the prediction performance of the DT model, as shown in Table 2.

The DT model calculated the liver fibrosis probability of all patients, and identify early stage of fibrosis(F0-1), 
significance fibrosis(F2), advanced fibrosis(F3) and Cirrhosis(F4) according to the optimal diagnostic threshold 
(F0-1 cut-off value: > 0.5, F2 cut-off value: > 0.25714, F3 cut-off value: > 0.05714 and F4 cut-off value: > 0.03846). 
We observed that there were no significant differences in the number of cases diagnosed by pathology between 
the four groups, whether in the training or external validation cohorts or even in the entire study cohort (P > 0.05, 
Table 3), which indicated that the model risk classification effect of this study was good. For all 1189 patients, 
the Delong’s test showed that the performances of ML model did not significant differences among F0-1, F2, F3 
and F4 regarding to different inflammation subgroups (P > 0.05, Table 4 and Fig. 6).

Discussion
In this multicenter study, we designed a prediction model based on ML to accurately assessment liver fibrosis 
stages of CHB patients. Compared with traditional statistical models such as APRI or FIB-4, and ML model 
demonstrated significant improvements and was easy to process, which also suggested the great potential of ML 
in the field of noninvasive liver fibrosis evaluation. In addition, our study results indicated that ML model pro-
vided similar diagnostic efficacy with the reference standard liver biopsy, which may provide a reliable theoretical 
basis for the further development of simple, easy-to-use and accurate tools for the evaluation of liver fibrosis.

In this study, we used ML methods with the hope of more accurately assessing the staging of liver fibrosis, 
thereby improving the accuracy of the model. The final results revealed that our model showed superior accuracy 

Figure 1.   Flowchart of patient recruitment and study design.
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compared to traditional serological models such as APRI or FIB-4. It is also significantly higher than the diagnos-
tic efficacy of seventeen noninvasive liver fibrosis models in Chinese patients with hepatitis B mentioned in the 
study of Li et al.19. In addition, stratification analysis in inflammation subgroups was performed, and the results 
did show no significant impact on the performance of ML model. These findings suggest that ML model may 
overcome the influence of inflammation for cirrhosis evaluation, which is likely to be a potential breakthrough in 
non-invasive diagnosis. This was helped by a new approach to model building that had the following main advan-
tages. First, we compared the performance of models constructed by several ML methods, and then we focused 
on and validated the DT model because of its better performance and ease of use. In fact, the DT model has been 
applied to evaluate hepatitis C liver fibrosis and has shown significant performance20. In addition, previous studies 
mainly used a classification method (logistic regression analysis)21, and features were selected through univariate 

Table 1.   Characteristics of patients in the two cohorts. Data are n, n (%), or mean (SD). INR international 
normalized ratio, TT thrombin time, ALB alkaline, ALT alanine aminotransferase, AST aspartate 
aminotransferase, GGT​ glutamyl transpeptidase, TBIL total bilirubin, DB direct bilirub. * indicates P < 0.05.

Characteristics All cohort (N = 1189) Training cohort (N = 618) Validation cohort (N = 571) P

Clinical features

 Gender(n/%)
male 794(66.67) 413(66.83) 381(66.73)

0.97
female 395(33.33) 205(33.17) 190(33.27)

 Age 38.06(10.05) 38.56(10.21) 37.51(9.86) 0.073

Quantitative hepatitis B virus

 HBV-DNA 5.53(2.43) 5.52(2.25) 5.56(2.61) 0.778

 HBcAb 10.53(2.62) 10.45(2.85) 10.61(2.34) 0.284

Characteristics of coagulation function

 INR 1.06(0.66) 1.08(0.84) 1.04(0.38) 0.242

 TT 18.69(3.87) 18.52(5.12) 18.87(1.65) 0.116

Blood routine characteristics

 WBC 5.65(2.45) 5.60(1.76) 5.72(3.02) 0.404

 Lymphocyte 1.84(0.67) 1.84(0.72) 1.83(0.62) 0.748

 Neutrophils 3.29(1.39) 3.29(1.39) 3.29(1.38) 0.956

 RBC 5.37(12.79) 5.39(14.38) 5.35(10.82) 0.955

 HB 147.71(21.24) 147.41(24.1) 148.04(17.64) 0.607

 Mean erythrocyte volume 90.45(34.18) 91.78(4.69) 89.01(7.09) 0.147

 PLT 184.53(78.98) 183.05(58.75) 186.14(96.23) 0.5

Blood biochemical characteristics

 Albumin 44.59(5.10) 44.39(5.58) 44.83(4.53) 0.138

 ALT 57.78(82.97) 54.14(81.32) 61.73(84.64) 0.115

 AST 39.79(39.87) 38.5(36.59) 41.19(43.12) 0.246

 GGT​ 35.25(41.04) 37.01(46.32) 33.34(34.36) 0.123

 Alkaline phosphatase 79.80(30.39) 84.68(27.03) 74.51(32.87)  < 0.001*

 TBIL 15.41(7.43) 16.49(7.93) 14.23(6.65)  < 0.001*

 DB 3.98(2.54) 3.52(2.39) 4.47(2.6)  < 0.001*

 AST/ALT 0.93(0.41) 0.97(0.42) 0.89(0.39) 0.001*

Traditional serological mixed indicators

 APRI 0.63(0.78) 0.62(0.72) 0.64(0.83) 0.596

 ALTsquare 6.76(3.47) 6.53(3.39) 7.01(3.55) 0.017*

 Fib-4 1.36(1.26) 1.40(1.35) 1.31(1.15) 0.206

 AST/PLT 0.25(0.31) 0.25(0.29) 0.26(0.33) 0.596

Fibrosis stages

 F0-1(n/%) 665(55.9) 346(56) 319(55.8) 0.967

 F2(n/%) 313(26.3) 162(26.2) 151(26.4) 0.945

 F3(n/%) 103(8.7) 54(8.7) 49(8.6) 0.93

 F4(n/%) 108(9.1) 56(9.1) 52(9.1) 0.98

Inflammation grades

 G0 (n/%) 12(1) 8(1.3) 4(0.7) 0.306

 G1 (n/%) 645(54.2) 345(55.8) 300(52.5) 0.256

 G2 (n/%) 405(34.1) 189(30.6) 216(37.8) 0.065

 G3 (n/%) 119(10) 70(11.3) 49(8.6) 0.115

 G4 (n/%) 8(0.7) 6(1) 2(0.4) 0.191
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Figure 2.   Flowchart of model construction and validation.

Figure 3.   Density chart of AUC values obtained by each machine learning model after 100 resamplings. The 
SVM model showed the highest density accumulation, and the DT model showed the highest AUC value. SVM 
support vector machine, KNN K-nearest neighbor, DT decision tree, RF random forest, ML machine learning.
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tests (t tests, Welch tests, etc.) in many patients22,23. However, this method is often overly optimistic, prone to 
overfitting, and difficult to reproduce. To overcome these problems, we used integration algorithms, including 
mRMR and GBDT, to remove redundant features to prevent multicollinearity, and we used only high-scoring 
variables to construct prediction models to avoid overfitting. Second, our model allows patients to be assessed by 
a single blood draw without the need for additional modalities. This concept is particularly attractive for routine 
screening of people at high risk of disease development, such as those with advanced or severe liver fibrosis, in 
primary care settings. These cases which clinically suspected severe liver fibrosis previously required puncture 

Figure 4.   DT model visualization. The square boxes represent clinical outcomes. Darker shades of purple 
indicate a greater predicted probability value. In this study, the probability value 0 represents the pathological 
result of F0-1, the probability value 1 represents the pathological result of F2, the probability value 2 represents 
the pathological result of F3, and the probability value 3 represents a pathological result of F4. GGT​ glutamyl 
transpeptidase, INR international normalized ratio, PLT platelet.
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Figure 5.   ROC curves of the tree model in the training cohort (A) and external validation cohort (B). 
The calibration curves showed the agreement between the predictive performance and the actual results in 
the training cohort (C) and external validation cohort (D). The diagonal line represents perfect predictive 
performance, and the color line represents the model classification performance.

Table 2.   Diagnostic performance of the ML model and traditional serological model for assessment of hepatic 
fibrosis stages in the two cohorts. AUC​ area under the receiver operating characteristic curve, ML machine 
learning, AUC​ of ML model was statistically compared with AUC of FIB-4 and APRI, respectively, in the same 
fibrosis stage(*P < 0.05).

Cohorts ML Model APRI FIB-4

Cirrhosis(F4) AUC​

 Training cohort 0.944* 0.67 0.717

 Validation cohort 0.933* 0.69 0.735

Advanced fibrosis(F3) AUC​

 Training cohort 0.907* 0.604 0.567

 Validation cohort 0.931* 0.63 0.695

Significance fibrosis(F2) AUC​

 Training cohort 0.891* 0.515 0.527

 Validation cohort 0.876* 0.559 0.551

Early stage of fibrosis(F0-1) AUC​

 Training cohort 0.898* 0.602 0.615

 Validation cohort 0.906* 0.651 0.681
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pathology to be confirmed. However, now only need to routine serological examination to judge the probability 
of severe liver fibrosis, so invasive puncture examination can be avoided. Therefore, it has obvious advantages 
in terms of cost and prognosis. In addition, our method can be used to construct a similar model visualization 
to distinguish early liver fibrosis from significant liver fibrosis, and does not require specially trained clinicians, 
which is more convenient for clinicians in practice and of great value for clinical promotion.

In this study, we also hoped to improve the diagnostic performance of the model by identifying more specific 
markers and constructing the model based on the combination of known serologically relevant features. We 
integrated some of the most routine serological markers, in contrast to Zeng et al., who used laboratory markers 
such as B2-macroglobulin, haptoglobin and apolipoprotein A1, which are not commonly used in most hospitals24. 
Although these laboratory markers may show higher accuracy than routine serological markers, they are not 
suitable for practical clinical application. Our results showed of the five conventional serological markers used 
to construct the ML model, HBV-DNA had the greatest contribution to the model, which is consistent with the 
recommendation of some guidelines that patients with high HBV-DNA levels should be evaluated for noninvasive 
liver fibrosis4,25. HBV DNA is the marker for viral replication. For chronic HBV infection, the development of 
the disease is a dynamic process, and the infection status also exists for a long time. For patients with chronic 
HBV infection in the indeterminate phase, the results of examination alone may not be able to accurately assess 
the natural history stage, so dynamic follow-up observation is needed. Studies have shown that HBV DNA levels 
correlated with significant fibrosis in HBeAg(−) CHB patients. HBV DNA level could predict liver fibrosis in 
HBeAg(−) CHB patients with biopsy indication26,27.

Table 3.   Clinical classification performance of machine learning model. ML machine learning.

Group
ML model results 
(n, %)

Pathological results (n, %)

Recognition rate (%) P valueF0-1 F2 F3 F4

Training cohort (N = 618)

F0-1 302(48.87) 346(56) 87.28

0.581
F2 116(18.77) 162(26.2) 71.60

F3 45(7.28) 54(8.7) 83.33

F4 49(7.93) 56(9.1) 87.5

Validation cohort (N = 571)

F0-1 251(43.96) 319(55.8) 78.68

0.819
F2 126(22.07) 151(26.4) 83.44

F3 46(8.06) 49(8.6) 93.87

F4 47(8.23) 52(9.1) 90.38

Study cohort (N = 1189)

F0-1 553(46.51) 665(55.9) 83.15

0.776
F2 242(20.35) 313(26.3) 77.32

F3 91(7.65) 103(8.7) 88.34

F4 96(8.07) 108(9.1) 88.89

Table 4.   Diagnostic performance comparison of ML model for patients with different inflammation levels. & : 
AUCs of ML model was statistically compared between mild and moderate inflammation groups, respectively, 
in each fibrosis stage. *: AUCs of ML model was statistically compared between moderate and severe 
inflammation groups, respectively, in each fibrosis stage. #: AUCs of ML model was statistically compared 
between severe and mild inflammation groups, respectively, in each fibrosis stage.

Fibrosis stages AUC (95%CI) Sensitivity Specificity P value

Mild inflammation(G0-1)

 F0-1(n = 503) 0.895(0.869 to 0.917) 0.847 0.766 0.907&

 F2(n = 123) 0.895(0.869 to 0.917) 0.886 0.736 0.15&

 F3(n = 15) 0.899(0.874 to 0.921) 0.867 0.844 0.821&

 F4(n = 16) 0.945(0.925 to 0.961) 0.813 0.942 0.451&

Moderate inflammation(G2)

 F0-1(n = 154) 0.892(0.858 to 0.921) 0.779 0.809 0.516*

 F2(n = 153) 0.862(0.824 to 0.894) 0.719 0.794 0.218*

 F3(n = 58) 0.907(0.875 to 0.934) 0.828 0.827 0.382*

 F4(n = 40) 0.922(0.891 to 0.946) 0.85 0.833 0.644*

Severe inflammation(G3-4)

 F0-1(n = 8) 0.919(0.857 to 0.96) 1 0.714 0.552#

 F2(n = 37) 0.902(0.836 to 0.947) 0.973 0.644 0.834#

 F3(n = 30) 0.932(0.873 to 0.969) 0.833 0.876 0.395#

 F4(n = 52) 0.934(0.876 to 0.971) 0.923 0.773 0.733#
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In addition, two coagulation factors including INR and TT were integrated into the model, although the two 
coagulation factors are closely related in clinical practice28,29, which was may lead to over fitting of the model and 
overestimate the role of coagulation factors. However, we calculated the VIF value of relevant factors and did 
not show collinearity. Therefore, we speculate that the contribution of coagulation factors to the model should 
not be overestimated.

It is well known that distinguishing F0-1 from F2-4 is more challenging in many studies30,31, which is because 
the heterogeneity of liver fibrosis in patients with F ≥ 2 liver fibrosis is more serious than that in those with F ≥ 3 
and 4 liver fibrosis, which generally reduces the accuracy of all classification strategies. In fact, our research 
results confirm that DT model has the lowest accuracy (AUC of 0.891 in training cohort and AUC of 0.876 in 
Validation cohort) in identifying patients with liver fibrosis grade F2. However, DT model shows high accuracy 
and excellent stability for each fibrosis grade in two cohorts, especially in identifying liver cirrhosis (F4), which 
was shows this model could be used to refine phenotypes in large research studies. Our study result also showed 
that the highest overall recognition rate for patients with liver cirrhosis (F4) was higher than that for patients 
with other stages of liver fibrosis when the model was used to classify risk prediction in the two cohorts or the 
whole cohort. These results suggested that our ML model may be part of a more accurate preclinical detection 
pathway to assess liver cirrhosis and may be used for the screening and treatment of liver cirrhosis in HBV-
infected patients in routine clinical environments, although this needs to be validated in prospective studies.

This study has some limitations. First, this study was a retrospective study, which may lead to the simulation of 
retrospective statistics depending on too many assumptions. Future research should focus on the development of 
prediction and classification models based on prospective research, which will allow time evolution information 
to be used to evaluate, modify and reevaluate prediction models. Second, the model itself needs to be further 
optimized through better engineering and further development through more comprehensive integration of 
other clinical data to improve the overall performance of the model and achieve a more accurate noninvasive 
diagnosis of liver fibrosis staging. Finally, our study did not investigate the performance of ML model for clas-
sifying patients with CHB of different ethnic populations, which are also worthy of further studies in the future. 
Of course, in this study, we still emphasize that as conceptual research, it can still provide a certain basis for the 
real clinical practice in the future, although this future still needs a long way to go.

In conclusion, this study demonstrated that ML model was more accurate than traditional serological mixed 
biomarkers in assessing all four liver fibrosis stages in patients with CHB. In addition, the results of this study 
promote the goal of assessing liver fibrosis in CHB patients and improving the existing prognostic models, 

Figure 6.   The diagnostic performance of ML model recognizes liver fibrosis grade in mild inflammation (A), 
moderate inflammation (B) and severe inflammation (C) groups, respectively. The calibration curves showed 
the agreement between the predictive performance and the actual results in the mild inflammation (D), 
moderate inflammation (E) and severe inflammation (F) groups. The diagonal line represents perfect predictive 
performance, and the color line represents the model classification performance.
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thereby facilitating a future prospective study design and evaluation and clinical disease surveillance and treat-
ment. We also hope to further refine and expand this work to clarify the application of this model to a wider 
range of liver fibrotic diseases.

Data availability
The datasets generated and analysed during the current study available from the corresponding author on rea-
sonable request.
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