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Abstract: Breast cancer (BC) is the first malignant neoplasm in women, with a high death rate despite
early diagnoses and treatment advances. Significant differences exist between the most common
BC and triple-negative breast cancer (TNBC). TNBC presents molecular differences such as lacking
expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2 proteins, making this
cancer have a poor clinical prognostic and lack clear strategies for its treatment. However, growing
evidence points to metabolic dysregulation as another differential process between stages and types
of BC. Therefore, the study of this crucial hallmark could identify new therapeutic targets to treat this
aggressive form of BC. These differences induce an in vitro exploration of the metabolic behavior
of the MCF7 cells (nTNBC) and MDA-MB-231 (TNBC) cells under lipidomic based LC–MS. The
results show more significant differences in lipid regulation (phosphatidylethanolamine) that could
be associated with the aggressiveness and difficulties of the treatment of TNBC.

Keywords: breast cancer; lipidomics; triple negative breast cancer; LC–MS

1. Introduction

Breast cancer (BC) is the most diagnosed malignancy worldwide. In 2020, the Interna-
tional Agency for Research on Cancer (IARC) estimated an incidence of about 2.3 million
female patients [1]. Despite scientific efforts, BC is the first cause of cancer-related death in
women in Mexico and the world, causing 684,996 deaths in 2020 [1], probably due to the
lack of clear strategies for its treatment, besides its high cost and the several side effects
affecting the patient’s quality life [2].

BC is a multifactorial disease involving genetic (DNA modifications) and epigenetic
alterations that allow cancer cells to replicate and survive under uncontrolled growth [3]
through the activation of several intracellular pathways [4]. There are different types of
BC; the most common are grouped here as non-triple negative breast cancer (nTNBC) and
triple-negative breast cancer (TNBC). The TNBC lacks expression of the estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)
protein, while nTNBC only lacks HER2 [5,6]. There are no clear pharmacological options to
treat TNBC, so its prognosis remains poor [7,8]. Nevertheless, there are other molecular
mechanisms involved that could explain the treatment difficulties and poor prognostics,
such as metabolic alterations. The insufficient biological data related to metabolic dysregu-
lation in BC make it challenging to design and guide the drug treatment of TNBC. Some of
these small molecules, which are very important for carcinogenesis, cancer growth, and
migration, including metastases, are lipids [9,10]. They not only act as an energy resource
and membrane components but also regulate oxidative stress in the cell [11].
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Novel characterization chemical techniques, such as liquid chromatography–mass spec-
trometry (LC–MS), allow studying proteins (proteomics) and metabolites (metabolomics),
including lipids present in cells [12]. LC–MS are studies capable of showing the lipid levels,
named lipidomics, of cell cultures [13–15]. Differences in sample preparation, extraction
methods, LC–MS platforms, and data processing make it a challenging task for a single
study to cover the entire lipidomic profile, so new contributions might help to fill the
gaps [16–19]. Furthermore, due to TNBC’s molecular complexity, in this work, we have
used LC–MS to identify the dysregulated lipids in nTNBC and TNBC. In this study, two of
the most studied cell lines were selected: MCF-7 was chosen as a nTNBC model because it
is classified as a luminal A subtype of BC, a subtype associated with a good prognosis and
low aggressiveness in contrast to TNBC (represented by MDA-MB-231), which is located
in the opposite side of the prognosis spectrum within BC subtypes for its bad prognosis
due to its unresponsiveness to hormone treatment and aggressiveness [8,20,21]. Through
this work, the authors intend to contribute to the identification of possible biomarkers and
differential therapeutic targets, related to the aggressive form of BC, that could guide the
treatment of this disease.

2. Results and Discussion

In order to find lipids possibly involved in BC aggressiveness, a comparison between
two BC cell lines, with diametral differences in both prognosis and aggressiveness, was
made; MCF-7 was considered as the model for positive prognosis, low aggressiveness,
and low invasiveness and MDA-MB-231 for bad prognosis, high aggressiveness, and
invasiveness [20–22]. Differences in lipid dysregulation of MDA-MB-231 compared to
MCF-7 might be related with the aggressiveness of the corresponding BC subtype.

Although it has been reported that TNBC shows a low percentage (10–15%) of in-
cidence in BC, It draws researcher’s attention due to its poor medical prognosis as a
consequence of its lack of response to hormone treatment, limiting the therapeutic op-
tions available for its treatment [23]. Due to TNBC’s biological complexity, it is pivotal to
gather all possible information to better understand this subtype of the disease, suggest
new targets for treatment, and to guarantee the success of BC eradication, while avoiding
chemotherapy resistance in the process [24]. However, to suggest novel molecular targets,
it is required to find molecular differences at the metabolic level; particularly, lipids are an
attractive target because cancer cells increase their use as an energy source, building blocks
required for cell division, and signaling molecules, among others [25].

Lipidomic studies could depict potential biological targets [26] for drug design [27] to
avoid cancer cell growth, metastases, and chemotherapy resistance. This work is focused on
exploring lipidomic differences by using an LC–MS approach to compare nTNBC (MCF-7)
and TNBC (MDA-MB-231), as has been achieved for glioblastoma [28]. Our main objective
was to identify lipids in TNBC that are possibly related to its poor clinical prognosis and its
difficulties in being treated by comparing its lipidomic profile against nTNBC.

First, as part of the assessment of quality of our data, we observed the formation of
three distinctive and discrete groups belonging to QC, MCF-7, and MDA-MB-231 samples,
which demonstrated that both cell lines showed marked differences among their lipidomic
profiles (Figure 1). By looking at QC samples, we confirmed the LC–MS system’s stability
during data acquisition and ensured the validity of the analysis.
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Figure 1. Principal component analysis on all entities and all samples. Component 1: 40.03% (x-axis), 

component 2: 17.34% (y-axis), and component 3: 11.88% (z-axis). Blank (green), MCF-7 (blue), MDA-

MB-231 (red), and QC (gray). 

The number of different entities present in each cell line are shown in a Venn diagram 

(Figure 2). We found 505 entities for MDA-MB-231 and 534 for MCF-7, from which 436 

were shared among both cell lines. Differences may be due to variations in entities’ con-

centrations instead of unique presence in a cell line; variations in metabolite concentra-

tions give each cell line its characteristic phenotype. 

 

Figure 2. Venn diagram of MDA-MB-231 (red) and MCF-7 (blue) compounds. Both cell lines share 

436 compounds (gray); 69 and 98 are found only in MDA-MB-231 and MCF-7, respectively. 

Figure 3 summarizes the statistical differences in features’ abundances by comparing 

MDA-MB-231 versus MCF-7 cells and, at the same time, allows us to quickly identify 

those features that differ the most with at least four-fold changes, as well as the direction 

of their dysregulation. We found dysregulation of lipids from eight different types, half 

of them from the glycerophospholipids class (Table 1). Phosphatidylethanolamines (PE) 

were the most dysregulated lipid type with a mixed tendency (seven upregulated and 

nine downregulated). 

Figure 1. Principal component analysis on all entities and all samples. Component 1: 40.03% (x-axis),
component 2: 17.34% (y-axis), and component 3: 11.88% (z-axis). Blank (green), MCF-7 (blue),
MDA-MB-231 (red), and QC (gray).

The number of different entities present in each cell line are shown in a Venn diagram
(Figure 2). We found 505 entities for MDA-MB-231 and 534 for MCF-7, from which 436 were
shared among both cell lines. Differences may be due to variations in entities’ concentrations
instead of unique presence in a cell line; variations in metabolite concentrations give each
cell line its characteristic phenotype.
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Figure 2. Venn diagram of MDA-MB-231 (red) and MCF-7 (blue) compounds. Both cell lines share
436 compounds (gray); 69 and 98 are found only in MDA-MB-231 and MCF-7, respectively.

Figure 3 summarizes the statistical differences in features’ abundances by comparing
MDA-MB-231 versus MCF-7 cells and, at the same time, allows us to quickly identify
those features that differ the most with at least four-fold changes, as well as the direction
of their dysregulation. We found dysregulation of lipids from eight different types, half
of them from the glycerophospholipids class (Table 1). Phosphatidylethanolamines (PE)
were the most dysregulated lipid type with a mixed tendency (seven upregulated and
nine downregulated).
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Figure 3. Volcano plot of MCF-7 vs. MDA-MB-231. 143 compounds are differentially found between
both cell lines. The figure shows significant upregulated (red) and downregulated (blue) features
(p-value ≤ 0.01); features that did not meet fold change or p-value are shown in gray.

Table 1. Identified compounds found with differential fold change by compound type and class of
MCF-7 vs. MDA-MB-231.

Lipid Class Lipid Type Lipid Dysregulation
Tendency

Glycerophospholipids Phosphatidylcholine PC(18:1(11Z)/14:1(9Z)) Up
PC(20:4(8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)) Down

Lysophosphatidylcholine LysoPC(17:0) Up
LysoPC(20:4(8Z,11Z,14Z,17Z)) Down

Phosphatidylethanolamine PE(20:2(11Z,14Z)/14:0) Up
PE(16:0/14:0) Up

PE(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)) Up
PE(18:2(9Z,12Z)/14:0) Up

PE(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) Up
PE(14:1(9Z)/20:2(11Z,14Z)) Up

PE(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)) Up
PE(20:3(8Z,11Z,14Z)/P-18:1(11Z)) Down
PE(18:4(6Z,9Z,12Z,15Z)/P-18:0) Down

PE(20:5(5Z,8Z,11Z,14Z,17Z)/P-18:0) Down
PE(P-18:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)) Down

PE(P-18:0/16:0) Down
PE(P-18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) Down

PE(P-18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) Down
PE(P-18:1(9Z)/18:0) Down

PE(P-18:0/14:0) Down
Lysophosphatidylethanolamine LysoPE(18:0/0:0) Up

LysoPE(18:1(9Z)/0:0) Up
LysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) Down

Sphingolipids Ceramides Cer(d18:0/24:0) Up
Cer(d18:0/26:1(17Z)) Up

Up
Lactosylceramide (d18:1/24:0) Down

Trihexosylceramide (d18:1/16:0) Down
Trihexosylceramide (d18:1/24:0) Down

Sphingomyelin SM(d18:0/18:1(9Z)) Down
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Table 1. Cont.

Lipid Class Lipid Type Lipid Dysregulation
Tendency

Glycerolipids Monoradyglycerol MG(18:0e/0:0/0:0) Down
Triglycerides TG(16:0/18:3(9Z,12Z,15Z)/22:0) Up

TG(14:1(9Z)/15:0/22:2(13Z,16Z)) Down
Otros Heptadecanoyl carnitine Up

beta-Sitosterol palmitate Up
Sphingosine Up

Isopeonidin 3-rutinoside Up
1,2,4-Nonadecanetriol Down

Propylene glycol stearate Down
AS 1-5 Down

CE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) Down
20,24-Epoxy-25,26-dihydroxydammaran-3-one Down

Bullatin Down

As multiple studies have demonstrated, dysregulation of metabolism is considered
one of the hallmarks of cancer in general [29], and aberrant metabolism of different lipids
classes is among the main metabolic disorders in cancer cells [30]. The importance of
phospholipid in metabolic alterations within BC has been explored in a few works [31–34],
and it seems to correlate with our findings. Phospholipids synthesis is frequently increased
in BC, and it has been related to oncogenesis and tumor progression [31]; particularly,
an increase in PE plays a major role in some BC tumors [31,32]. BC cells even show
increased PE levels (along with diacylglycerol or DAG) as an adaptability response to stress
conditions (serum deficient media), showing the importance of this type of molecule in
cancer survival [32]. Contrarily, Kim et al. (2016) have reported downregulation of PE [35]
by comparing MCF-7 and MDA-MB-231 against MCF-10A (considered a healthy breast
cell line). Moreover, an increase in the expression of enzymes and proteins such as Pcyt2,
PEBP4, and Etnk-1, involved in phospholipid metabolism, has been reported, proving
that these proteins involved in PE metabolism might be useful as novel targets for cancer
treatment [32–34]. Our mixed results in the direction of dysregulation showed that although
a few lipids belonging to this compound class are indeed increased in MDA-MB-231, some
others are downregulated, and this might be related to the differences in their sensitivity
and response to treatments. Their specific role remains to be further explored.

Along with PE, sphingolipids and, particularly, ceramides, were among the most
dysregulated lipids found in our study. In general, sphingolipids are considered as some
of the most relevant lipids, since they are used as messengers for cell signaling. Purwaha
et al. (2018) observed that accumulation of ceramides in tumors function as a signal
for the promotion of TNBC progression [36], pointing at the importance of the study
of ceramides and its relation to TNBC aggressiveness. In the sphingolipids class, we
only found a downregulated sphingomyelin (SM), which corresponds with the findings
from the aforementioned work, in which the authors correlated the presence of TNBC
tumors with low levels of SM with a negative disease outcome, so it seems that SM
plays an important role in BC aggressiveness [36]. Many more efforts have been made
to characterize variations, not only by comparing TNBC against other BC types, but
within TNBC, such as the work from Xiao et al. (2022), who combined metabolomic,
lipidomic, transcriptomic, and genomic data and found heterogeneity within this BC
subtype, thus reporting three metabolic subgroups, of which one is characterized by its
elevated concentration of ceramides and fatty acids [37], again emphasizing lipid relevance
in BC development. Furthermore, some other studies reported a high abundance of
triglycerides (TG) in MCF-7 cells comparing TNBC cells (MDA-MB-231 and MDA-MB-436)
and sphingomyelins [38]. Recently, for its relevance, SMs have been proposed as prognostic
biomarkers of survival in TNBC patients [36].

We were only able to detect a couple of TG, each with a different dysregulation
tendency; it is known that TG are the base for fatty oxidation, and it has been found that
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TNBC cells present an upregulation of this metabolic process to support cancer proliferation,
invasion, and metastasis [39,40].

These results made it possible to identify the great differences in lipids, comparing
MCF-7 versus MDA-MB-231 cells. Future efforts should be directed towards the identi-
fication of metabolic intermediates to determine the metabolic pathways altered among
BC cell types; this will allow the definition of new drug targets in search of effective
therapies for TNBC.

As has been stated by other authors, genomics and transcriptomics have the potential
to predict a few aspects of cancer, but alone, they are not enough to deal with all the
complexity intrinsic to cancer [21]. Although differences in the cancer model selected for
the study strongly influence its outcome and conclusions, cultures created from a single
cell offer a good but raw and simplified model compared to tumors obtained from patients
which are very hard to obtain and categorize; nevertheless, for both alternatives, it has
worth the effort to build up our knowledge of cancer as a disease [20].

In conclusion, this work depicts lipids (phosphatidylethanolamine) as potential biomark-
ers related to TNBC aggressiveness. The specific role of PE needs to be further explored.

3. Material and Methods
3.1. Cell Culture

MCF-7 and MDA-MB-231 cells were kindly donated by Dr. Gisela Ceballos Cancino
(INMEGEN, Mexico City, Mexico). Cell culture plastic ware was purchased from TPP
(Trasadingen, Switzerland). Fetal bovine serum (FBS) and Trypsin-EDTA were acquired
from Biowest (Misuri, USA). MCF-7 and MDA-MB-231 cells were grown in Dulbecco’s
Modified Eagle’s Medium/High Modified (DMEM) with phenol red. Cells were thawed
and maintained in the corresponding media and supplemented with 10% FBS at 37 ◦C and
5% of CO2 in a humified atmosphere. The cells were detached using Trypsin-EDTA upon
reaching 75% of confluence. Five replicates with 7 × 106 cells were seeded on flasks of
150 cm2 and maintained in the same conditions for 48 h. Then, the lipids from cells were
extracted as follows.

3.2. Lipid Extraction

Cell sonication was performed with a Vibra-Cell VC 130 Ultrasonic Processor (Sonics
& Materials, Connecticut, USA); cells scrappers, methanol, and chloroform were purchased
from TPP, Honeywell Burdick & Jackson (New Jersey, USA), and Sigma-Aldrich (Toluca City,
Mexico), respectively. Ultrapure water was obtained from a Direct-Q 3 system (Millipore,
Massachusetts, USA). After incubation for 48 h, culture flasks were kept in an ice bath,
cell culture media were discarded, and cells were washed three times with NaCl 0.9 %.
Afterward, 1 mL of methanol at −80 ◦C was added, and cells were scrapped and collected
in 2 mL plastic vials in a bath with acetone in dry ice. Scrapped cells were sonicated by
applying pulses with a frequency of 40 kHz with an on and off cycle of 5 and 1 s, respectively;
this process was repeated four more times. Afterwards, liquid–liquid extraction was made
with 250 µL of chloroform, 350 µL of water, and 250 µL of chloroform once more; separation
was accomplished by centrifugation at 5000 rpm, 4 ◦C for 30 min. For lipid analysis, the
organic phase was obtained, dried at 30 ◦C, and stored at −80 ◦C. For LC–MS analysis,
dried samples were dissolved in 150 µL of IPA/CHCl3 80:20 (v/v).

3.3. LC-ESI-MS Data Acquisition

The separation of metabolites was performed in a UHPLC 1290 Infinity II (Agilent
Technologies, California, USA) composed of a 1290 flexible pump (model G7104A) and
a 1290 vial sampler with a thermostatic column compartment (model G7129B) within
a ZORBAX 300-SB 2.1 × 50 mm, 1.8 µm (Agilent Technologies, California, USA). The
elution was carried out using ammonium formate 10 mM and formic acid 0.1 % in acetoni-
trile/water 60:40 (v/v) (solvent A) and ammonium formate 10 mM and formic acid 0.1 %
in isopropanol/acetonitrile 90:10 (v/v) (solvent B) with the following nonlinear gradient:
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32 %B at 0 min, 40 %B from 1 to 1.5 min, 45 %B at 4 min, 50 %B at 5 min, 60 %B at 8 min,
70 %B at 11 min and 80 %B from 14 to 18 min with a 3 min re-equilibration time, and
60.0 ± 0.5 ◦C. Further, 10 µL of diluent (blank), cell extract, and quality control samples
(pool from all samples) were injected with 0.3 mL/min flow rate. The LC–MS system was
first equilibrated by injecting 0 µL of blank sample until no chromatographic variation was
observed (blank injection), then, 10 µL of blank were injected once and afterwards to equili-
brate the LC–MS system to our samples. Quality control samples (QC) were injected until
no chromatographic variation was observed. Quality control (QC) samples were injected
before and after every five sample injections; the sequence order was randomly assigned
for cell extracts (injected in triplicate, pseudo replicates). Mass spectra were acquired using
a Q-TOF (model 6545A) with a Dual AJS ESI (model G1959A) through Agilent MassHunter
Workstation Software LC/MS Data Acquisition for 6200 series TOF and 6500 series Q-TOF
(version B.08.00, build 8.00.8058.3 SP1, Agilent Technologies, California, USA) using the
following conditions: positive polarity with capillary voltage 3500 V, fragmentor: 150 V,
skimmer: 65 V, gas temperature: 300 ◦C, gas flow: 11 L/min, nebulizer: 35 psig, sheath
gas temperature: 300 ◦C and sheath gas flow: 12 L/min, nozzle: 0 V and octupole RF:
750 V. A Q-TOF instrument was operated in a 2 GHz extended dynamic range mode at an
acquisition rate of 3 spectra/s for signals in the 50–1700 m/z range.

3.4. LC–MS Data Processing

LC–MS raw data were inspected using an Agilent MassHunter Workstation Software
Qualitative Analysis (version B.07.00, build 7.7.7024.29 SP2, Agilent Technologies, Cal-
ifornia, USA) to determine retention time drift tolerance, ionic species, and compound
thresholds through QC samples. Batch alignment and extraction were performed with
MassHunter Profinder (version B.08.00 SP3, Agilent Technologies, California, USA) through
Batch Recursive Feature Extraction (MFE) for small molecules/peptides algorithm using
common organic molecules (no halogens) as an isotopic model, allowing a maximum
of two charges and only compounds with two or more ions to avoid false positives. To
further reduce false positives, only compounds present in 75% of files in at least one sample
group (pseudo replicates) and with an MFE score ≥70.0 were retained for further analysis
and exported as a profinder archive (.pfa). Chemometric (lipids) comparison between
MCF-7 and MDA-MB-231 was performed in Mass Profiler Professional (version 14.9.1,
Agilent Technologies, California, USA). First, principal component analysis (PCA) was
performed on all samples (entities or features) to be grouped. Afterward, interpretations
for compounds present in blank, MCF-7, and MDA-MB-231 were created and filtered
by frequency to only retain compounds present in 75% of all samples for each cell line.
Features found in both blank and samples were eliminated from the analysis. A moderated
t-test, using Benjamini–Hochberg false discovery rate as multiple testing correction, was
performed to find statistical differences regarding compounds by comparing MCF-7 and
MDA-MB-231 through a volcano plot (p-value ≤ 0.01 and fold change higher than 2 or
lower than −2). The lipid class of relevant features was assigned using the IDBrowser
tool for compound identification against a compound database from Human Metabolome
Database (https://hmdb.ca/, accessed on 15 February 2022), and only those compounds
identified with a database search score higher than 60.0 were retained.
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