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Abstract
The basic reproduction number R0—the number of individuals directly infected by an infec-

tious person in an otherwise susceptible population—is arguably the most widely used esti-

mator of how severe an epidemic outbreak can be. This severity can be more directly

measured as the fraction of people infected once the outbreak is over,Ω. In traditional math-

ematical epidemiology and common formulations of static network epidemiology, there is a

deterministic relationship between R0 and Ω. However, if one considers disease spreading

on a temporal contact network—where one knows when contacts happen, not only between

whom—then larger R0 does not necessarily imply larger Ω. In this paper, we numerically in-

vestigate the relationship between R0 and Ω for a set of empirical temporal networks of

human contacts. Among 31 explanatory descriptors of temporal network structure, we iden-

tify those that make R0 an imperfect predictor of Ω. We find that descriptors related to both

temporal and topological aspects affect the relationship between R0 andΩ, but in

different ways.

Introduction
The interaction between medical and theoretical epidemiology of infectious diseases is proba-
bly not as strong as it should. Many results in the respective fields fail to migrate to the other.
There are of course exceptions. Perhaps the most important are the ideas of epidemic thresh-
olds and the parameter R0—the basic reproduction number—as a key predictor of the epidemi-
ological severity of a disease [1,2]. R0 is defined as the expected number of other individuals
that an infected individual will infect if he or she enters a population entirely composed of sus-
ceptible individuals. It is thus a combined property of the process of contagion and the contact
patterns of the population. In classic mathematical models of infectious disease spreading, R0 =
1 marks an epidemic threshold. If R0 < 1, the expected fraction of infected people in an out-
break, denoted by O, will not depend on the total population size N. If R0 > 1, the expected
value of O is proportional to N. In other words, in the limit of large populations, a finite
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fraction of the population can be infected. The focus on R0 in the literature has sometimes been
so strong that researchers rather calculate R0 than quantities directly related to the outbreak,
such as prevalence, incidence, and time to the peak prevalence.

The use of R0 is not entirely unproblematic. First, it is hard to estimate both in models [3–5]
and from outbreak data [6–8]. Second, the result that R0 = 1 defines an epidemic threshold
rests on very coarse assumptions [3,9,10]. For example, one needs to assume that every pair of
individuals has the same chance of interacting at any given time. In fact, interaction rates de-
pend on pairs of individuals—people living in the same city are more likely to interact than
those living in different cities. The derivation of R0 has been extended to the case in which in-
formation about contact networks (describing who can spread the disease to whom) is available
[11–15]. In this case, the derivation is usually restricted to the case of regular networks, where
all individuals have the same degree (number of neighbors in the contact network) [14,15].
Sometimes people use definitions of R0 that differs from the original [11–13,16] in a strict
sense (but typically captures some similar property relevant for the modeling framework in
question). The assumption that a pair of individuals interacts at the same rate over time does
not hold true in reality either. For example, interaction is more likely to take place when most
people are awake. This point is a reason for the increasing interest in temporal networks (show-
ing who is in contact with whom, at what time) as a representation for the interactions underly-
ing epidemic spreading, which focus on time dependence of networks [17–19]. Another reason
is the increasing availability of data sets of temporal networks—typically lists of anonymized id
numbers of two individuals and the times when these two individuals have been in contact
(close enough for a disease to spread). The temporal network literature has focused on spread-
ing processes (not only epidemic spreading) and how these are affected by the structure. Struc-
ture, in this case, refers to the way the network differs from a random temporal network
(where the contact can happen with any pair of nodes with equal probability, at any time).
Studies of epidemic models on temporal networks have found that e.g. a broad distribution of
interevent times slows down the spreading [18,19].

There have been a few attempts to examine R0 for temporal networks. Ref. [16,20], for ex-
ample, derives R0 for a specific model of temporal networks. Ref. [21] measures R0 in empirical
temporal networks, but does not relate it to prevalence, final outbreak size or other direct mea-
sures of outbreak severity.

One possible approach in this line of research is to find more accurate estimators than R0 of
disease severity. However, R0 is routinely estimated for different infectious diseases by public
health organizations worldwide. These estimates constitute an important resource for monitor-
ing and comparing disease outbreaks. Rather than discarding this data by proposing another
quantity, we will investigate what R0 really tells us about disease spreading in empirical tempo-
ral networks of human contacts. Including the temporal information can make a big impact on
the outbreak dynamics compared to modeling epidemics on a static network, let alone a fully
mixed model [17–19].

We use the Susceptible–Infectious–Recovered (SIR) model with constant disease duration
[22]. This model has two control parameters—the probability of disease transmission (upon a
contact between an infectious and susceptible individual), denoted by λ, and the duration of
the infectious stage, denoted by δ. We numerically simulate the SIR model on various temporal
networks. First, we observe that in this case O is not uniquely determined from an R0 value.
A combination of λ and δ can give a larger R0 but a smaller O than another combination does.
Then, we investigate how the structure of the temporal contact network explains the relation-
ship between R0 and O. Instead of building a theory that bridges the microscopic structure of
temporal network data and the emergent properties of the outbreak, we screen many
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potentially interesting descriptors of the temporal network structure by identifying those that
are strongly correlated with the descriptors of the shape of scatter plots of O vs. R0.

Results

Empirical data
We analyze empirical sequences of contacts between people. These data sets can be divided
into physical proximity and electronic communication data. The former type could be interest-
ing for studying information and disease spreading mediated by human contacts. The latter
type is primarily of interest in the context of information spreading (bearing in mind that in-
formation spreading not necessarily follows the same dynamics as infectious diseases). In all
data sets, nodes are human individuals. We list some basic statistics of the data sets in Table 1.

One data set belonging to the physical proximity class comes from the Reality mining study
[23], where contacts between university students were recorded when their smartphones were
within Bluetooth range (10–15 m). We use the same subset of this data as in Ref. [24]. Another
class of proximity data was collected from groups of people wearing radio-frequency identifica-
tion sensors. One such dataset comes from the attendees of a conference [25] (Conference), an-
other from a school (School) [26], another from a hospital (Hospital) [27] and yet another from
visitors to a gallery (Gallery) [25]. School and Gallery are collected for two and 69 days, respec-
tively. We analyze the days separately and average the results over the days. In these data sets, a
contact between people closer than 1~1.5m was recorded every 20 seconds. Finally, we use a
data set of sexual contacts between sex sellers and buyers collected from a Brazilian web forum
(Prostitution) [28].

The class of electronic communication data includes two e-mail networks. These data sets
are described in detail in Refs. [29] (E-mail 1) and [30] (E-mail 2). E-mails have a natural direc-
tion from the sender to the recipient. However, to analyze all the data sets in the same way, we
treat them as undirected temporal networks. We furthermore study two Internet communities:
a dating community (Dating) [31] and a film community (Online community) [32]. The con-
tacts in these data sets represent messages from person to person like e-mails do. In Dating
there are also “flirts” with which one user expresses interest in another (but does not send text,
images or other information). A slightly different form of online pair-wise interaction is post-
ing to public web pages. We study one data set of posts to the home page (“wall”) of Facebook
[33] and a data set from the aforementioned film community where a contact represents a
reply to a post at a public forum (Forum) [32]. One contact in these data sets is thus a publically
accessible message from one user to another.

Final outbreak size as a function of R0

In Fig. 1, we show scatter plots of O vs. R0 for our data sets (see S1 Fig. for the results for the
Gallery data). One scatter plot corresponds to one data set. More precisely, we measure R0 di-
rectly from the simulations according to the definition—the average number of others infected
by the infection source. O is the fraction of recovered individuals once the outbreak has subsid-
ed, i.e., when there no longer are infectious individuals. A point in a scatter plot represents an
average over 106 runs for given parameter values (λ,δ). Each run starts with one infected node
that is selected from all nodes with the equal probability. We assume the source of the infection
is infected at the time of the first contact. In total, we sample 20×20 points in the (λ,δ) parame-
ter space, where each parameter varies from 0.001 to 1 with exponentially increasing intervals.
δ is defined as a fraction of the total sampling time.

For all the data sets, there is a significant deviation from a deterministic relationship be-
tween R0 and O. Here, a deterministic relationship is operationally defined as the situation in
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which the O value is uniquely determined by the value of R0 (as it would be in most fully mixed
and network models we are aware of). Interestingly, the way these scatter plots deviate from a
deterministic relationship depends on data sets. For example, for theHospital data red points
are typically on top of the green ones—i.e. points with higher λ and lower δ give larger out-
breaks than points with similar R0 but lower λ and higher δ. For the Facebook data the situation
is reversed.

Characterizing the shape of theΩ vs. R0 point cloud
To explore the causes of the imperfectness of R0 as a predictor of O, we define six so-called
shape descriptors, which measure the shape of the point clouds shown in Fig. 1. The shape de-
scriptors are listed in Table 2, their definitions are illustrated in Fig. 2, and their values for each
data set are shown in S2 Fig.

The first shape descriptors is the Kendall’s τ (Fig. 2A), which captures how good R0 is as a
predictor of O. We chose Kendall’s τ because the O vs. R0 curve is highly non-linear such that
the Pearson’s correlation coefficient would underestimate how good a predictor R0 is. Among
non-linear correlation measures, Kendall’s τ, is the most principled and easiest to understand.
It counts the number of point pairs that are connected by a line with a positive slope (concor-
dant pairs) and a negative slope (discordant pairs). Kendall’s τ is then the number of concor-
dant pairs minus the number of discordant pairs divided by the total number of pairs. In the
context of measuring the R0-O correlation, we denote Kendall’s τ by τR0O.

Next four shape descriptors focus on the region in the (R0,O) space where the spread of the
points is the largest (Fig. 2B, C). We look for the discordant (λ,δ) pair with the largest difference
between the its R0 values. This difference defines ΔR0. Similarly, the largest difference inO among
discordant pairs defines ΔO. We also measure the average R0 value, ρR0, of the two R0 values de-
rived from the discordant pair maximally separated in R0. Similarly ρO is the average R0 value of
the discordant pair maximally separated inO. The shape descriptors ρR0 and ρO thus show the lo-
cations on the R0 axis of the maximally separated discordant pairs. They may be related to the lo-
cation of the epidemic threshold, whereO takes off from zero in an infinite population.

As mentioned above, for some data sets, given a value of R0, higher δ implies higher O (Hos-
pital), whereas the relationship is reversed for other data sets. To quantify this observation, we

Table 1. The basic statistics of the data sets.

Number of individuals Number of contacts Sampling time Time resolution

Conference 113 20,818 2.5d 20s

Dating 28,972 529,890 512.0d 1s

E-mail 1 57,189 444,160 112.0d 1s

E-mail 2 3,188 115,684 81.6d 1s

Facebook 293,878 876,993 4.36y 1s

Forum 7,084 1,412,401 8.61y 1s

Gallery 159(8) 6,027(350) 7.32(11)h 20s

Hospital 293,878 64,625,283 9.77y 1d

Online community 35,624 472,496 8.27y 1s

Prostitution 16,730 50,632 6.00y 1d

Reality mining 64 26,260 8.63h 5s

School 237(1) 62,886(2,263) 8.61(3)h 20s

The numbers in parenthesis indicate the standard deviation in order of the last digit for the two composite data sets (Gallery and School).

doi:10.1371/journal.pone.0120567.t001
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Fig 1. The average outbreak size plotted against the basic reproduction number for 12 data sets (indicated in the Fig.) of human interaction. Each
point of the scatter plots corresponds to one pair (λ,δ), where λ is the infection probability and δ is the duration of infection. In the upper left corner there is a
legend for the color-coding of these points. In the other panels, a data point is an average over 104 runs of the SIR model as described in the Methods
section. The vertical lines mark R0 = 1—the epidemic threshold for the canonical, fully mixed SIR model.

doi:10.1371/journal.pone.0120567.g001
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define the sixth shape descriptor ταO that we call λδ-balance for short. To define ταO, we start
by dividing the range of R0 into ten equidistant bins between the smallest and largest observed
values (Fig. 2D). Within a bin, the points have fairly similar R0 values, but their λ and δ values
can be diverse. To measure the effect of the balance between λ and δ on O, we calculate the
angle α that a (λ,δ) pair relative to the origin makes to the diagonal in the (λ,δ)-plane, i.e., the
λ = δ line (Fig. 2E). Then, we measure the correlation between α and O by Kendall’s τ (Fig. 2F).
Finally, we average the values for the different bins. To avoid confusion, we denote the calculat-
ed Kendall’s τ by ταO.

Temporal and static network descriptors
To characterize the structure of the contact structures modeled as temporal networks, we use
31 different quantities, which we call network descriptors. They are listed in Table 3. We have
chosen quantities that are relatively simple and intuitive.

Time evolution. We calculate eight network descriptors that characterize the long-term
behavior of the contact dynamics—basically, how the contacts process differs from a stationary
process. The background is that some of these data sets (e.g. Prostitution, Dating, Forum and
Online community) are growing throughout the sampling period. A fast-spreading outbreak
would thus, effectively, spread in a larger population (defined as the set of individuals possible
to be infected) in the end than in the beginning. The Gallery data is also special in that the indi-
viduals in the beginning of the sampling are not present in the end. Ref. [34] argues, in more
general terms, that when the first and last contacts of a link (pairs of nodes that are in contact
at least once) happen is important for the behavior of outbreaks.

The first such set of quantities focuses on the time when nodes and links appear for the first
time. For example, Ref. [34] points at the growth of the Prostitution data set as a factor behind
the observation [35] that the order of events speeds up disease spreading in this data. We use
f to symbolize this class of network descriptors. We measure the fraction of links present at half
the sampling time relative to the final number of links. Because several studies in temporal net-
works address the role of the order of events [35,36], rather than the time itself, we also mea-
sure the corresponding quantities if time is replaced by the contact index (the index of the
contact number—1 for the first contact, 2 for the second, etc.). These have subscript ‘C’ as op-
posed to ‘T’ for time. Furthermore, the descriptors concerning nodes and links have the sub-
scripts ‘N’ and ‘L’, respectively.

Another class of network descriptors, denoted F, focuses on persistent nodes or links. F is
the fraction of nodes (subscript N) or links (subscript L) present in the first and last 5% of time
(T) or contact index (C). Fig. 3 illustrates f and F.

Table 2. Shape descriptors for the point clouds shown in Fig. 1.

Symbol Definition Explained
in

τR0Ω Kendall’s τ of R0 vs. Ω (number of concordant pairs of parameter values—
number of discordant pairs) / total number of pairs

Fig. 2A

ταΩ λδ-balance, the Kendall’s τ of α vs. Ω averaged over ten equal sized bins of R0. α
is the angle to the λ = δ line of a point in λ,δ-space

Fig. 2D–F

ΔR0
Largest difference in R0 among discordant pairs of points in R0-Ω space, where
one point corresponds to one combination of λ and δ.

Fig. 2B

ΔΩ Largest difference in Ω among discordant pairs of points in R0-Ω space Fig. 2C

ρR0 Midpoint of the R0 values of the pair defining ΔR0 Fig. 2B

ρΩ Midpoint of the R0 values of the pair defining ΔΩ Fig. 2C

doi:10.1371/journal.pone.0120567.t002
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These network descriptors calculated across the different data sets span a relatively wide
range. For example, fNT, the fraction of links present at half the sampling time, takes values
from 0.17 (Facebook) to 0.98 (School).

Node and link activity. The node activity descriptors relate to the bursty nature of human
activity as characterized by intense periods of activity separated by long periods of quiescence
[37]. To characterize burstiness, one usually starts from interevent times, i.e., the times between
consecutive contacts for a node or link. For simplicity, we ignore correlations between consecu-
tive interevent times and focus on the probability distribution of interevent times. The distribu-
tion is often right-skewed—a structure that has been shown to slow down epidemic spreading
[38–41]. To characterize the distribution, we measure four descriptors, i.e., the mean μ, stan-
dard deviation σ, coefficient of variation c (i.e. the standard deviation divided by the mean)
[37], and the sample skewness given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

n� 2

m3

m3=2
2 ;

ð1Þ

where μ₂ and μ₃ are the second and third moments of the distribution, respectively.
Some studies have pointed out that the duration of presence of a node or link in the data

can be more important for spreading dynamics than interevent times [34,42]. For this reason,
we also study the distribution of node and link durations and use the same four descriptors. In

Fig 2. Explanation of shape descriptors to characterize the point clouds shown in Fig. 1. All examples come from theConference data set. Panel A
describes Kendall’s τ—a correlation coefficient based on the counting of discordant pairs (pairs of points connected by a line of negative slope). Panels B and
C show the maximal separation of discordant pairs. In B, the measures focus on the pair with the largest separation in the R0 direction. ΔR0 denotes the
maximum separation; ρR0 is the mean R0 value for the maximally discordant pair. Panel C shows the similar quantities, ΔΩ and ρΩ, defined along theΩ
direction. Panels D, E, and F illustrate the measurement of λδ-balance via ταΩ. This descriptor captures the tendency of some data sets to have high-λ, low-δ
points above high-δ, low-λ points, while for other data sets, the situation is reversed. Panel D illustrates how the R0 axis is segmented into bins. Panel E
shows how we assign a (λ,δ)-plane angle, α, to all points in the bin. Panel F shows how we measure the correlation between α andΩ, which is very weak in
this particular case.

doi:10.1371/journal.pone.0120567.g002

The Basic Reproduction Number as a Predictor for Epidemic Outbreaks

PLOS ONE | DOI:10.1371/journal.pone.0120567 March 20, 2015 7 / 15



sum, we use 16 network descriptors in this category—μ, σ, c and γ for interevent times and du-
ration of activity, for both nodes and links.

Degree distribution. In the following, we define static network descriptors, i.e., those for
aggregate contact networks. Among them, the degree distribution is arguably the most impor-
tant for disease spreading. A right-skewed degree distribution, which is observed in many

Table 3. Descriptors of temporal network structure.

Type Symbol Definition

TE fNC Fraction of nodes present (i.e. having had at least one contact) when half of the contacts
happened.

TE fNT Fraction of nodes present at half the sampling time.

TE fLC Fraction of links present when half of the contacts happened. This is illustrated in Fig. 3A
and B.

TE fLT Fraction of links present at half the sampling time.

TE FNC Fraction of nodes present at both the first and last 5% of the contacts.

TE FNT Fraction of nodes present at both the first and last 5% of the sampling time. This is
illustrated in Fig. 3C and D.

TE FLC Fraction of links present at both the first and last 5% of the contacts.

TE FLT Fraction of links present at both the first and last 5% of the sampling time.

LA μLt Mean of interevent times over links.

LA σLt Standard deviation of interevent times over links.

LA cLt Coefficient of variation of interevent times over links. In the terminology of Ref. [31], this
is the burstiness of link activity.

LA γLt Skewness of interevent times over links.

LA μLτ Mean of the number of other contacts between two consecutive contacts of a link.

LA σLτ Standard deviation of the distribution of the number of other contacts in the data
between two consecutive contacts of a link.

LA cLτ Coefficient variation of the distribution of the number of other contacts in the data
between two consecutive contacts of a link.

LA γLτ Skewness of the distribution of the number of other contacts in the data between two
consecutive contacts of a link.

NA μNt Like μLt but for nodes.

NA σNt Like σLt but for nodes.

NA cNt Like cLt but for nodes, i.e., the burstiness of node activity.

NA γNt Like γLt but for nodes.

NA μNτ Like μLτ but for nodes.

NA σNτ Like σLτ but for nodes.

NA cNτ Like cLτ but for nodes.

NA γNτ Like γLτ but for nodes.

DD μk Average degree of the network of accumulated contacts.

DD σk Standard deviation of the degree distribution of the network of accumulated contacts.

DD ck Coefficient of variation of the degree distribution of the network of accumulated contacts.

DD γk Skewness of the degree distribution of the network of accumulated contacts.

NS N Number of nodes.

NS C Clustering coefficient of the network of accumulated contacts.

NS r Degree assortativity of the network of accumulated contacts.

The types are: time evolution (TE), link activity (LA), node activity (NA), degree distribution (DD) and

network structure (NS).

doi:10.1371/journal.pone.0120567.t003
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empirical networks, is known to facilitate disease spreading [43]. For simplicity, we use the net-
work of accumulated contacts (even though one may be able to find network representations of
temporal network data that better captures the important structures for disease spreading
[44]). To summarize the shape of the degree distribution, we use the same four descriptors as
for the interevent time and duration distributions—μ, σ, c and γ.

Other static network descriptors. We also measure other static network descriptors. First,
we count the number of nodes, N. Because the number of links is equal to the half of the mean
degree times N, we do not include it in the analysis.

We also measure the degree assortativity r (essentially, the Pearson correlation coefficient of
the degrees at either side of a link). This network descriptor measures the tendency for assorta-
tive mixing by degree, i.e., whether high-degree nodes tend to connect to high-degree nodes
and low-degree nodes to low-degree nodes. It has been shown that assortativity affects disease
spreading (exactly how depends on the specific epidemic model and other structures of the
contacts) [45–48].

Finally, we measure the clustering coefficient—the number of triangles in the network di-
vided by the number of connected triples (not necessarily a full triangle) normalized to the in-
terval [0,1]. Similar to assortativity, the relative number of triangles (clustering) is also a
contact-structural factor influencing disease dynamics [46–51]. As an example, if we compare
SI disease spreading on a clustered network with a random network with the same number of
nodes and links, the early stage of the spreading would be faster in the less clustered network
[49,50]. Intuitively, if a disease spreads from one individual to two neighbors, and the three in-
dividuals are connected as a triangle, then the third link of the triangle is useless for the spread-
ing process. If the third link were connected elsewhere, the disease would spread faster.

Fig 3. Illustration of two descriptors of temporal network structure, fLC and FNT. The measure illustrated
in A and B, fLC, uses the order of the contact to separate the contacts; the measure in C and D, FNT, uses the
real time. Panels A and C are time-line representations of a temporal network data set. Each horizontal line
represents an individual. A contact between two individuals is indicated by a vertical arc. In A and B, we focus
on the first contact between a pair of nodes. We measure the fraction of the number of node pairs that have
been in direct contact when a fraction ν of the total number of contacts has been observed. This fraction is
plotted against ν in B. The value at ν = 1/2 defines fLC. In the timeline (A) we highlight the first half contacts,
which contribute to the calculation of fLC, in color and the first contact between each node pair by black
contours. In panels C and D, we illustrate the calculation of FNT, which looks at nodes (rather than links)
present in both the first and last time interval of width ϕ (measured as a fraction of the sampling time), shown
in color in the timeline (C). The fraction of such nodes as a function of ϕ is graphed in D. FNT is defined as the
value at ϕ = 0.05.

doi:10.1371/journal.pone.0120567.g003
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Structural determinants of the Ω vs. R0 point cloud
Ultimately, one would like to explain how the relations between R0, O, λ and δ emerge from the
contact structure. In this work, as mentioned, we take a different approach and look at the Pear-
son correlation coefficient between the shape descriptors (Table 2) and network descriptors
(Table 3). In this way, we search for network descriptors that contribute to the deviation from a
deterministic relationship betweenO and R0. A temporal network data set defines a data point
that is fed to the calculation of the correlation coefficient; there are 12 data points available for
regression analysis. We decided to use the Pearson correlation coefficient and not multivariate
regression methods because there are 31 dependent variables, i.e., network descriptors (and 6
independent variables, i.e., shape descriptors), whereas we have only 12 data points.

In Fig. 4, we plot the results from our correlation analysis. In each panel, we plot the coeffi-
cient of determination R2 (square of the Pearson correlation coefficient) between a shape de-
scriptor and each network descriptor. The network descriptors are grouped in accordance with
the subsections of the previous section. Scatter plots of all pairs of network descriptor and
shape descriptors are shown in S2 Fig.

The predictability of R0 with respect to O, as measured by τR0O (Fig. 4A), is to some extent
(p< 0.05) explained by the coefficients of variation of the interevent time for the node and link
interevent time distribution, cLt and cNt. This correlation is positive (see S2 Fig.), so broader
interevent time distributions (burstier contact patterns) imply worse predictability. Further-
more, the α dependence of O is most strongly correlated with the burstiness of the nodes cNt.
In this case the correlation is negative (S2 Fig.). This means that if we compare two points with
the same R0 value, where the first parameter set has a comparatively large transmission proba-
bility and short disease duration than the second, then the first parameter set tends to trigger a
larger outbreak size than the second. These quantities are strongly affected by burstiness. The
remaining four shape descriptors concern the location (in the (R0,O) space) of the biggest devi-
ation from a deterministic relationship and the size of the deviation.

Fig. 4C shows the correlation coefficient with the location along the R0 axis of the mid-point
of the discordant pair with the largest separation in R0, i.e., ρR0. Also in this case, network de-
scriptors derived from the interevent-time distributions are relatively strongly correlated with
ρR0. The mean μNT and standard deviation σNT as well as the skewness γNT show strong correla-
tions. Furthermore, the fraction of links present in both the first and last 5% of the contacts (FLC)
shows an R² = 0.4 correlation with ρR0 (p = 0.06). Furthermore, even though they do not reach
the p< 0.05 significance criterion, other link-related quantities of the time evolution (μLt, cLt, γLt,
μLτ, σLτ, cLτ and γLτ) show R² values over 0.3. Fig. 4D indicates that the largest width of a discor-
dant pair, ΔR0, is strongly correlated with a number of temporal network descriptors. First, ΔR0 is
correlated with both those relating to the node and link activity when the real time, not the con-
tact index, is used (μLt, cLt, γLt, μLt, σLt and γLt). Second, ΔR0 is correlated with the time evolution,
especially with the F quantities—measuring the fraction of links and nodes present both in the
beginning and end of the sampling period (fNC, fNT, FNC, FLC, FNT, FLT); p< 0.01). Fig. 4E shows
the correlation with the R0-location with the discordant pair with the largest separation inO, ρO.
Just like ρR0 (Fig. 4C), much of the variance in ρO is explained by the time-related descriptors in
real time (fLC, fLT, FLC, FLT and σLt). More interestingly, the largestO-separation of discordant
pairs, ΔO (Fig. 4F) is strongly and positively correlated with some static network descriptors, i.e.,
the coefficient of variation and the skewness of the degree distribution (ck and γk).

Discussion
In this work, we have shown that temporal network structure of human contacts can change
the interpretation of the basic reproduction number R0. We have found pairs of SIR parameter
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values (λ1,δ1) and (λ2,δ2) such that R0 (λ1,δ1)< R0 (λ2,δ2) and O(λ1,δ1)> O(λ2,δ2). In other
words, the expected number of secondary infections of the outbreak’s source is smaller for (λ1,
δ1) than (λ2,δ2), but the expected final fraction of individuals that had the infection is larger for
(λ1,δ1) than (λ2,δ2). It is hard to give a succinct explanation for this phenomenon, and we do
not attempt that in the present paper. It relates to many aspects of the contact patterns—static
network structures, dynamic network structures, and the fact that empirical data is finite-sized,
non-equilibrium and inhomogeneous [18,19,52]. On the other hand, it is easy to imagine sce-
narios where this happens. Assume, for simplicity, that λ1� λ2, δ1 � δ2 and the nodes split in

Fig 4. The coefficient of determination R2 between the shape descriptors of the R0 vs.Ω point cloud and network descriptors. The error bars are
standard errors estimated by the jackknife resampling method. *: p< 0.05, **: p< 0.01, ***: p< 0.001.

doi:10.1371/journal.pone.0120567.g004
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two halves—one half active throughout the sampling time, the other half entering after some
time. Then, in the (λ2,δ2) scenario, the larger λ (i.e., λ2) could cause a burnout outbreak that
ends before the second group of nodes enters the system. Therefore, R0 would be high, whereas
O does not exceed 1/2. In the (λ1,δ1) scenario, R0 would be smaller. However, the duration of
infection would be long enough for the second half of the nodes to be infected, so O could be
larger than 1/2. Therefore, a larger value of R0 does not necessarily mean that the disease
spreads more easily. At the same time, the correlation between R0 and O is often strong, espe-
cially if one accepts a non-linear relationship. For most practical purposes, it probably suffices
to assume that R0 is a good predictor of O.

Looking closer at the deviation of the O vs. R0 scatter plots from a deterministic relationship
and structural correlates of the amount of the deviation, we notice that a combination of seem-
ingly unrelated descriptors of temporal network structure often shows a significant correlation.
This result suggests that—although a better achievement may be obtained through identifica-
tion of microscopic factors contributing to these phenomena—such factors could be interde-
pendent and hard to fully disentangle. Probably a fruitful path would be to vary the structure
in models of contact patterns and look at responses in the O vs. R0 plots. However, already
based on the current numerical results, we can draw some conclusions. One of them is that the
temporal network factors often seem important. In particular, the quantities relating to the
interevent-time distributions are significant predictors of e.g. the overall correlation between
O and R0. This is a bit surprising in the light of Refs. [35] and [41] that have found that the
birth and death of links and nodes influence (some other quantities relating to) spreading phe-
nomena (probably also the importance of the “loyalty”metrics in Ref. [52]). Only one aspect of
the O vs. R0 plots—ΔO (see Table 2 and Fig. 2C for definition)—is primarily explained by the
static network properties, specifically the coefficient of variation and skewness of the degree
distribution. This result is accompanied by the largest confidence level (p< 0.001) of the corre-
lation. In contrast to ΔO, a similar shape descriptor ΔR0 (see Table 2 and Fig. 2B for definition)
is strongly correlated with several of the temporal network properties and not with the static
ones. Especially the former observation is interesting—even though temporal structure is need-
ed to see any spread in ΔO at all, it is the degree distribution that is the most strongly correlated
with the actual value of ΔO.

Needless to say, this work opens more questions than it answers. In particular, it calls for
mechanistic modeling connecting R0 and O. Another direction would be to develop improved
estimators of disease severity.

Methods
In this section, we will go through technicalities of the methods that are not fully explained in
the Results section.

SIR simulations
In this work we use the constant duration SIR model (that defines a Monte Carlo simulation of
the SIR model). We initialize all individuals to susceptible and pick one random individual i to
be the source of the infection. We assume that i becomes infected at the same time as its first
appearance in the data. In a contact between an infectious and susceptible, the susceptible will
(instantaneously) become infectious with a probability λ. Infectious individuals stay infectious
for δ time steps after which they become recovered. If many contacts happen during the same
time step, we go through them in a random order.

A more common version of the SIR model is to let infectious individuals recover with a con-
stant rate. Qualitatively, both versions give the same results [21]. We use the constant duration
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version because it is a bit more realistic [53,54] and makes the code a bit faster than the expo-
nentially distributed durations.

Measuring the λδ-balance
A combination of a large λ and small δ can give the same R0 value as a combination of a small
λ and large δ. At the same time, Omay depend on one of these parameters more strongly than
on the other. The result is a vertical trend in the colors of the points as seen in Fig. 1 (most
clearly for the Forum, Dating and Online community data). We measure this tendency—the
λδ-balance—as illustrated in Fig. 2D, E, and F. First, we segment the R0 axis into ten bins. The
number of bins is determined based on a trade-off between minimizing the spread of the points
along the R0 axis, and maximizing the number of points per bin. After the division into bins,
we capture the λδ-balance via the angle α between the line from the origin to the parameter
value (λ,δ) and the λ = δ line. Finally, we calculate Kendall’s τ for the relationship between
α and O and average the τ values over all bins.

Data availability
The Conference, Gallery,Hospital and School data sets are available from http://www.
sociopatterns.org/datasets/, the Prostitution data set is available as the Supporting Information
of Ref. 35, and the Facebook data is available from http://konect.uni-koblenz.de/. Other data is
available from the authors of the papers where they were first analyzed (as cited above).

Supporting Information
S1 Fig. R0 vs. O plots for the Gallery data. This file contains plots corresponding to Fig. 1 for
all 69 days of data for the Gallery data set.
(PDF)

S2 Fig. Scatterplots between the R0-O cloud shape descriptors and network structural de-
scriptors. The numbers identify the data sets as follows: Conference (1), Dating (2), E-mail 1
(3), E-mail 2 (4), Facebook (5), Forum (6), Gallery (7), Hospital (8), Online community (9),
Prostitution (10), Reality mining (11), School (12).
(PDF)
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