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Abstract

We revisited, in a genomic context, the theory of hybrid genetic evaluation models of hybrid crosses of pure lines, as the current practice is
largely based on infinitesimal model assumptions. Expressions for covariances between hybrids due to additive substitution effects and
dominance and epistatic deviations were analytically derived. Using dense markers in a GBLUP analysis, it is possible to split specific com-
bining ability into dominance and across-groups epistatic deviations, and to split general combining ability (GCA) into within-line additive
effects and within-line additive by additive (and higher order) epistatic deviations. We analyzed a publicly available maize data set of Dent
� Flint hybrids using our new model (called GCA-model) up to additive by additive epistasis. To model higher order interactions within
GCAs, we also fitted “residual genetic” line effects. Our new GCA-model was compared with another genomic model which assumes
a uniquely defined effect of genes across origins. Most variation in hybrids is accounted by GCA. Variances due to dominance and
epistasis have similar magnitudes. Models based on defining effects either differently or identically across heterotic groups resulted in simi-
lar predictive abilities for hybrids. The currently used model inflates the estimated additive genetic variance. This is not important for hybrid
predictions but has consequences for the breeding scheme—e.g. overestimation of the genetic gain within heterotic group. Therefore,
we recommend using GCA-model, which is appropriate for genomic prediction and variance component estimation in hybrid crops using
genomic data, and whose results can be practically interpreted and used for breeding purposes.
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Introduction
Many plant species are presently cultivated in the form of single-
cross hybrid varieties, especially when a strong heterosis effect is ob-
served for yield-related traits (e.g. maize, sunflower, sugarbeet, etc.).
These hybrids are generally obtained by crossing inbred lines origi-
nated from two complementary populations, called heterotic
groups. Breeders’ objective is therefore to identify (i) the best single-
cross hybrids among all possible crosses between existing inbred
lines from the two groups and (ii) create new lines within heterotic
group, from crosses of existing lines, which will improve the perfor-
mance of candidate hybrids at a next generation. Models for genetic
improvement of hybrid crops (e.g. maize) across two heterotic groups
are typically based on the notions of general combining ability (GCA)
and specific combining ability (SCA) (Griffing 1962; Stuber and
Cockerham 1966; Bernardo 2010). The genotypic value Gij of the
cross of lines i and j, as a function of uniting gametes from i and j,
can be written as follows:

Gij ¼ lþ GCAi þ GCAj þ SCAij (1)

where GCA of line i is the average effect of a gamete
when ideally crossed to all gametes from the reciprocal

heterotic group. SCA of the combination of line i and j is the
remainder.

It is important to notice, for readers not familiar with hybrid
crops, that in many hybrid crops such as maize, parents are pure
homozygous individuals (inbred lines). Thus, all gametes pro-
duced by i (and j) are identical, and all F1 descendants of i and j
are identical. This is different from crosses of other species such
as animals (pigs for instance) where full-sibs show genetic varia-
tion. As a result, GCA contains single locus (additive, in the statis-
tical sense) and multiple loci (additive by additive and higher
additive interactions) effects. This is because the whole genotype
(gamete) of the pure line is transmitted to the F1 descendants,
including any possible epistatic combination, and regardless of
whether loci in interaction are in the same or in different chro-
mosomes. In this, GCA is different from the concept of Breeding
Value in Animal Genetics, which captures the part of functional
epistatic effects that is contained in the additive substitution
effects, but it does not contain epistatic deviations as they are
broken down by meiosis.

Informally, the GCAs within group 1 (group 2) are the sum
of additive, additive x additive, additive x additive x additive. . .

deviations within group 1 (group 2), whereas SCA are the sum of
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dominance, all epistatic interaction involving dominance, and
any epistatic additive interaction across both groups.

Stuber and Cockerham (1966) presented the covariance across
GCAs of different lines and SCAs of different pairs of lines as a
function of probabilities of alleles at loci being identical by de-
scent. These probabilities are, in their work, implicitly based on
pedigree, and are the same across all loci or pairs of loci. For this
reason, and based on pedigree of lines alone, some components
of the variance cannot be distinguished; for instance, dominance
and across-groups additive epistasis cannot be separated
(Bernardo 2010).

With the advent of molecular markers (SNPs), it is possible to
obtain better predictions based, ultimately, on similarity across
lines (or pairs of lines) measured using markers, using for in-
stance kinship matrices based on VanRaden (2008). Bernardo
(1994) transposed the concepts of Stuber and Cockerham (1966)
to the prediction of hybrid lines of corn using molecular markers.
These ideas have been used extensively (e.g. Massman et al. 2013;
Technow et al. 2014; Bouvet et al. 2016; Kadam et al. 2016; Acosta-
Pech et al. 2017; Westhues et al. 2017; Schrag et al. 2018). However,
the infinitesimal assumptions of Stuber and Cockerham (1966)
are not needed or completely pertinent anymore. SNP markers al-
low finer distinction of patterns of relationships across and
within regions. For instance, it is possible to distinguish relation-
ship within locus and across loci—thus making it possible to split
dominance and across-groups epistasis. Also, relationships
across dominance deviations are not simple expressions built
from additive relationships (Vitezica et al. 2013, 2017). Therefore,
it is important to properly re-define statistical models for geno-
mic prediction, in order to have models that are more adequate
to the physical nature of the genome (finite and not infinitesi-
mal), better understood, and potentially more accurate. The
model including a GCA component for each group is convenient
because individuals are selected within groups.

In this work we develop a new model, called GCA-model,
which corresponds to Stuber and Cockerham (1966) and to
Bernardo (2010) ideas, and whose theory we re-develop from
scratch for the case of markers. We rederive orthogonal models
for genomic prediction in hybrid crops using the notions of effects
defined “according to origin” (GCAs and SCAs), using quantitative
genetics theory and considering the substitution effects of
markers. We present expressions for additive, dominant and epi-
static relationships across pure lines and hybrids. Then, as an il-
lustration, we use our method, in an increasing order of
complexity, to estimate variance components and predict hybrid
performance using a publicly available data set (Technow et al.
2014). We compare results of our orthogonal model (GCA-model)
with effects defined “according to origin” to the model with
effects “defined uniquely” at the hybrid level (G-model), and to
the existing formulation of Technow et al. (2014) that we show to
be a simplification of our approach.

Theory
Here we derive the theory for genomic relationship matrices in
the analysis of hybrid crosses of inbred lines from two popula-
tions. We draw on the tradition of separately modeling effects of
gametes coming from each heterotic group (Sprague and Tatum
1942; Griffing 1962; Stuber and Cockerham 1966; Bernardo 2010).
To derive the genetic model, an ideal (issued from random mat-
ing of heterotic pools), and large population of hybrids was as-
sumed. In this way the content of a random sample of gametes
depends on the allele frequency in the population. This is the

traditional treatment in Quantitative Genetics. The two parental
populations or heterotic groups (e.g. Dent and Flint in the case of
North European maize) are named 1 and 2. Extension to more
than two heterotic groups is immediate.

Our aim is to split the total genotypic value of a single-cross
hybrid in two statistical additive effects (one from each group), a
single dominance deviation (particular to each cross) and epi-
static interactions (either intra-group or across-groups). Ideally,
this partition is orthogonal and all components should be estima-
ble. Orthogonality is a definitional system that guarantees that
variance components are “a priori” (before seeing the data) inde-
pendent, whereas practical orthogonality depends on the infor-
mation available in the data set. To our knowledge, this partition
and its use in hybrid crops using markers have not been pre-
sented elsewhere.

Additive substitution effects and dominance
deviations in hybrid crops
We start from a genotypic model to derive statistical effects
(Falconer 1981; Bernardo 2010). Consider a biallelic single locus/
gene with alleles B/b and the allele origin denoted as i¼ 1 and
j¼ 2, thus population 1 has B1 and b1 with respective frequencies
p1 and q1 ¼ 1� p1 and population 2 has B2 and b2 with frequen-
cies p2 and q2. The hybrid population has genotypes (frequencies)
B1B2 (p1p2), B1b2 (p1q2), b1B2 (q1p2) and b1b2 (q1q2).

We assume additive and dominant gene action, and separate
effects of gametes coming from 1 and 2. Then the genotypic value
G of a hybrid can be written (up to a common constant) as

GB1B2 ¼ a1 þ a2 GB1b2
¼ a1 þ d Gb1B2

¼ a2 þ d Gb1b2
¼ 0:

where a1 is the functional additive effect for B1 from P1, a2 is
the functional additive effect for B2 from P2, and d is the func-
tional dominance value of both heterozygotes (B1b2 and b1B2).
The genetic mean of the hybrid population is therefore

E Gð Þ ¼ p1p2 a1 þ a2ð Þ þ p1q2 a1 þ dð Þ þ q1p2 a2 þ dð Þ
¼ p1a1 þ p2a2 þ p1q2 þ q1p2ð Þd

Classically, the genotypic values of a hybrid are split into sta-
tistical additive values, one per parent, and a dominant deviation
for the hybrid, as in (Bernardo 2010):

G ¼ E Gð Þ þ gA 1ð Þ þ gA 2ð Þ þ gD

where gA 1ð Þ (gA 2ð Þ ) is the additive effect of a gamete from popula-
tion 1 (from population 2) combined with a gamete from popula-
tion 2 (population 1), whereas gD is the dominant deviation.

Additive values gA 1ð Þ and gA 2ð Þ of the gametes include average
effects of each gene/allele. The average effect of alleles (aB1 , ab1 , aB2

and ab2
) are derived from the genotypic values. The reasoning is

set out in Table 1 (following Table 7.2 in Falconer (1981)). If game-
tes carrying B1 from population 1 are mated at random with
gametes from population 2, the frequencies of the genotypes
produced will be p2 of B1B2 and q2 of B1b2. The genotypic value of
a hybrid B1B2 is GB1B2 ¼ ða1 þ a2Þ, that of B1b2 is GB1b2

¼ ða1 þ dÞ,
and the mean of these two, taking into account of the proportions
in which they occur is E GjB1ð Þ ¼ p2 a1 þ a2ð Þ þ q2 a1 þ dð Þ.

For instance, considering allele B1, the difference between the
mean value conditional on a particular genotype of the gamete
(e.g. E GjB1ð Þ) and the population mean ðE Gð ÞÞ is the average
effect of the allele, aB1 . The average effects of alleles (aB1 , ab1

, aB2

and ab2
) are therefore
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aB1 ¼ p2 a1 þ a2ð Þ þ q2 a1 þ dð Þ � E Gð Þ ¼ q1 a1 þ q2 � p2ð Þd
� �

ab1 ¼ p2 a2 þ dð Þ � E Gð Þ ¼ �p1 a1 þ q2 � p2ð Þd
� �

aB2 ¼ p1 a1 þ a2ð Þ þ q1ða2 þ dÞ � EðGÞ ¼ q2 a2 þ q1 � p1ð Þd
� �

ab2
¼ p1 a1 þ dð Þ � EðGÞ ¼ �p2 a2 þ q1 � p1ð Þd

� �

Now, we can derive the average effect of the allele-substitution, for
instance, letting b1 be substituted by B1. From the b1 alleles taken
at random from the population for substitution, a proportion p2

will be found in b1B2 genotypes and a proportion q2 in b1b2. The
substitution will, respectively, change the value from a2 þ dð Þ
to a1 þ a2ð Þ and from 0 to a1 þ dð Þ (see Table 1). Thus, the average
effect of the allele-substitution ða1Þ of population 1 is

a1 ¼ p2 a1 þ a2ð Þ � a2 þ dð Þ
� �

þ q2 a1 þ dð Þ � 0½ � ¼ a1 þ q2 � p2ð Þd

The same result can be obtained as the difference between av-
erage effects: a1 ¼ aB1 � ab1

. For population 2 ða2Þ, it is
a2 ¼ aB2 � ab2

. The average effects of alleles can also be rewritten
as function of the allele substitution effect as follows: aB1 ¼ q1a1,
ab1
¼ �p1a1, aB2 ¼ q2a2 and ab2

¼ �p2a2.
Note that allele-substitution effects involve both functional

additive ða1 þ a2Þ and dominant ðdÞ effects, and allele frequencies
of the other parental population. Similar expressions were pre-
sented by Vitezica et al. (2016) but an identical functional additive
effect ða ¼ a1 ¼ a2Þ was assumed in both parental populations,
ignoring the origin of the allele.

The statistical additive effects of a gamete are equal to the sum
of the average effects of the alleles it carries. Thus, for a single
locus, the statistical additive effects are

gA 1ð Þ
B1

¼ q1a1

gA 1ð Þ
b1

¼ �p1a1

gA 2ð Þ
B2

¼ q2a2

gA 2ð Þ
b2

¼ �p2a2:

This can also be written as gA 1ð Þ ¼ z1a1 and gA 2ð Þ ¼ z2a2 with

z1¼
1�p1ð Þ
�p1

�
for gametes

B1

b1

�
, and z2¼

1�p2ð Þ
�p2

�
for gametes

B2

b2

�

Subtracting statistical additive effects from genotypic values
(GB1B2 , GB1b2

, Gb1B2
and Gb1b2

) gives dominance deviations which
are interactions between the alleles received from parental
populations. This is detailed in the Appendix, and the dominance
deviation of the hybrid according to its genotype is

gDB1B2
¼ �2q1q2d

gDB1b2
¼ 2q1p2d

gDb1B2
¼ 2p1q2d

gDb1b2
¼ �2p1p2d

So, the dominance deviation of a hybrid individual can be writ-

ten as gD ¼ wd with

w ¼

�2q1q2

2q1p2

2p1q2

�2p1p2

for genotypes

B1B2

B1b2

b1B2

b1b2

8>><
>>:

8>><
>>:

Or, equivalently, w ¼ �2z1z2 for z1, z2 defined as above.
Finally, the model for analysis of hybrid crosses considering

additive and dominance effects can be written in matrix form for

a set of crosses as

y ¼ 1lþ gA 1ð Þ þ gA 2ð Þ þ gD

where, for a single locus, gA 1ð Þ ¼ z1a1, gA 2ð Þ ¼ z2a2, gD ¼ wd

Derivation of additive and dominance genomic
relationships
Now we extend the analysis to multiple markers, using gA 1ð Þ ¼ Z1a1,

gA 2ð Þ ¼ Z2a2, gD ¼Wd, where Z1 ¼ z11 . . . z1nsnpð Þ and Z2 ¼
z21 . . . z2nsnpð Þ are matrices with as many rows as inbred lines present

in each heterotic group, and as many columns as the number

of markers, nsnp. The matrix W ¼ w . . . wnsnpð Þ has as many rows

as hybrid individuals and as many columns as markers.
Genotypes in pure lines are in matrices M1 and M2 which

contain zero for genotypes b1b1 and b2b2, respectively; and 1 for

genotypes B1B1 and B2B2, respectively. The observed B allele fre-

quencies for marker j in the heterotic groups composed by n lines

can be computed as pj ¼

Pn

i¼1

Mij

n . Matrices Z are obtained subtract-

ing p (which is equal to centering if p is computed from observed

genotypes), as Z1 ¼ M1 � 1p0 for population 1. It is analogous for

population 2.
Now, we can set up the covariance matrices.
Additive covariance matrix for population 1 (for gA 1ð Þ ) assuming

linkage equilibrium, is

Var gA 1ð Þð Þ ¼ Z1Z01Var a1Þ ¼ Z1Z01r
2
a1

�

where r2
a1

is the variance of the allele-substitution effect ða1Þ of

population 1. For one locus, if the population 1 is a population of

pure lines (individuals are homozygotes), the genetic variance of

its gametes gA 1ð Þ is

r2
A 1ð Þ ¼ Var gA 1ð Þð Þ ¼ E g2

A 1ð Þ

� �
� E gA 1ð Þð Þ2

By construction of the matrices, E gA 1ð Þð Þ ¼ 0 and then we have

for one locus the following table of gametes and their effects
So, Eðg2

A 1ð Þ Þ ¼ p1 q1a1ð Þ2 þ q1 �p1a1ð Þ2 ¼ p1q1 p1 þ q1ð Þa2
1 ¼ p1q1a2

1

and Var gA 1ð Þð Þ ¼ p1q1a2
1.

Table 1 Representation of the average effect of a gene

Values and frequencies of genotypes produced

Type of
gamete

B1B2 ða1 þ a2Þ B1b2 a1 þ dð Þ b1B2 a2 þ dð Þ b1b2 0ð Þ

B1 p2 q2

b1 p2 q2

B2 p1 q1

b2 p1 q1

Genotype Frequency g2
A 1ð Þ gA 1ð Þ

B1 p1 q1a1ð Þ2 q1a1

b1 q1 �p1a1ð Þ2 �p1a1

D. González-Diéguez et al. | 3



Assuming linkage equilibrium, we generalize this result to all
nsnp markers

r2
A 1ð Þ ¼ Var gA 1ð Þð Þ ¼

Xnsnp

i

p1i
q1i

r2
a1

and

r2
a1
¼

r2
A 1ð Þ

Pnsnp

i
p1i

q1i

Therefore, we can now divide Var gA 1ð Þð Þ above by this variance
and we have

Var gA 1ð Þð Þ ¼
Z1Z

0

1Pnsnp

i
p1i q1i

r2
A 1ð Þ ¼ GA 1ð Þr2

A 1ð Þ

where GA 1ð Þ ¼ Z1Z
0
1Pnsnp

i

p1i
q1i

is the additive genomic relationship

matrix across lines in population 1 of size n1 � n1. The
reasoning is identical for population 2 and only the allele
frequencies change.

These results are similar, but not identical, to VanRaden (2008).
In particular, using VanRaden’s method 1 directly, while coding
genotypes in pure lines as 0/2, results in GVR 1ð Þ ¼ 2GA 1ð Þ . The reason
for this discrepancy is because of the reference population used for
the additive variance. For a single population with an arbitrary level
of inbreeding, the covariance of additive values is expressed as the
relationship matrix times the additive variance in an outbred popu-
lation with the same allele frequencies (Endelman and Jannink
2012). The additive variance, r2

A 1ð Þ defined here is for the fully inbred
population, and these two definitions of additive variance differ by
a factor of 2. VanRaden’s additive relationship matrix divided by
two to obtain a kinship (or coancestry) matrix results in GVR 1ð Þ =2
which is equal to our result. Note that the choice of reference popu-
lation changes the scaling for G.

For the dominance deviations, the covariance matrix for hybrids,
assuming linkage equilibrium, is

Var gDð Þ ¼WW
0
Var dð Þ ¼WW

0
r2

d

where r2
d is the variance of the dominant effect at the locus level,

defined at the hybrid population.
Because gametes are uncorrelated, Var gDð Þ ¼ Var wdð Þ ¼

Var �2z1zð 2dÞ ¼ 4d2Var z1z2ð Þ ¼ 4d2Var z1ð Þ Var z2ð Þ ¼ 4d2 p1q1 p2

q2 ¼ 4p1q1p2q2d2. The variance of dominance deviations for F1
hybrids is therefore, for one locus, r2

D ¼ 4p1q1p2q2d2. This is as
in Reif et al. (2007), Hallauer et al. (2010) and Vitezica et al. (2016) al-
though the d effect is defined differently in their models, that use
“uniquely defined” effects. From here and assuming LE across loci
we have

r2
D ¼ Var gDð Þ ¼

Xnsnp

i

4p1i q1i p2i q2ið Þ r2
d

which results in the covariance matrix

Var gDð Þ ¼
WW

0

Pnsnp
i ð4p1i

q1i
p2i

q2i
Þ

r2
D ¼ Dr2

D

where D ¼ WW
0Pnsnp

i
ð4p1i

q1i
p2i

q2i
Þ

is the dominance relationship matrix

across hybrids of size n� n. Note that we assume that allele

substitution effects and dominance effects are random with re-
spective variances r2

a and r2
d.

Technow et al. (2014) modelled specific combining abilities us-
ing element-by-element products of matrices GA 1ð Þ and GA 2ð Þ , fol-
lowing Stuber and Cockerham (1966). Clearly this is not the same
as our matrix D above, that results directly from modelling domi-
nance deviations. We will show later that Technow et al. (2014)
approach, in fact, only models additive by additive across-
heterotic groups epistasis, which is indeed a part of the SCA, and
that their approach is an approximation to our D. Also we show
that the method of Stuber and Cockerham (1966) using element-
by-element products to obtain relationships across SCA assumes
an infinitesimal model, and should not be directly transposed to
marker-based models.

Some properties of the additive and dominance relationship
matrices
Matrices GA 1ð Þ , GA 2ð Þ and D have an average diagonal equal to 1
and an average value equal to 0 across the whole matrix. This
implies that estimates of variance components can be inter-
preted as genetic variances (Legarra 2016). Also, z and w, the un-
derlying incidence matrices to GA 1ð Þ , GA 2ð Þ and D are orthogonal
(see Appendix for the proof), which implies that by construction
statistical estimates are a priori independent from each other.
Also, because the basic bricks z and w are orthogonal, extension
to higher order of interaction (epistasis) is immediate and also or-
thogonal (as mentioned later). In the next section, we present epi-
static relationship matrices.

Epistasis in hybrid populations
So far, we have written down the model for analysis of hybrid
crosses including additive and dominance relationships. Now we
use Kronecker products to extend the incidence matrices z and w
to epistatic interactions.

The classical model (1) including GCA and SCA effects for a
hybrid individual can be written as yij ¼ lþ gcai þ gcaj þ scaij þ eij,
where yij is the phenotypic value of the hybrid, l is the population
mean, gcai is the GCA of line i, gcaj is the GCA of line j and scaij is
the SCA which depends of the combination of alleles received
from i and j.

Epistasis intrapopulation
Stuber and Cockerham (1966) showed that the GCA-term ðgcaiÞ
includes, in addition to the additive gametic effects, the additive-
by-additive epistasis across loci for alleles present in the line
(equation 1, page 1279), and all higher order additive interactions
in the line. This is because the lines are inbred—so exactly the
same gamete is always transmitted to the hybrid, contrary to ani-
mal breeding where recombination breaks down epistatic combi-
nations. So, for instance the GCA of a gamete from population 1,
considering two loci, k and m and second-order epistasis,

gcai ¼ z1 kð Þa
k
1 þ z1 mð Þa

m
1 þ z1 kð Þ �z1 mð Þ aað Þk;m1

where aað Þk;m1 is the deviation due to epistatic interaction across
loci in population 1. The coefficients of the incidence matrix,
z1 kð Þ �z1 mð Þ, for second-order epistatic effects between two loci can
be computed as the Kronecker products ( �) of the respective inci-
dence matrices for single locus effects. A Kronecker product of or-
thogonal incidence matrices results in an orthogonal incidence
matrix (Van Loan 2000), so the orthogonality (always under the as-
sumption of linkage equilibrium) extends to any order of epistasis.
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For multiple loci, the matrix Z11 of additive-by-additive interaction

effects can be written using Kronecker products of each row (corre-

sponding to each line) of the preceding matrices as

Z11 ¼

z11 � z11

. . .
z1i � z1i

. . .
z1n1 � z1n1

0
BBBBB@

1
CCCCCA

Matrix Z11 is of large size (the number of rows is nsnp2) but it is

not explicitely used. Following Vitezica et al. (2017), we know that

Z11Z
0

11 ¼ Z1Z
0

1 � Z1Z
0

1 where � is the Hadamard product; following

developments in Vitezica et al. (2017) the genomic additive-by-

additive epistatic relationship matrices of lines of population 1

with themselves is thus

GAAð1;1Þ ¼
Z1Z

0

1 � Z1Z
0

1

� �
tr Z1Z

0

1 � Z1Z
0

1

� �
=n1
¼ GAð1Þ � GAð1Þ

tr GAð1Þ � GAð1Þð Þ=n1

in agreement (up to a scaling factor) with Cockerham (1954),

Henderson (1984), Martini et al. (2016), and Vitezica et al. (2017).
In the above expression, tr is the trace and n1 is the number of

lines in population 1. Therefore, the covariance matrix for the

additive-by-additive interaction within population 1 ðgAA 11ð Þ Þ is:

Var gAA 1;1ð Þð Þ ¼ GAAð1;1Þr
2
AA 1;1ð Þ

The reasoning for population 2 is the same resulting in

GAAð2;2Þ ¼
Z2Z

0

2 � Z2Z
0

2

� �
tr Z2Z

0

2 � Z2Z
0

2

� �
=n2
¼ GAð2Þ � GAð2Þ

tr GAð2Þ � GAð2Þð Þ=n2

and Var gAA 2;2ð Þð Þ ¼ GAAð2;2Þr
2
AA 2;2ð Þ

The dimensions of GAAð2;2Þ and GAAð2;2Þ are n1 � n1 and n2 � n2,

respectively.

Epistasis across populations
According to Stuber and Cockerham (1966), the SCA-term scaijð Þ;
in addition to the dominant deviation effects, includes the

additive-by-additive epistasis across loci in alleles coming from

different populations (equation 2, page 1279), the additive-by-

dominant and dominant-by-dominant interactions, plus higher

order interactions that we will not detail here as the reasoning is

the same. So, SCA for a hybrid from populations 1 and 2, consid-

ering two loci, k and m,

scaij ¼ wðkÞd
k þwðmÞd

m þ z1ðkÞ �z2 mð Þ aað Þk;m1;2 þ z1 kð Þ �wðmÞ adð Þk;m1;2

þwðkÞ �z2 mð Þ adð Þm;k1;2 þwðkÞ �wðmÞ ddð Þk;m1;2

The different z1 and z2 come from two parental lines i and j.

Let T1 be a matrix relating hybrids to lines in population 1 with 1

in the k, l position if the k-th hybrid comes from the l-th line in

population 1 and T2 a similar matrix linking hybrids to lines

in population 2. The covariance matrix for the additive-by-

additive interaction between populations 1 and 2 (gAA 12ð Þ ) can be

calculated as:

GAAð1;2Þ ¼
T1GA 1ð ÞT

0

1 � T2GA 2ð ÞT
0

2

tr T1GA 1ð ÞT
0

1 � T2GA 2ð ÞT
0

2

� �
=n

Var gAA 12ð Þð Þ ¼ GAAð1;2Þr
2
AA 1;2ð Þ

where n is the number of hybrids and the matrix GAAð1;2Þ has size
n� n. In other words, the matrix GAAð1;2Þ is formed as follows:

1) For each pair of hybrids i; j with respective parents parent1ðiÞ
(from population 1), parent2ðiÞ (from population 2) and
parent1ðjÞ (from population 1) and parent2ðjÞ (from popula-
tion 2) do:

GAAð1;2Þ i; j
� �

¼ GA 1ð Þ parent1 ið Þ; parent1 j
� �h i

� GA 2ð Þ parent2 ið Þ; parent2 j
� �h i

2) Scale the resulting matrix to an average diagonal of 1.

Technow et al. (2014) used GAAð1;2Þ to model the relationship
matrix of SCA’s. We have shown that this is incorrect because
GAAð1;2Þ models across-population epistasis (interactions across
loci for alleles coming from different heterotic groups) but it does
not model dominance deviations (interactions within loci). We
will see in the Discussion section that GAAð1;2Þ is in fact an approxi-
mation of D.

Relationships for the other pairwise epistatic interactions
(all of them present in the SCA and of size n� n) are:

• Additive in population 1 by dominant: GAð1ÞD ¼
T1G

A 1ð Þ T
0
1�D

tr T1G
A 1ð Þ T

0
1�D

� �
=n

• Additive in population 2 by dominant: GAð2ÞD ¼
T2G

A 2ð Þ T
0
2�D

tr T2G
A 2ð Þ T

0
2�D

� �
=n

• Dominant by dominant: GDD ¼ D�D
tr D�Dð Þ=n

In the same manner, it is possible to derive relationships for
third and higher order interactions, using Hadamard products of
GA 1ð Þ , GA 2ð Þ and

D including the incidence matrices T for across-population
interactions.

As the two gametes in each hybrid are uncorrelated, the geno-
typic variance (Stuber and Cockerham1966) (ignoring third and
higher order epistatic terms) is

r2
G ¼ r2

Að1Þ þ r2
A 2ð Þ þ r2

D þ r2
AA 1;1ð Þ þ r2

AA 2;2ð Þ þ r2
AA 1;2ð Þ þ r2

A 1ð ÞD þ r2
A 2ð ÞD þ r2

DD

where

r2
GCAð1Þ ¼ r2

Að1Þ þ r2;
AA 1;1ð Þ ; r2

GCAð2Þ ¼ r2
Að2Þ þ r2

AA 2;2ð Þ

and

r2
SCA ¼ r2

D þ r2
AA 1;2ð Þ þ r2

A 1ð ÞD þ r2
A 2ð ÞD þ r2

DD:

In our analysis on real data, we will ignore the epistatic interac-
tion terms r2

A 1ð ÞD
; r2

A 2ð ÞD
and r2

DD as their estimate is very inaccurate.
We remark that a breeder is interested in r2

GCA (because it indi-
cates how much variation is expected in hybrids) but also in r2

A,
which determines the genetic progress of hybrids that is achiev-
able by selecting lines, crossing them, and producing new inbred
lines within heterotic groups (Stuber and Cockerham 1966). This
is because epistasis combinations are broken down by recombi-
nation when creating new source populations for line develop-
ment within each heterotic group.
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Materials and methods
As illustration of the genomic relationship matrices developed
here, variance components were estimated using the publicly
available data set from the breeding program of the University
of Hohenheim (https://doi.org/10.1534/genetics.114.165860)
(Technow et al. 2014).

Phenotypes and genotypes
Here, a brief description of the phenotypic and genotypic data set
is given (more details in Technow et al. (2014)). We analyzed the
adjusted entry means of n ¼ 1254 single-cross hybrids for grain
yield expressed in quintals per hectare (q ha�1), representing an
incomplete factorial design between n1 ¼ 123 Dent and n2 ¼ 86
Flint inbred lines (two genetically divergent heterotic groups)
with high linkage disequilibrium (LD) within heterotic groups.
The hybrid data were collected in 14 years (1999-2012) and on av-
erage, 95 hybrids produced from 15 Dent and 11 Flint lines, were
tested each year.

All parental inbred lines were genotyped with the Illumina
Maize SNP50 BeadChip (Ganal et al. 2011). Here, we used the
35,478 SNP available after quality control (see details in Technow
et al. 2014). Markers that were monomorphic in one group but
segregating in the other group were kept. Genotypes of tested
single-cross hybrids were derived from parental genotypes.

Genomic evaluation models
Our new GCA-model was compared with Stuber and Cockerham
(1966) model for effects of genes “defined uniquely”, whose im-
plementation in a marker based-model for hybrid crops is actu-
ally the NOIA system (Álvarez-Castro and Carlborg 2007; Vitezica
et al. 2017). We will call this the G-model. Both genomic models
were used for analysis of hybrid records (either estimation of ge-
netic parameters or cross-validation). Note that the difference
from our GCA-model to previous studies is that we use genomic
relationship matrices that we have completely developed from
theory (and not by transposition of pedigree-based concepts).

GCA model. Here, effects were defined “according to origin”
(Sprague and Tatum 1942; Griffing 1962; Stuber and Cockerham
1966), but with relationship matrices developed in the Theory
section. So, GCA-model for the (i; j) hybrid resulting from the
combination of parental lines i (from population 1) and j (from
population 2) can be written as:

yij ¼ lþ gca 1ð Þ
i þ gca 2ð Þ

j þ scaij þ eij

where yij is the hybrid phenotype (entry mean), l is the overall
mean. Our models differ in the explicit modelling of the GCA and
SCA into sub-components due to additive, dominant and epi-
static statistical effects. In classical settings, GCA and SCA may
be modelled either as fixed or as independent random effects
(Bernardo 2010; Hallauer et al. 2010). For instance, Giraud et al.
(2017) used a model with random, uncorrelated GCA and SCA for
the analysis of a half-diallel design. As mentioned before, GCA
contains additive, additive x additive and further within-
heterotic epistatic effects, whereas SCA can be split into domi-
nance, across-population additive effects, and epistatic effects
including dominance. For instance, gcað1Þ ¼ gA 1ð Þ þ gAAð1;1Þþ
gAAAð1;1Þ þ gAAAAð1;1Þ þ � � � where all terms are obviously not always
fit in the model or estimable in practice.

Still, and because there are potentially several hybrids for
each line, we use “residual genetic” r effects (e.g. Endelman et al.
2018) (see explanation below—similar to the “permanent

environmental effect” in animal breeding) as a catch-all term
that includes genetic effects that are not explicitely included. For
instance, if we assume gcað1Þ ¼ gA 1ð Þ þ r, the term r captures r ¼
gAAð1;1Þ þ gAAAð1;1Þ þ gAAAAð1;1Þ . . . and further terms, but if we assume
gcað1Þ ¼ gA 1ð Þ þ gAAð1;1Þ þ r, then r ¼ gAAAð1;1Þ þ gAAAAð1;1Þ . . ..

The “residual genetic” r effects are assumed random and
uncorrelated, and can be estimated because there are repeated
hybrids for each line. In this manner the models are more robust
to the fact of fitting genetic effects up to an arbitrary complexity
that may be enough or not. The strategy of fitting “catch-all”
“residual genetic” effects could also be followed for the SCA, but
because hybrids are not repeated in the entry means, “residual
genetic” r effects are not estimable as they are confounded with
the residual.

Then we make several choices of genetic effects to be
explicitly included in GCA and SCA, leading to several models
that will be described later. The most complete model includes
gcað1Þ ¼ gA 1ð Þ þgAAð1;1Þ þ rð1Þ, gcað2Þ ¼ gA 2ð Þ þ gAAð2;2Þ þ r 2ð Þ, sca ¼ gDþ
gAAð1;2Þ . We ignore second-order epistasis including dominance
and higher order epistatic interactions. Thus, the most complete
model is:

yij ¼ lþ gA 1ð Þ i þ gA 2ð Þ j þ gDij þ gAAð1;1Þ i þ gAAð2;2Þ j þ gAAð1;2Þ ij þ r 1ð Þ
i þ r 2ð Þ

j þ eij

which in vectorial form (all phenotypes in vector y) is:

y ¼ 1lþ T1gA 1ð Þ þ T2gA 2ð Þ þ gD þ T1gAAð1;1Þ þ T2gAAð2;2Þ þ gAAð1;2Þ

þ T1rð1Þ þ T2rð2Þ þ e

where the T incidence matrices assign hybrids to parents in each
heterotic group.

The additive effects of gametes from each inbred line are

assumed distributed as gA 1ð Þ � MVN 0; GA 1ð Þr2
A 1ð Þ

� �
and

gA 2ð Þ � MVN 0; GA 2ð Þr2
A 2ð Þ

� �
, the dominance deviation effects for

each hybrid combination, as gD � MVN 0; Dr2
D

� �
; the epistatic in-

teraction effects within each heterotic group are

gAAð1;1Þ � MVN 0; GAA 1;1ð Þr2
AA 1;1ð Þ

� �
, gAAð2;2Þ � MVN 0; GAA 2;2ð Þr2

AA 2;2ð Þ

� �

and between heterotic groups is gAAð1;2Þ � MVN 0; GAA 1;2ð Þr2
AA 1;2ð Þ

� �
.

Finally, rð1Þ is the vector of random residual genetic effects

rð1Þ � MVN 0; Ir2
r 1;1ð Þ

� �
, rð2Þ is the vector of random residual genetic

effects rð2Þ � MVN 0; Ir2
r 2;2ð Þ

� �
, and e is the vector of random resid-

ual effects e � MVN 0; Ir2
e

� �
. All the relationship matrices have

been defined in the Theory section.
Fit of “residual genetic” GCA effects. As discussed before, the GCA

effect conceptually contains within-population additive effects
and additive epistatic interactions of any order. As not all these
interactions are explicitely modelled, and because pure lines are
repeated in hybrids, we fit “residual genetic” r effects in GCA-
models. For instance, if only additive effects are fit, this “residual
genetic” r effect account for all additive epistasis within-group
present in the GCA effect. Fitting residual genetic GCA effects is
similar to fitting individual permanent environmental effects in
animal breeding (e.g. for a cow that gives repeated performances
of milk yield). It is known in animal breeding that this effect cap-
tures, among other things, genetic effects not explicitly modelled
such as dominance or epistasis (Kruuk 2004; Vitezica et al. 2018).
Indeed, historically GCAs have been estimated as random, unre-
lated effects, for instance in diallel designs (Sprague and Tatum

6 | GENETICS, 2021, Vol. 218, No. 1

https://doi.org/10.1534/genetics.114.165860


1942; Hallauer et al. 1988). Thus, all the models detailed above

(shown in Table 2) include “residual genetic” r effects.
G model. This model ignores the origin of the gametes and uses

a “uniquely defined” effect per hybrid (Stuber and Cockerham

1966), as developed in a genomic context by Vitezica et al. (2017)
using the NOIA approach, to correctly model dominance

deviations under the constraint that hybrids are not in HWE. The

G-model for single-cross hybrid individuals can be written as:

y ¼ 1lþ gA Hð Þ þ gD Hð Þ þ gAA Hð Þ þ e

where gA Hð Þ are the additive genetic effects of hybrids distributed
as gA Hð Þ � MVNð0; GA Hð Þr2

A Hð Þ Þ, the dominant genetic effects are

gD Hð Þ � MVN O; DHr2
D Hð Þ

� �
, and the additive-by-additive epistatic

interaction effects are gAA Hð Þ � MVNðO; GAA Hð Þr2
AA Hð Þ Þ.

The matrices GA Hð Þ , DH and GAA Hð Þ are the additive, dominant

and additive-by-additive genomic relationship matrices, defined
as (Vitezica et al. 2017)

GA Hð Þ ¼
HaH

0

a

trðHaH
0

aÞ=n

where the matrix Ha has elements equal to
2 � 2pkð Þ; 1 � 2pkð Þ; � 2pk for genotypes BB, Bb and bb, and pk is

the frequency of B at the kth marker of the hybrid population. It is
the same as VanRaden’s G but with a different denominator to

account for lack of HWE. The dominance matrix DH is

DH ¼
HdH

0

d

trðHdH
0

dÞ=n

where Hd contains elements hd for each individual and locus

equal to

hd¼

�2 pBBþpbb�ðpBB�pbbÞ2
h i�1

pBbpbb

4 pBBþpbb� pBB�pbbð Þ2
h i�1

pBBpbb

for genotypes
BB
Bb
bb
�2 pBBþpbb� pBB�pbbð Þ2
h i�1

pBBpBb

8<
:

8>>>>>>>><
>>>>>>>>:

according to Vitezica et al. (2017). This is different from the D ma-
trix proposed by Su et al. (2012) which does not correctly model

dominance deviations (and captures part of the GCA), and it is
also different from the D matrix in Vitezica et al. (2013) (which

assumes HWE). The additive-by-additive epistatic relationship
matrix can be written as

GAA Hð Þ ¼
GA Hð Þ � GA Hð Þ

trðGA Hð Þ � GA Hð Þ Þ=n

Sub models and model comparison
Variance components were estimated for nested models (GCA-
model and G-model) that added, in succession, additive effects
(gA), dominance effects (gA þ gD), additive-by-additive genetic
effects (gA þ gD þ gAA) in addition to “residual genetic” r effects of
lines in the GCA-model. The additive-by-additive epistatic effects
can be interactions of loci within line from population 1 g

AAð Þ 1;1ð Þ ,
within line from population 2 g

AAð Þ 2;2ð Þ and interactions between
loci across lines from populations 1 and 2 g

AAð Þ 1;2ð Þ , or within
hybrids g AAð ÞH . For details, see Table 2. Also, the variance attribut-
able to GCAs is r2

GCA 1ð Þ ¼ r2
A 1ð Þ þ r2

AA 1;1ð Þ þ r2
r 1ð Þ , r2

GCA 2ð Þ ¼ r2
A 2ð Þ þ

r2
AA 2;2ð Þ þ r2

r 2ð Þ and for SCAs is r2
SCA ¼ r2

D þ r2
AA 1;2ð Þ . Also, another set

of models was identical but “residual genetic” r effects of lines
were not fit in any of the models.

Goodness-of-fit of models was compared based on the
deviance information criterion (DIC), which balances model fit
and model complexity to avoid overfitting (Spiegelhalter et al.
2002). The lower the DIC value, the better fit of the model to
the data.

Predicted ability of phenotypes of “untested hybrids” for the
different models was tested performing a T2-T1-T0 cross-valida-
tion scheme as in Technow et al. (2014). The prediction accuracy
of T2, T1, and T0 hybrids (two, one and zero parents, respectively)
was obtained for 300 hybrids (ND ¼ 90 and NF ¼ 53 of Dent and
Flint parental lines) in the training set. Predictive performance of
hybrids was computed separately for each group of hybrids by di-
viding the correlation of predicted and observed values by

ffiffiffiffiffiffi
H2
p

.
H2 is the genomic broad-sense heritability. The H2 estimated with
the full GCA-model was used. The cross-validation process was
repeated 100 times.

Estimation of variance components and cross-validation
were performed in a Bayesian approach using the BGLR
R-package (Pérez and de los Campos 2014). To speed up com-
putation, the eigenvalue decomposition of the variance-
covariance matrices was done according to Acosta-Pech et al.
(2017) and modeled as Bayesian Ridge Regression (BRR). For
each model, inferences were based on 30,000 samples col-
lected from 60,000 iterations after discarding 30,000 for burn-

Table 2 Definition of genomic models for maize single-cross hybrids

Variances
Models Effects Model Code Additive Dominance Epistasis Residual

genetic

GCA gA 1ð Þ þ gA 2ð Þ þ r GCA : A r2
A 1ð Þ ;r

2
A 2ð Þ r2

rð1Þ ;r
2
rð2Þ

gA 1ð Þ þ gA 2ð Þ þ gD þ r GCA : AD r2
A 1ð Þ ;r

2
A 2ð Þ r2

D r2
rð1Þ ;r

2
rð2Þ

gA 1ð Þ þ gA 2ð Þ þ gAA 1;2ð Þ þ r GCA : A AAð Þ 1;2ð Þ
r2

A 1ð Þ ;r
2
A 2ð Þ r2

AA 1;2ð Þ r2
rð1Þ ;r

2
rð2Þ

gA 1ð Þ þ gA 2ð Þ þ gD þ gAA 1;2ð Þ þ r GCA : AD AAð Þ 1;2ð Þ
r2

A 1ð Þ ;r
2
A 2ð Þ r2

D r2
AA 1;2ð Þ r2

rð1Þ ;r
2
rð2Þ

gA 1ð Þ þ gA 2ð Þ þ gD þ gAA 1;1ð Þþ
þgAA 2;2ð Þ þ gAA 1;2ð Þ þ r

GCA : AD AAð Þ 1;1ð Þ AAð Þ 2;2ð Þ AAð Þ 1;2ð Þ
r2

A 1ð Þ ;r
2
A 2ð Þ r2

D r2
AA 1;1ð Þ ;r2

AA 1;2ð Þ

;r2
AA 2;2ð Þ

r2
rð1Þ ;r

2
rð2Þ

G gA Hð Þ G : A r2
A Hð Þ

gA Hð Þ þ gD Hð Þ G : AD Hð Þ r2
A Hð Þ r2

D Hð Þ

gA Hð Þ þ gAA Hð Þ G : A AAð Þ Hð Þ
r2

A Hð Þ r2
AA Hð Þ

gA Hð Þ þ gD Hð Þ þ gAA Hð Þ G : AD Hð Þ AAð Þ Hð Þ
r2

A Hð Þ r2
D Hð Þ r2

AA Hð Þ

GCA-model (effects (g) and variances (r2) defined within heterotic group): additive (A 1ð Þ and A 2ð Þ), dominance (D), “residual genetic” (r) and additive-by-additive
epistasis (AA) within heterotic groups ((1,1) and (2,2)) and between heterotic groups (1,2).
All the models detailed above were also run without the “residual genetic” r effect term.
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in and thinning of 10. Convergence of variance parameters

was inspected by trace plots and convergence diagnostic was

assessed using the BOA R-package (Smith 2007).

Data availability
The data set from the breeding program of the University of

Hohenheim is available with the publication of Technow et al.

2014 (https://doi.org/10.1534/genetics.114.165860). Estimation of

variance components and cross-validation were performed in a

Bayesian approach using the BGLR R-package (Pérez and de los

Campos 2014). The software can be downloaded from https://

cran.r-project.org/web/packages/BGLR/index.html. A program to

build the genomic matrices is available at http://genoweb.tou

louse.inra.fr/~zvitezic/maize.

Results
Variance components estimates and heritabilities
Variance components and broad-sense heritabilities (H2) for

GCA- and G-models are shown in Tables 3 and 4, and for the

model without “residual genetic” r effects, in Table A2.
We consider first Table 3 and the GCA-model. The total vari-

ance of GCA e.g. for population 1 is r2
GCA 1ð Þ ¼ r2

A 1ð Þ þ r2
AA 1;1ð Þ þ r2

r 1ð Þ ,

and this changes very little across models: total GCA variance for

population 1 oscillates between 27.66 and 29.16, and for population

2 between 18.53 and 20.74. Within GCA, each individual component

varies across the different models but changes are not large; the ma-

jor change is the diminution from 23.16 to 19.06 in the estimate of

r2
A 1ð Þ when r2

AA 1;1ð Þ is fit, and similarly (r2
A 2ð Þ changes from 12.92 to

10.61) for population 2. This is due to reassignment of total GCA var-

iance across its component parts; the r effect does not fully account

for the absence of the r2
AA 1;1ð Þ variance component.

As for the SCA, its two components (r2
D and r2

AA 1;2ð Þ ) also show

some changes and there is some reassignment from one to the

other. Still, for GCA and SCA components changes are not great

and enter well within the confidence intervals of the estimates.
On the contrary, when “residual genetic” r effects were not fit

(Table A2), changes were much larger. In particular, the inclusion

of within-group epistatic variances (r2
AA 1;1ð Þ and r2

AA 2;2ð Þ ) reduced

additive variances from 31.08 to 22.30 for r2
A 1ð Þ , and from 22.11

to 14.42 for r2
A 2ð Þ in the full model.

Thus, we conclude that the GCA-model is reasonably (empiri-
cally) orthogonal when “residual genetic effects” for GCA of lines
are fit, regardless of the level of complexity for the genetic model-
ling (additive, additive by additive, etc.). Using “residual genetic
effects” allows to accommodate non-additive effects of lines not
explicitly modelled.

Some of these changes can be attributed to similarity of rela-
tionship matrices. The correlation between GA 1ð Þ and GAA 1;1ð Þ (and
regression coefficient of GA 1ð Þ � GAA 1;1ð Þ ) was 0.39 (0.92); and the
correlation between GA 2ð Þ and GAA 2;2ð Þ (and regression coefficient
of GA 2ð Þ � GAA 2;2ð Þ ) was 0.55 (1.63). These results show a high
similarity between these relationship matrices and explain that
the additive effects tend to capture additive by additive effects if
the latter are not explicitly fit (as described above and shown in
Table A2), something that is ameliorated fitting “residual genetic”
r effects (Table 3).

Similarly, D and GAA 1;2ð Þ matrices were highly correlated (0.88),
suggesting that it is difficult to accurately separate dominance
and across-groups additive by additive epistasis. To avoid redun-
dancy between the D and GAA 1;2ð Þ matrices, we corrected the
GAA 1;2ð Þ matrix by subtracting the contribution of dominance as in
Alves et al. (2019). However, the resulting GAA 1;2ð Þhad a similar cor-
relation to D. Also the regression coefficient of D � GAAð1;2Þ was

Table 3 Estimated posterior means and standard deviation (in parenthesis) of genetic variance components obtained with two genomic
models for maize grain yield

Model Code Additive Dominance Epistasis Residual genetic Residual

r2
A 1ð Þ ; r

2
A 2ð Þ or r2

AðHÞ r2
D or r2

DðHÞ r2
AA 1;1ð Þ r2

AA 2;2ð Þ r2
AA 1;2ð Þ or r2

AA Hð Þ r2
r 1ð Þ r2

r 2ð Þ r2
e

GCA : A 23.16 (4.78) 12.92 (3.49) 6 (1.59) 6.47 (1.81) 17.63 (0.77)
GCA : AD 22.97 (4.67) 13.07 (3.5) 3.59 (0.72) 5.2 (1.47) 5.9 (1.71) 15.01 (0.79)
GCA : A AAð Þð1;2Þ 22.87 (4.75) 13.05 (3.55) 4.75 (0.93) 5.13 (1.43) 5.89 (1.72) 13.8 (0.84)
GCA : AD AAð Þ 1;2ð Þ 22.82 (4.84) 13.02 (3.46) 2.48 (0.54) 3.6 (0.86) 4.84 (1.45) 5.51 (1.66) 13.46 (0.82)
GCA : AD AAð Þ 1;1ð Þ

AAð Þ 2;2ð Þ AAð Þ 1;2ð Þ
19.06 (4.78) 10.61 (3.48) 2.3 (0.56) 5.41

(2.01)
5.57
(2.15)

3.24 (0.79) 3.8 (1.23) 4.56 (1.56) 13.67 (0.81)

G : A 51.77 (6.75) 18.02 (0.79)
G : AD Hð Þ 47.81 (6.35) 6.18 (1.06) 14.97 (0.78)
G : A AAð Þ Hð Þ 42.22 (6.30) 10.2 (1.76) 13.89 (0.82)
G : AD Hð Þ AAð Þ Hð Þ 42.26 (6.08) 4.14 (0.81) 7.19 (1.55) 13.59 (0.80)

Estimates of additive (r2
A 1ð Þ ;r

2
A 2ð Þ or r2

AðHÞ ), dominance (r2
D or r2

DðHÞ ), additive-by-additive (r2
AA 1;1ð Þ , r2

AA 2;2ð Þ , r2
AA 1;2ð Þ or r2

AA Hð Þ ), residual genetic effects (r2
r 1;1ð Þ , r2

r 2;2ð Þ ) and
residual (r2

e ) variances for GCA- and G-models and successively added additive effects (A), dominance effects (AD), additive-by-additive effects (AD(AA)).
Superscripts 1 and 2 in parenthesis refers to dent and flint heterotic groups, respectively. The additive-by-additive epistatic effects can be interactions between loci
within group ( AAð Þ 11ð Þ and AAð Þ 22ð Þ), across groups AAð Þ 12ð Þ or within hybrids AAð Þ Hð Þ.

Table 4 Estimated posterior means and standard deviation (in
parenthesis) of broad-sense heritability and Deviance
Information Criteria (DIC) values obtained with two genomic
models for maize grain yield

Model Code H2 DIC

GCA : A 0.73 (0.05) 7321.5
GCA : AD 0.77 (0.04) 7254.27
GCA : A AAð Þð1;2Þ 0.79 (0.04) 7201.91
GCA : AD AAð Þ 1;2ð Þ 0.79 (0.05) 7203.69
GCA : AD AAð Þ 1;1ð Þ AAð Þ 2;2ð Þ

AAð Þ 1;2ð Þ
0.80 (0.04) 7209.92

G : A 0.74 (0.03) 7335.75
G : AD Hð Þ 0.78 (0.02) 7260.88
G : A AAð Þ Hð Þ 0.78 (0.02) 7206.89
G : AD Hð Þ AAð Þ Hð Þ 0.80 (0.02) 7212.46

GCA- and G-models are models that successively added additive effects (A),
dominance effects (AD), and additive-by-additive genetic effects (ADðAAÞ). The
additive-by-additive epistatic effects can be interactions between loci within
group ( AAð Þ 11ð Þ and AAð Þ 22ð Þ), across groups AAð Þ 12ð Þ or within hybrids AAð Þ Hð Þ.
Superscripts 1 and 2 in parenthesis refers to dent and flint heterotic groups,
respectively. H2 is the genomic broad-sense heritability.
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1.02, indicating that elements of GAA 1;2ð Þ are unbiased (but
shrunken) estimators of the elements of D.

For the G-model, Table 3 shows that the additive variance esti-
mate in the G : A model (51.77) was higher than the addition of
additive variance estimates for Dent and Flint groups (36.08) in
the GCA : A model. Similarly, estimates of dominance (r2

DðHÞ ) and
epistasis within hybrids (r2

AA Hð Þ ) variances were higher than in
GCA-models. Both results are in agreement with Stuber and
Cockerham (1966). The inclusion of the additive-by-additive epis-
tasis effects in the G : AD AAð Þ Hð Þ model reduced the estimate of
additive variance (r2

A Hð Þ ) from 51.77 to 42.26. Furthermore, similar
to GCA-models, the sum of estimates of r2

DðHÞ and r2
AA 1;2ð Þ (11.33)

obtained with the G : AD Hð Þ AAð Þ Hð Þ model was lower than the sum
(16.38) of the estimates of r2

DðHÞ (in the G : AD Hð Þ model) and of
r2

AA Hð Þ (in the G : A AAð Þ Hð Þ). In the G-model, it is impossible to in-
clude “residual genetic” r effects because the model is fit at the
hybrid and not at the line (GCA) level, and in this data set there is
a single record per hybrid. Thus we conclude that the G-model,
although constructed with an orthogonal formalism, is not em-
pirically orthogonal with this data set. These results can also be
explained because there was a correlation of 0.55 between GA Hð Þ

and GAA Hð Þ and of 0.67 between DH and GAA Hð Þ .
Estimates of genomic broad-sense heritability H2 for grain yield

ranged from 0.73 to 0.80, and from 0.74 to 0.80 in the full GCA- and
G-models, respectively (Table 4). Estimates of residual variances
were similar between GCA-models and G-models (Table 3). The
estimates of residual variances decreased as the non-additive ge-
netic effects were added in both GCA- and G-models.

Goodness of fit
Table 4 shows the Deviance Information Criteria (DIC) values for
each model. Inclusion of non-additive effects in GCA- and G-
models improved the goodness of fit of both models. DIC values
between GCA- and G-models were very similar. Among all mod-
els, the best model (with lower DIC value) was the
GCA : A AAð Þ 1;2ð Þ

. Among the G-models, the best one was that
accounted only for additive and additive-by-additive epistatic
effects. Models including both dominance and epistatic effects
had slightly worse DIC values than the best one. This can be
explained because increasing the number of parameters may
lead to overfitting and thus, it penalizes DIC values.

Based on the inspection of the trace plot and convergence di-
agnostic with BOA R-package (Smith 2007), all estimates of the
variance parameters in all models converged to the posterior dis-
tribution.

Cross-validation
The results for cross-validation are shown in Table 5. In general,
prediction accuracy was considerably high for maize grain yield
(>0.80 in all cases) and similar values were obtained with the G-
and GCA- models in this data set. The inclusion of non-additive
genetic effects did not improve the prediction accuracy of hybrid
values in the testing sets compared to models including only ad-
ditive effects. The only factor that counted in the predictive abil-
ity was the fact of having both, one, or no parents in the training
data set, with respective prediction accuracies 0.80, 0.88 and 0.92.

Discussion
In this study, the theory in the analysis of hybrid crosses of in-
bred lines from two populations using relationship matrices was
revisited in a genomic context. Models for genomic prediction in
hybrid crops using the notions of effects defined “according to

origin” (GCAs and SCAs) were rederived and expressions for addi-
tive, dominant and epistatic relationships for hybrids were pre-
sented. These models were applied to a public data set to
exemplify the theory and its consequences in real life.

Insights into relationships for dominance and
across-population pairwise epistasis
A surprising fact (to us) is that, in the classical pedigree-based
methods, it is not possible to disentangle dominance deviations
from across-population epistasis, whereas using markers it is
possible. This seems not to have been recognized by previous
researchers, leading to the wrong conclusion that in a genomic
setting the relationship of dominance deviations is a product of
corresponding additive relationships of parental lines. In this sec-
tion we try to explain why such a difference.

Stuber and Cockerham (1966) used the notion of identity by de-
scent (IBD) coefficients to model relationships, where the starting
block is the use of coancestries U - the probability that two alleles
drawn at random from each of two pure lines are identical by de-
scent. Although in our work we use genomic relationships (that are
not probabilities), the concept of IBD is useful in the following.

For two hybrids, the IBD dominance relationship coefficient at

locus k (say dðkÞ) is the probability that two complete genotypes at
locus k in hybrids (i and j) are identical, and because the lines are
fully inbred, this is the joint probability that both “parents1” (ances-
tors from population 1) are IBD at locus k (with probability

U kð Þ
parent1 ið Þparent1 jð Þ) and both “parents2” (ancestors from population 2)

are IBD at locus k (with probability U kð Þ
parent2 ið Þparent2 jð Þ) (see Figure 1).

This results in d kð Þ
ij ¼ U kð Þ

parent1 ið Þparent1 jð ÞU
kð Þ

parent2 ið Þparent2 jð Þ. Across all m

loci, dij ¼ 1
m

P
k¼1;md kð Þ

ij ¼ 1
m

P
k¼1;m U kð Þ

parent1 ið Þparent1 jð ÞU
kð Þ

parent2 ið Þparent2 jð Þ


 �
.

However, in practice, pedigree-based coancestries at specific loci are
not observable and they are replaced by infinitesimal coancestries:

dij ¼
1
m

X
k¼1;m

U kð Þ
parent1 ið Þparent1 jð ÞU

kð Þ
parent2 ið Þparent2 jð Þ


 �

� 1
m

X
k¼1;m

Uparent1 ið Þparent1 jð Þ Uparent2 ið Þparent2 jð Þ
� �

¼ Uparent1 ið Þparent1 jð Þ Uparent2 ið Þparent2 jð Þ

resulting in dij � Uparent1 ið Þparent1 jð Þ Uparent2 ið Þparent2 jð Þ which is the

Table 5 Predictive accuracy of T2, T1 and T0 hybrids obtained
with two genomic models for maize grain yield

Model Code T2 T1 T0

GCA : A 0.92 (0.03) 0.88 (0.02) 0.80 (0.08)
GCA : AD 0.92 (0.03) 0.88 (0.02) 0.80 (0.08)
GCA : A AAð Þð1;2Þ 0.92 (0.03) 0.88 (0.02) 0.80 (0.08)
GCA : AD AAð Þ 1;2ð Þ 0.92 (0.03) 0.88 (0.02) 0.80 (0.08)
GCA : AD AAð Þ 1;1ð Þ

AAð Þ 2;2ð Þ AAð Þ 1;2ð Þ
0.92 (0.03) 0.88 (0.02) 0.80 (0.08)

G : A 0.92 (0.03) 0.88 (0.03) 0.81 (0.08)
G : AD Hð Þ 0.92 (0.03) 0.88 (0.03) 0.81 (0.08)
G : A AAð Þ Hð Þ 0.92 (0.03) 0.89 (0.03) 0.81 (0.08)
G : AD Hð Þ AAð Þ Hð Þ 0.92 (0.03) 0.88 (0.03) 0.81 (0.08)

GCA- and G-models are models that successively added additive effects (A),
dominance effects (AD), and additive-by-additive genetic effects (ADðAAÞ). The
additive-by-additive epistatic effects can be interactions between loci within
group ( AAð Þ 11ð Þ and AAð Þ 22ð Þ), across groups AAð Þ 12ð Þ or within hybrids AAð Þ Hð Þ.
Superscripts 1 and 2 in parenthesis refers to dent and flint heterotic groups,
respectively. The values refer to the mean (standard deviation) over 100 cross-
validation runs with the different models. For T2, T1 and T0 group hybrids,
two, one and zero parents were tested in the training set.
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expression presented by Stuber and Cockerham (1966). The ap-
proximation results from the fact that the genome is finite. For
instance, if there were m¼ 3 loci, there would be 3 local IBD, one
at each locus, whose average will not in general be the same as
the pedigree-based IBD which does assume infinite loci (Hill and
Weir 2011). In an infinitesimal model, the approximation is exact.

Now we address the across-population epistatic additive by
additive relationships. Consider two loci k and l. In an IBD frame-
work, across-population epistatic additive by additive relation-
ship for hybrids i and j at two loci k and l (say w k;lð Þ

ij ) is the joint
probability that both “parents1” (ancestors from population 1)
have the same genotype at locus k and that both “parents2”
(ancestors from population 2) have the same genotype at locus

l (see Figure 2). Thus, w k;lð Þ
ij ¼ U kð Þ

parent1 ið Þparent1 jð ÞU
lð Þ

parent2 ið Þparent2 jð Þ.

Whole-genome epistatic relationship would therefore be

wij ¼
1

m m� 1ð Þ
X

k;l;k 6¼l
U kð Þ

parent1 ið Þparent1 jð ÞU
lð Þ

parent2 ið Þparent2 jð Þ

However, based on pedigree, the different U lð Þ
parent1 ið Þparent1 jð Þ

and U kð Þ
parent2 ið Þparent2 jð Þ are not observable and they are replaced by

infinitesimal coancestries resulting in the approximation
wij � Uparent1 ið Þparent1 jð Þ Uparent2 ið Þparent2 jð Þ. Again, in an infinitesimal

model the approximation is exact.
It is worth noting that wij ¼ 1

m m�1ð Þ
P

k;l;k6¼lU
lð Þ

parent1 ið Þparent1 jð Þ
U kð Þ

parent2 ið Þparent2 jð Þ involves relationships across pairs of loci whereas

dij ¼ 1
m

P
k¼1;m U kð Þ

parent1 ið Þparent1 jð ÞU
kð Þ

parent2 ið Þparent2 jð Þ


 �
involves relation-

ships within single loci. On average, pairs of loci are transmitted in
a manner similar to transmission of single locus (for instance
two neighboring markers are often transmitted together), which

Figure 1 Dominance relationship across two hybrids for locus k.

Figure 2 Additive by additive epistatic across-population relationship across two hybrids for locus k and l.
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explains why wij is an estimator (albeit not necesssarily a good

one) of dij, and it explains why the elements of GAA 1;2ð Þ are unbi-

ased (but not necessarily accurate) estimators of the elements
of D, as shown by the results.

Thus, we have shown that the Stuber and Cockerham (1966)
relationships assuming pedigrees are only exact under infinitesi-
mal models. In previous sections we have shown that observing
the genome (i.e. with markers), different relationships can be
formed for each, additive substitution and dominant and epi-
static deviations. Thus, contrary to pedigree-based formulations,
a marker-based formulation allows disentangling of the different
variance components.

Thus, in pedigree-based models the dominance and across-
population epistatic relationships are conceptually different, but
the lack of other information forces to use the same estimator for
both. This is not the case in marker-based models, where we can
actually observe different relationships within locus or across
loci from two populations.

Partition of genetic variance components and
heritability
The partition of the genetic variance in terms of statistical addi-
tive effects, and dominance and epistatic deviations effects, was
possible using the relationship matrices developed here. In our
model, estimates of additive genetic variance based on allele
substitution effects are useful for selection or in the prediction of
potential selection response in pool improvement. Vitezica et al.
(2013) compared a classical model (in terms of statistical values
for breeding purposes) with a genotypic model (biological values
at the gene level) proposed by Su et al. (2012). When the genotypic
model is used, additive and dominant genotypic variances are
obtained. Both models are able to explain the data but their
results and interpretation is different (Vitezica et al. 2013; Varona
et al. 2018). The genotypic model has been used for hybrid geno-
mic prediction (Fristche-Neto et al. 2018; Werner et al. 2018; Alves
et al. 2019; Ramstein et al. 2020), but estimates of genotypic addi-
tive variance should not be interpreted for breeding purposes.
The GCA- (proposed here) and G-models are equivalent models
to explain the data only if all relevant gene actions (i.e. high order
interactions) are included (Stuber and Cockerham 1966), but it is
impossible to ascertain if all relevant interactions are included.
In our results, both definitional systems perform similarly for
prediction. However, as the G-model assumes gene effects
uniquely within hybrids and does not provide additive values
within pool, it can not be directly used for the selection of inbred
lines within pools for recurrent pool improvement. Thus the
GCA-model is more useful.

Orthogonal partitioning of the effects has been described ex-
tensively (e.g. Cockerham 1954; Kempthorne,1954; Lynch and
Walsh 1998) for classical HWE populations but also for hybrid
crosses (e.g. Griffing 1962; Stuber and Cockerham 1966; Bernardo
1996). Statistically, orthogonality means that inclusion of new
terms in the model does not change the definition (in practical
terms: the estimates) of already included effects in an ideal, infi-
nitely large population. For instance, by construction, in an or-
thogonal model there is no covariance across statistical additive
and dominance effects. This implies that the covariance across
hybrids can be split in covariance due to additive effects, covari-
ance due to dominance deviations, and so on (Lynch and Walsh
1998). Another advantage of using orthogonality in Genetics and
breeding is the interpretability. It is the only way to carry out the
estimation of GCA (additive “statistical” effects þ within-group

epistatic “statistical” interactions) in an unambiguous manner,

i.e. such that their definitions do not depend on other genetic

terms that are fitted in the model.
In practice, additive, epistatic and other variances can not be

accurately disentangled with a small data set and many (un-

known) QTL loci. However, even with a thousand records and

thirty thousand markers (as in this work), it still makes sense to

orthogonally define the genetic effects in the model. Not using or-

thogonal partitions might lead to ambiguous definitions of effects

and to potential mistakes. For instance, if the additive variance is

inflated, a possible consequence is that the genetic progress can

be overestimated. If the dominance variance is inflated, the role

of assortative mating of pairs of lines to produce a hybrid could

be exaggerated. In our work we used orthogonal definitions of

effects and the corresponding relationship matrices, as well as

“residual genetic” r effects to account for unmodelled higher-

order effects. In this manner we obtained, in the GCA-model, em-

pirically orthogonal estimates of additive, dominance and epi-

static variances for maize grain yield.
In the GCA-model, after fitting the “residual genetic” r effect,

additive variances were similar across different models (�22 and

�12 for group 1 and 2, respectively: see Table 3) showing empiri-

cal orthogonality (Hill and Mäki-Tanila 2015; Vitezica et al. 2017).

For planning the breeding scheme (to estimate genetic gain and

selection of within pools crosses), it is important to obtain good

estimates of the genetic variance, and therefore we recommend

fitting “residual genetic” r effects, in order to avoid overestima-

tion of the genetic additive variance. The latter option is only pos-

sible if each line contributes to several phenotyped hybrids.
In the G-model, when within-group epistatic effects were not

fitted, additive variance was overestimated. Similar results were

observed by Bernardo (1995). He attributed this to multicollinear-

ity between the additive and within-group epistatic relationships,

as we observe. Working with repeated measures per individual,

Vitezica et al. (2018) fitted a G-model with “residual genetic” r

effects and they obtained empirically unbiased estimates of addi-

tive variance. However, in the present work it was not possible to

fit “residual genetic” hybrid effects in the G-model because in our

dataset each hybrid has a single record (adjusted entry means).
Genomic relationship matrices for within and across groups

epistasis (in the full GCA-model) allows to partition the genetic

variance in terms of GCA and SCA effects, as was originally de-

fined by Stuber and Cockerham (1966) in an infinitesimal context.

With our model, it is possible to split the GCA effect into the addi-

tive gametic effect and the additive-by-additive epistasis interac-

tion within the line; and split the SCA effect into dominance

deviation effect and additive-by-additive epistasis across groups.

This has practical implications in hybrid breeding programs that

will be discussed later.
Compared to the estimates of genetic variance component

from Technow et al. (2014), we obtained similar estimates with

the GCA : A AAð Þð1;2Þ model (see Table 3). This makes sense be-

cause, as indicated in the theory, the estimate of SCA variation

from Technow et al. (2014), is in fact the estimate of epistasis vari-

ation across populations r2
AA 1;2ð Þ . Their entry-mean heritability

was 0.87, whereas our genomic estimate of broad-sense heritabil-

ity was slightly lower (0.81). Differences between our and their

estimates are mainly because we used entry means (publicly

available) instead of the whole data set, which can be seen

through the estimated residual variance which was much lower

(e.g. �17) than their estimated values (179).
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Goodness of fit
Models with lower DIC values better fit the data, and a difference
less than 7 units is often considered as irrelevant (Plummer et al.
2006). In general, the inclusion of non-additive genetic effects im-
proved the goodness of fit to the data in both GCA- and G- models
in this set of hybrids. This result agrees with previous studies in
maize hybrids ( Ferr~ao et al. 2020; Alves et al. 2019; Hunt et al.
2020). DIC values obtained with the GCA-model were similar to
those obtained in G-models, indicating that they are equivalent
models in terms of fitting the data. The best model, with a best
balance between goodness of fit and model complexity, was the
GCA : A AAð Þ 1;2ð Þ, which corresponds to a frequently used model
in genomic prediction of hybrids (Technow et al. 2014). That
means this model is efficient to fit the data. However, fit to the
data is not the only aspect that should be considered—interpreta-
tion of the model in a genetic context is important.

Cross-validation
Overall, cross-validation analyses yielded a high prediction accu-
racy of hybrid performance (>0.80). This is because a high herita-
bility generally results in high prediction accuracy, as was
showed theoretically and empirically (Daetwyler et al. 2010;
Combs and Bernardo 2013). Inclusion of non-additive genetic
effects did not show improvement in prediction accuracy. This
result agrees with other studies using real data where virtually
no benefit was observed by including SCA effects in genomic pre-
diction models of inter-heterotic-group hybrids (Bernardo 1994;
Schrag et al. 2006, 2018; Maenhout et al. 2010; Kadam et al. 2016).
This is because in inter-heterotic-group hybrids the proportion of
SCA variance is often low and GCA high (Reif et al. 2007).

We used the splitting of cross-validation considering T2, T1
and T0 (groups of hybrids with two, one and zero parents known
in the training set) as in Technow et al. (2014). Our predictive abil-
ities were comparable to those reported by Technow et al. (2014).
For instance, the correlation obtained with the GCA : AD AAð Þ 1;2ð Þ

results in values of 0.92, 0.88 and 0.80, which are close to the cor-
relations of 0.91, 0.85 and 0.77 (for 300 hybrids in the training set)
for T2, T1 and T0, respectively, reported by Technow et al. (2014)
for grain yield.

Assuming marker effects defined uniquely at the hybrid level
(G-models) gave similar prediction accuracy than assuming gene
effects according to origin (GCA-models). This result was also
reported by Technow et al. (2014) with the same data set, but also
by Alves et al. (2019) who analyzed a population of hybrids de-
rived from a convergent population. Thus, GCA- and G- models
are equivalent in terms of predictive ability of hybrid perfor-
mance. However, our aim in this work is to introduce a more
meaningful model (the GCA-model), and its superiority is not to
be considered only in terms of better prediction ability in the
hybrids.

Practical implications in hybrid breeding
The way of partitioning the genetic variance is to a certain extent
a matter of convenience. Partitioning in terms of GCA (within
group) is more convenient because inbred lines are actually cre-
ated and selected within group. The magnitude of the GCA vari-
ance gives to the breeder an idea of how much overall genetic
variation coming from the parents is expected in the hybrids.
Further, splitting the GCA variance into additive and epistasis
within group is relevant at the moment of planning the genetic
progress in maize breeding programs. The genetic improvement
in hybrid performance is through the selection of inbred lines. So

that, breeders create new segregating (e.g. F2) populations by
crossing elite lines within groups followed by subsequent genera-
tion of inbreeding to develop new inbred lines. Therefore, the par-
ticular additive-by-additive (and higher order) epistatic
combination existing in a particular elite line is not transmitted
as a whole to its F2 (and further selfing) progeny, because meiosis
and recombination shuffles alleles of the two parents in the
cross, breaking down the original epistatic combinations present
in the elite inbred lines and creating new epistatic combinations.
Thus, the use of the additive variance, instead of the total GCA
variance, is more appropriate for the prediction of genetic prog-
ress that is achievable by selecting within heterotic pools (Stuber
and Cockerham 1966). In addition, variance of epistasis within
groups is expected to be converted in new additive genetic vari-
ance in the long term by random drift, thus, it affects the long-
term selection response indirectly (Hill 2017). Also, for pool im-
provement, it is better to use estimates of additive effects instead
of estimates of GCA, because the first reflect better expected ge-
netic progress.

Splitting the SCA variance into dominance deviations and
epistasis across groups could also have practical implications.
Estimates of additive and dominance effects might be important
for hybrid pool development. For instance, Zhao et al. (2015) sug-
gested to use additive and dominance effects from an incomplete
factorial in order to develop heterotic pools in wheat. Further,
estimates of dominance deviations are relevant in the definition
of mate allocation procedures (Varona et al. 2018); for instance,
they could be used to maximize hybrid performance or maintain
diversity for long-term genetic gain in hybrid breeding programs
(e.g. Allier et al. 2019).

In maize, there is evidence of directional dominance (Reif et al.
2003; Ramstein et al. 2020). Indeed, directional dominance as a bi-
ological mechanism should exist, given that hybrids show hetero-
sis. When there is directional dominance (i.e. a higher percentage
of positive than negative dominance effects, EðdÞ 6¼ 0), overall
heterosis could be considered in the genetic evaluation model. If
individuals expressing the trait show considerable variation in
heterozygosity (e.g. in a diallel design with crosses within- and
across- groups), a more diverse individual will show more posi-
tive heterosis at the trait. De Boer and Hoeschele (1993) showed
analytically that not fitting this heterosis (usually as a covariate)
leads to spurious overestimation of dominance variation, as
shown with real data (Xiang et al. 2016, Aliloo et al. 2017, Varona
et al. 2018). Nonetheless, preliminary results in this work showed
that heterosis (measured as number of heterozygotic loci) was
very similar across hybrids and fitting heterosis in the models led
to very similar results (not shown).

Conclusions
Models developed here, with effects defined according to origin
(GCA-), and using genomic relationships properly defined for
each statistical component, allow for a proper partition of statis-
tical additive effects, dominance deviations, and epistatic devia-
tions, in hybrids derived from inbred lines from two populations.
Contrary to common belief, using SNP genotypes, it is possible to
split SCA into dominance deviations and across-groups epistasis,
and to split GCA into within-line additive effects and within-line
epistatic effects. Our GCA-model is appropriate for genomic pre-
diction and variance component estimation in hybrid crops using
genomic data, and its results (estimates of genetic variance com-
ponents, breeding values and deviations) can be practically inter-
preted and used for breeding purposes.
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APPENDIX A

Dominance deviations
The table of genotypic values is

The mean of the genotypic value G of the crossbred
population is

E Gð Þ ¼ p1p2 a1 þ a2ð Þ þ p1q2 a1 þ dð Þ þ q1p2 a2 þ dð Þ
¼ p1a1 þ p2a2 þ p1q2 þ q1p2ð Þd

After centering, the table of centered genotypic values is

The sum of the breeding values of the different gametes at the
hybrid is

Subtracting this table from the centered genotypic values gives
dominance deviations. If we go genotype by genotype:

dB1B2 ¼ q1a1 þ q2a2 � p1q2 þ q1p2ð Þd� q1a1 � q2a2 ¼

q1a1þq2a2� p1q2þq1p2ð Þd�q1 a1þ q2�p2ð Þd
� �

�q2 a2þ q1�p1ð Þd
� �

¼

� p1q2 þ q1p2ð Þd� q1 q2 � p2ð Þd� q2 q1 � p1ð Þd ¼

�p1q2 � q1p2 � q1q2 þ q1p2 � q1q2 þ q2p1ð Þd ¼ �2q1q2d

dB1b2
¼ q1a1 � p2a2 þ 1� p1q2 � q1p2ð Þd� q1a1 � p2a2ð Þ ¼

q1a1 � p2a2 þ 1� p1q2 � q1p2ð Þd� q1 a1 þ q2 � p2ð Þd
� �

þ p2 a2 þ q1 � p1ð Þd
� �

¼

1� p1q2 � q1p2ð Þd� q1 q2 � p2ð Þdþ p2 q1 � p1ð Þd ¼

1� p1q2 � q1p2 � q1q2 þ q1p2 þ p2q1 � p1p2ð Þd ¼

1� p1 q2 þ p2ð Þ � q1q2 þ p2q1
� �

d ¼

q1 � q1q2 þ p2q1ð Þd ¼ q1 1� q2 þ p2ð Þd ¼ 2q1p2d

db1B2
¼ q2a2 � p1a1 þ 1� p1q2 � q1p2ð Þd� �p1a1 þ q2a2ð Þ ¼

q2a2 � p1a1 þ 1� p1q2 � q1p2ð Þd
� �p1 a1 þ q2 � p2ð Þd

� �
þ q2 a2 þ q1 � p1ð Þd

� �� �
¼

1� p1q2 � q1p2ð Þdþ p1 q2 � p2ð Þd� q2 q1 � p1ð Þd ¼

1� p1q2 � q1p2 þ p1q2 � p1p2 � q2q1 þ q2p1ð Þd ¼

1� p2 q1 þ p1ð Þ þ p1q2 � q2q1
� �

d ¼

q2 þ p1q2 � q2q1ð Þd ¼ q2 1þ p1 � q1ð Þd ¼ q2 1� q1 þ p1ð Þd ¼ 2p1q2d

db1b2
¼ �p1a1 � p2a2 � p1q2 þ q1p2ð Þd� �p1a1 � p2a2ð Þ ¼

�p1a1 � p2a2 � p1q2 þ q1p2ð Þdþ p1 a1 þ q2 � p2ð Þd
� �

þ p2 a2 þ q1 � p1ð Þd
� �

¼

� p1q2 þ q1p2ð Þdþ p1 q2 � p2ð Þdþ p2 q1 � p1ð Þd ¼

� p1q2 þ q1p2ð Þdþ p1q2 � p1p2 þ p2q1 � p1p2ð Þd ¼ �2p1p2d

See Table A1 for more details.

Properties of relationship matrices
Note that GA 1ð Þ and GA 2ð Þ have the following properties: the average
value of the diagonal is 1, and the average value of the entire ma-
trix is 0. For instance, the diagonal of GA 1ð Þ sums to

P
ip1i

1� p1ið Þ2 þ q1i
�p1ið Þ2P

ip1i q1i

which is equal to 1. In addition, the sum of the elements of GA 1ð Þ is 0.
Indeed, this sum can be written as

P
i p1 i q1i

� � 1� p1i

� p1i


 �
1� p1i

� p1i


 �0
p1i q1i

� �0
P

ip1i q1i

which sums to 0. The same proof holds for GA 2ð Þ .
The diagonal of D sums to

P
ip1i

p2i
�2q1i

q2i

� �2 þ p1i
q2i

2q1i
p2i

� �2 þ q1i
p2i

2p1i
q2i

� �2 þ q1i
q2i
�2p1i

p2i

� �2

P
i4p1i

q1i
p2i

q2i

which is equal to 1. In addition, the average value of the entire
matrix D is 0. In effect, this sum can be written as

P
i p1i p2i p1i q2i q1i p2i q1i q2i

� � �2q1i
q2i

2q1i p2i

2p1i q2i

�2p1i
p2i

0
BB@

1
CCA
�2q1i

q2i

2q1i p2i

2p1i q2i

�2p1i
p2i

0
BB@

1
CCA
0

p1i p2i p1i q2i q1i p2i q1i q2i

� �

P
i4p1i

q1i
p2i

q2i

which sums to 0.

Genotype at P2

Genotype at P1 B2B2 b2b2

B1B1 q1a1 þ q2a2 q1a1 � p2a2

b1b1 �p1a1 þ q2a2 �p1a1 � p2a2

Genotype at P2

Genotype at P1 B2B2 b2b2

B1B1 a1 þ a2 a1 þ d
b1b1 a2 þ d 0

Genotype at P2

Genotype
at P1

B2B2 b2b2

B1B1 q1a1 þ q2a2

� p1q2 þ q1p2ð Þd
q1a1 � p2a2

þ 1� p1q2 � q1p2ð Þd

b1b1 q2a2 � p1a1 þ
1� p1q2 � q1p2ð Þd

�p1a1 � p2a2

� p1q2 þ q1p2ð Þd
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Orthogonality
Next we prove orthogonality. In this model, z1, z2 and w are
shifted to have mean zero for a population with these frequencies
ðf ¼ p1p2; p1q2; q1p2; q1q2½ �Þ. Thus, the mean of additive value is
zero because

X
j
z1 j fj ¼ 1� p1ð Þp1p2 þ 1� p1ð Þp1q2 þ �p1ð Þq1p2 þ �p1ð Þq1q2 ¼ 0

X
j
z2 j fj ¼ 1� p2ð Þp1p2 þ �p2ð Þp1q2 þ 1� p2ð Þq1p2 þ �p2ð Þq1q2 ¼ 0

and the mean of dominant deviations is also zero because

X
j
wj fj ¼ �2q1q2ð Þp1p2 þ 2q1p2ð Þp1q2 þ 2p1q2ð Þq1p2 þ �2p1p2ð Þq1q2

¼ 0

These equations correspond to the first requirement of
orthogonality in Cockerham’s (1954) model.

The second requirement can be expressed asP
i;jfi;jz1 iz1j ¼ 0;

P
i;jfi;jz2 iz2j ¼ 0,

P
i;jfi;jwiwj ¼ 0, e.g. the contrasts

have 0 mean across all possible pairs of genotypes (Cockerham

1954). For the first two, this can be written as
P

i;jfi;jz1 iz1j ¼

P
i;jfizizjfj ¼ p1 q1

� � 1� p1

�p1


 �
1� p1

�p1


 �0
p1 q1
� �0

¼ 0 where

p1 q1
� �

are frequencies of each genotype at the pure line and

1� p1

�p1


 �
are the values of z for each genotype. Similarly,

P
i;jfi;jwiwj ¼

P
i;jfiwi wjfj ¼ p1p2 p1q2

�
q1p2q1q2Þ

�2q1q2

2q1p2

2p1q2

�2p1p2

0
BB@

1
CCA

�2q1q2

2q1p2

2p1q2

�2p1p2

0
BB@

1
CCA
0

p1p2 p1q2 q1p2 q1q2
� �0

¼ 0

Once the orthogonality of the one-locus formulation is proved,

the orthogonal scales for the interactions in the multi-locus case

can be generated by the Kronecker product. The extension of

model using the Kronecker product guarantees the orthogonality

of the multi-locus formulation (Van Loan 2000; Álvarez-Castro

and Carlborg 2007).

APPENDIX B
Variance components estimates for GCA-models excluding

“residual genetic” r effects and broad-sense heritabilities are

shown in Table A2.

Table A1 Values of genotypes in a two-allele system, measured as deviation from the population mean

Hybrid Genotypes Frequency Assigned
genotypic values

Deviations from population mean E Gð Þ

G	 gA 1ð Þ þ gA 2ð Þ gD

B1B2 p1p2 a1 þ a2 q1a1 þ q2a2 � p1q2 þ q1p2ð Þd q1a1 þ q2a2 �2q1q2d
B1b2 p1q2 a1 þ d q1a1 � p2a2 þ 1� p1q2 � q1p2ð Þd q1a1 � p2a2 2q1p2d
b1B2 q1p2 a2 þ d q2a2 � p1a1 þ 1� p1q2 � q1p2ð Þd �p1a1 þ q2a2 2p1q2d
b1b2 q1q2 0 �p1a1 � p2a2 � p1q2 þ q1p2ð Þd �p1a1 � p2a2 �2p1p2d

G	 is the total genotypic value of a hybrid deviated from the population mean.
ðgA 1ð Þ þ gA 2ð Þ Þ is the additive-effect portion of a hybrid’s genotypic value.
gD is the dominance deviation of the hybrid.

Table A2 Estimated posterior means and standard deviation (in parenthesis) of genetic variance component obtained with GCA-model
without including residual genetic effects from Dent and Flint groups

Model Code Additive Dominance Epistasis

r2
A 1ð Þ ; r

2
A 2ð Þ or r2

AðHÞ r2
D or r2

DðHÞ r2
AA 1;1ð Þ r2

AA 2;2ð Þ r2
AA 1;2ð Þ or r2

AA Hð Þ r2
e H2

GCA : A 33.89 (5.52) 23.35 (4.56) 18.01 (0.79) 0.76 (0.02)
GCA : AD 31.89 (5.20) 22.56 (4.46) 4.38 (0.77) 15.03 (0.80) 0.80 (0.02)
GCA : A AAð Þð1;2Þ 31.38 (5.13) 22.53 (4.42) 5.58 (0.96) 13.68 (0.85) 0.81 (0.02)
GCA : AD AAð Þ 1;2ð Þ 31.08 (5.06) 22.11 (4.42) 2.97 (0.58) 4.20 (0.87) 13.36 (0.81) 0.82 (0.02)
GCA : AD AAð Þ 1;1ð Þ AAð Þ 2;2ð Þ AAð Þ 1;2ð Þ 22.30 (5.20) 14.42 (4.11) 2.55 (0.56) 7.19 (2.50) 8.06 (2.89) 3.63 (0.82) 13.53 (0.81) 0.81 (0.02)

GCA-model is a model that successively added additive effects (A), dominance effects (AD), and additive-by-additive genetic effects (ADðAAÞ). The additive-by-
additive epistatic effects can be interactions between loci within group ( AAð Þ 11ð Þ and AAð Þ 22ð Þ), across groups AAð Þ 12ð Þ or within hybrids AAð Þ Hð Þ. Superscripts 1 and 2
in parenthesis refers to Dent and Flint heterotic groups, respectively.
In GCA-model, the variances are: additive (r2

A 1ð Þ and r2
A 2ð Þ ), dominance (r2

D), and additive-by-additive epistasis within groups (r2
AA 1;1ð Þ and r2

AA 2;2ð Þ ) and additive-by-
additive epistasis between groups (r2

AA 1;2ð Þ ). r2
e is the residual variance and H2 is the genomic broad-sense heritability.
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