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Background: Immune therapy has become first-line treatment option for patients with lung cancer, but 
some patients respond poorly to immune therapy, especially among patients with lung adenocarcinoma 
(LUAD). Novel tools are needed to screen potential responders to immune therapy in LUAD patients, to 
better predict the prognosis and guide clinical decision-making. Although many efforts have been made to 
predict the responsiveness of LUAD patients, the results were limited. During the era of immunotherapy, 
this study attempts to construct a novel prognostic model for LUAD by utilizing differentially expressed 
genes (DEGs) among patients with differential immune therapy responses.
Methods: Transcriptome data of 598 patients with LUAD were downloaded from The Cancer Genome 
Atlas (TCGA) database, which included 539 tumor samples and 59 normal control samples, with a mean 
follow-up time of 29.69 months (63.1% of patients remained alive by the end of follow-up). Other data 
sources including three datasets from the Gene Expression Omnibus (GEO) database were analyzed, and 
the DEGs between immunotherapy responders and nonresponders were identified and screened. Univariate 
Cox regression analysis was applied with the TCGA cohort as the training set and GSE72094 cohort as the 
validation set, and least absolute shrinkage and selection operator (LASSO) Cox regression were applied in 
the prognostic-related genes which fulfilled the filter criteria to establish a prognostic formula, which was 
then tested with time-dependent receiver operating characteristic (ROC) analysis. Enriched pathways of the 
prognostic-related genes were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses, and tumor immune microenvironment (TIME), tumor mutational 
burden, and drug sensitivity tests were completed with appropriate packages in R (The R Foundation of 
Statistical Computing). Finally, a nomogram incorporating the prognostic formula was established.
Results: A total of 1,636 DEGs were identified, 1,163 prognostic-related DEGs were extracted, and 34 
DEGs were selected and incorporated into the immunotherapy responsiveness-related risk score (IRRS) 
formula. The IRRS formula had good performance in predicting the overall prognoses in patients with 
LUAD and had excellent performance in prognosis prediction in all LUAD subgroups. Moreover, the IRRS 
formula could predict anticancer drug sensitivity and immunotherapy responsiveness in patients with LUAD. 
Mechanistically, immune microenvironments varied profoundly between the two IRRS groups; the most 
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Introduction

Non-small cell lung cancer (NSCLC) is the major type 
of lung cancer and can be further subdivided into four 
pathological types: lung squamous cell carcinoma (LUSC), 
lung adenocarcinoma (LUAD), large cell carcinoma (LCC), 
and pulmonary sarcomatoid carcinoma (PSC). LUAD 
accounts for 55–60% of all NSCLC cases (1). At present, 
the survival rate of NSCLC remains unsatisfactory, making 
it the leading cause of cancer-related death in both men and 
women (2,3). Recently, the development of immunotherapy 

has provided substantial improvements to the overall 
survival (OS) and progression-free survival (PFS) rates of 
patients with lung cancer (4).

The basic therapeutic options for NSCLC currently 
include surgery, radiotherapy, chemotherapy, targeted 
therapy, and immunotherapy (3-5). Immunotherapy is 
based on the notion that cancer cells can escape tumor 
immunosurveillance via antigen modulation or mutation; 
thus, reactivation of the immune system defense with 
immune checkpoint inhibitors (ICIs) represents a novel 
pathway to treating cancer. Immunotherapy has served as 
a major front-line treatment for cancer therapy over the 
last decade. However, some patients respond poorly to 
immunotherapy, especially among patients with LUAD, 
possibly due to the differential composition of the tumor 
immune microenvironment (TIME) (6,7). Therefore, the 
response to immunotherapy may provide novel insights into 
the prognosis of LUAD. 

Many  e f fo r t s  have  been  made  to  p red i c t  the 
responsiveness to immunotherapy in LUAD patients. 
Currently, it is known that lack of immune cell infiltration 
in the tumor (“immune-cold” tumor) or a suppressive 
TIME are correlated to poor responses to immunotherapy 
(8,9). Multiple models have been reported to be able 
to predict the prognosis of LUAD, but most have been 
based on certain pathogenesis pathways rather than on 
responsiveness to therapies, thereby limiting their potential 
in predicting the efficacy of treatments (10-12). With the 
advancement in next-generation sequencing (NGS) and 
bioinformatics, we are now able to obtain clinical prognosis 
cohorts and their tumor sequencing information from open 
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databases. The Cancer Genome Atlas (TCGA)-LUAD 
database and GSE72094 database are two most widely 
used sources of LUAD, they are highly rated for their 
completeness of clinical data, standardization in formats, 
and massive sample sizes (13,14). In this study, we aimed to 
establish a prognostic prediction model for LUAD based 
on the differentially expressed genes (DEGs) between 
responders and nonresponders to immunotherapy [anti-
programmed cell death protein 1/anti-programmed death-
ligand 1 (anti-PD-1/anti-PD-L1)] with data obtained 
from TCGA and Gene Expression Omnibus (GEO) 
databases. Our model could not only precisely predict 
the overall prognoses in patients with LUAD but also 
provide satisfactory predictions in subgroup analyses. 
Mechanistically, we found that the most significantly 
varied pathway between each group was ribonucleoprotein 
complex biogenesis, which correlated closely with TP53 and 
TTN mutation probabilities, suggesting that this pathway 
is the kernel mechanism determining the prognosis of 
LUAD. Moreover, the immune microenvironments and 
drug sensitivities varied significantly between each group. 
Additionally, a nomogram was also established to facilitate 
the application of the model in clinical practice. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-24-309/rc).

Methods

Data acquisition

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The TCGA-
LUAD dataset was downloaded from TCGA database 
(https://portal.gdc.cancer.gov), which contained the 
transcriptome data of 598 patients with LUAD, including 
539 tumor samples and 59 normal samples. Besides the 
transcriptome data, clinical information such as age, sex, 
clinical stages, T-stage, N-stage, M-stage, and follow-up 
status, were included in this cohort. After the removal of 
normal sample data and data without survival status, data 
from 508 tumor samples were included. Other data sources 
included the GSE126044, GSE72094, and GSE135222 
datasets obtained from the GEO database, and data without 
survival status were also removed. The GSE72094 dataset 
contained gene expression array information of 442 LUAD 
patients along with the clinical information including age, 
sex, and follow-up status. The detailed clinical features of 

the patients in the GSE126044 and GSE72094 cohorts are 
displayed in Table 1 (clinical feature information was not 
available for the GSE135222 cohort). The study design is 
illustrated in Figure 1. 

Screening for prognosis-related genes

In the GSE126044 cohort, the R package “limma” (The R 
Foundation for Statistical Computing) was used to identify 
1,636 DEGs between the responders and nonresponders to 
immunotherapy, with the filter criteria being P<0.05 and 
|log2 fold change (FC)|>1. TCGA cohort and GSE72094 
cohort were merged using the R package “sva”, and then 
the batch effects between the two cohorts were eliminated 
with “combat” algorithm. A total of 1,514 intersecting 
genes were obtained after the DEGs and merged cohort 
sets were mixed. Based on the clinical information, survival 
analysis (Kaplan-Meier analysis, P<0.05) of the 1,514 
intersection genes was conducted in TCGA cohort, and 
1,163 prognostic-related genes were identified.

Establishment and verification of the prognostic model

Univariate Cox regression analysis was applied using TCGA 
cohort as the training set and the GSE72094 cohort as the 
validation set. The 1,163 prognosis-related genes were 
first screened with P<0.05 as the filter criterion, which was 
followed by an analysis with least absolute shrinkage and 
selection operator (LASSO) Cox regression to subsequently 
build the risk prediction model. The R package “survminer” 
was used to calculate the optimal cutoff value of the risk 
score, and samples were divided into two groups according 
to the optimal cutoff value: a high immunotherapy 
responsiveness-related risk score (IRRS) group and a low 
IRRS group. The survival curves of the high- and low-
IRRS groups were generated using the “survminer” and 
“survival” R packages. Risk score stability was analyzed in 
the validation set, and the R package “survivalROC” was 
used to evaluate the performance of the prognostic formula 
using time-dependent receiver operating characteristic 
(ROC) analysis. Univariate and multivariate Cox regression 
analyses were used to evaluate whether the risk score was an 
independent prognostic predictor for OS. 

Enriched pathway analysis

The R package “clusterProfiler” was used to identify enriched 
pathways in Gene Ontology (GO) and Kyoto Encyclopedia 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-309/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-309/rc
https://portal.gdc.cancer.gov
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Table 1 Clinical information of patients with lung adenocarcinoma in this study

Cohort TCGA-LUAD (n=508) GSE126044 (N=16) GSE72094 (n=398)

Age (years) 65.28±10.05 – 69.36±9.45

Follow-up time (months) 29.69±29.46 – 26.04±13.24

Follow-up status

Alive 321 (63.2) – 285 (71.6)

Dead 187 (36.8) – 113 (28.4)

Gender –

Male 234 (46.1) – 176 (44.2)

Female 274 (53.9) – 222 (55.8)

Patient response

Nonresponder – 11 (68.8) –

Responder – 5 (31.3) –

Clinical stage

Stage I 273 (53.7) – –

Stage II 120 (23.6) – –

Stage III 82 (16.1) – –

Stage IV 25 (4.9) – –

Unknown 8 (1.6) – –

T stage

T1 168 (33.1) – –

T2 273 (53.7) – –

T3 45 (8.9) – –

T4 19 (3.7) – –

Unknown 3 (0.6) – –

M stage

M0 340 (66.9) – –

M1 24 (4.7) – –

Unknown 144 (28.3) – –

N stage

N0 329 (64.8) – –

N1 95 (18.7) – –

N2 71 (14.0) – –

N3 2 (0.4) – –

Unknown 11 (2.2) – –

Data are presented as mean ± stand deviation or n (%). TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma.
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Figure 1 Design and flowchart of the study. GEO, Gene Expression Omnibus; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome 
Atlas; DEG, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes.
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of Genes and Genomes (KEGG) enrichment analyses. 

TIME and treatment effect analysis

Immune cell  infiltration was calculated using the 
CIBERSORT algorithm. The relationship between the 
model and the infiltration of immune cells was analyzed 
using risk score and proportional immune cell infiltrations 
via the R package “psych”. Moreover, immune checkpoints 
were acquired as previously described (11,12). The 
immunophenoscore (IPS) were obtained from the Cancer 
Immunome Atlas (https://tcia.at/). Finally, whether 
the formula could predict survival in patients receiving 
immunotherapy was tested in the GSE135222 cohort (15,16).

Somatic mutation analysis

Genome mutation information of TCGA-LUAD was 
obtained from TCGA database. The R package “maftools” 
was used to present the mutational differences between the 
low- and high-IRRS groups. 

Drug sensitivity tests analysis

For anticancer drugs, the half maximal inhibitory 
concentration (IC50), which can indicate the efficacy of 
a substance in prohibiting an organism or a biochemical 
process, was predicted in the low-IRRS group and high-
IRRS group with the R package “pRRophetic”.

Establishment of the nomogram

Clinical information, including age, sex, and clinical stages of 
TCGA-LUAD patients, was extracted. To evaluate whether 
the risk score was an independent prognostic factor for OS, 
the clinical information and risk scores were analyzed using 
univariate and multivariate Cox regression. A Cox regression 
model along with the R package “rms” were used to establish 
an OS prediction nomogram incorporating prognostic 
factors and risk score. Survival probabilities at 1, 3, and  
5 years were set as endpoints. To assess the performance 
of the nomogram, calibration plots were constructed to 
visualize the consistencies between the actual and predicted 
survival probabilities at 1, 3, and 5 years.

Statistical analysis

R software (version 4.1.0) was used to perform all statistical 

analyses. The Wilcoxon signed-rank test was used for 
TIME analysis, while the log-rank test was used for 
intergroup Kaplan-Meier survival analysis. Differences were 
considered statistically significant at P<0.05. 

Results

Screening and functional analysis of immunotherapy 
responsiveness-related DEGs 

First, we aimed to identify DEGs between immunotherapy 
responders and immunotherapy nonresponders. A total 
of 1,635 DEGs were obtained, 1,161 of which were 
upregulated (log2FC>1 and P<0.05) in immunotherapy 
responders compared to nonresponders and 475 of which 
were downregulated (log2FC>1, P<0.05) (Figure 2A,2B). 
In exploring the functions of DEGs using GO enrichment 
analysis, we first identified that the immunotherapy 
responsiveness-related DEGs with the greatest magnitude 
were involved in neutrophil activation (Figure 2C). In 
KEGG enrichment analysis, we found that immunotherapy 
responsiveness-related DEGs were substantially associated 
with cell adhesion molecules (Figure 2D).

Establishment of the risk score formula incorporating 
immunotherapy responsiveness-related DEGs

A Venn diagram was drawn showing the 1,514 coexpressed 
immunotherapy responsiveness-related DEGs between 
GSE126044, TCGA-LUAD, and GSE72094 (Figure 3A). 
To assess the prognostic value of these immunotherapy 
responsiveness-related DEGs, we first performed a 
univariate Cox regression analysis plus LASSO regression 
analysis (Figure 3B,3C). A total of 34 genes (Figure S1) 
were selected and incorporated into the following risk score 
formula: IRRS = LRRC37A3 × 0.376 + PABPC3 × 0.327 
+ TRIM28 × 0.318 + CEBPB × 0.309 + NGRN × 0.269 + 
SQLE × 0.215 + EFNB2 × 0.188 + HPSE × 0.134 + PTPRH 
× 0.137 + KRT18 × 0.121 + INTS7 × 0.112 + GPR37 × 0.108 
+ LGR4 × 0.106 + RAB27B × 0.086 + KCNK1 × 0.080 + 
DDX56 × 0.079 + ANKRD65 × 0.062 + HS3ST2 × 0.018 + 
TFAP2A × 0.017 + KLHDC9 × 0.009 − CASZ1 × 0.023 − 
TP53I3 × 0.025 − ZNF750 × 0.033 − STAP1 × 0.067 − IVD 
× 0.078 − HTRA − 4 × 0.104 − IQCC × 0.108 − CCT6A × 
0.168 − FCRL6 × 0.171 − MTUS1 × 0.254 − ZNF77 × 0.348 
− MYO6 × 0.354 − CAMSAP3 × 0.393 − CD68 × 0.415. 
According to the optimal cutoff value (Figure 3D-3F),  
323 patients were categorized into the low-IRRS group 

https://tcia.at/
https://cdn.amegroups.cn/static/public/TLCR-24-309-Supplementary.pdf
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while 185 patients were categorized into the high-IRRS 
group. Kaplan-Meier survival analysis indicated that 
patients in the low-IRRS group had significantly higher OS 
than did those in the high-IRRS group [hazard ratio (HR) 
=4.86, 95% confidence interval (CI): 3.59–6.59; P<0.0001] 
(Figure 3G). The area under the curve (AUC) for predicting 
1-year, 3-year, and 5-year OS was 0.798, 0.796, and 0.773, 
respectively (Figure 3H). These results showed that the risk 
score formula had excellent performance in predicting the 
OS of patients with LUAD. 

Validation for the stability of the IRRS formula

Data from the validation set (GSE72094 cohort) were used 
to verify the stability of the IRRS formula established from 
TCGA cohort (training set). Patients in the GSE72094 
cohort were also categorized into a high-IRRS group  
(149 patients) and low-IRRS group (249 patients) in 
accordance with the cutoff value developed in TCGA cohort  
(Figure 4A-4C). The OS of patients in the high-IRRS group 
was significantly lower than that in the low-IRRS group (HR 
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=1.88, 95% CI: 1.30–2.72; P<0.001) (Figure 4D). The AUC 
for predicting 1-year, 3-year, and 5-year OS were 0.64, 
0.627, and 0.66, respectively (Figure 4E). These results, 
in combination with the results presented above, indicate 
that the IRRS formula indeed had good performance in 
predicting OS for LUAD. 

Subgroup analyses to evaluate the performance of the IRRS 
formula

We further carried out Kaplan-Meier survival analyses in 

patients from TCGA cohort with different LUAD clinical 
stages, ages (>65 or ≤65 years), and sexes to test the stability 
of the IRRS in predicting prognoses in subgroups. The 
IRRS excellently predicted OS in patients with LUAD 
from stage IA to stage IV (Figure 5A-5G) (patients who lack 
the information for subdivision into IA/IB or IIA/IIB were 
excluded). Moreover, the IRRS accurately identified patients 
with discrepant prognoses in both age subgroups and sexes 
(Figure 5H-5K). These results suggest that the IRRS formula 
could not only predict prognoses in patients with LUAD 
but could also predict OS in the different LUAD subgroups 
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(categorized by clinical stage, age, and sex).

Identification of IRRS-associated mutation landscape and 
biological functions

Next, we examined whether the IRRS correlated with 
the tumor mutation landscape in LUAD. We compared 
the mutational landscapes of the two IRRS groups. In 
comparison to that of low-IRRS group, the overall tumor 
mutational burden was significantly higher in the high-
IRRS group, with the TP53 and TTN being the most 
predominant mutations. The other 13 LUAD-related genes 

also had significantly higher mutation burdens in the high-
IRRS group, whereas the TP53 and TTN genes had higher 
mutation burdens in the low-IRRS group (Figure 6A). These 
results indicated that IRRS was correlated with the LUAD 
mutation landscape. We further analyzed the differences in 
pathways between the low- and high-IRRS groups using 
GO enrichment analysis. The biological processes with 
the most significant differences were ribonucleoprotein 
complex biogenesis, antigen processing and presentation, 
and ribosome biogenesis (Figure 6B). KEGG enrichment 
analysis was also performed, and the most significantly 
different pathways were the cell cycle, focal adhesion, and 
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Figure 5 Subgroup analyses with the IRRS formula. (A) Kaplan-Meier survival curve of patients in the high-IRRS group and low-IRRS group 
in patients with stage IA with LUAD. (B) Kaplan-Meier survival curve of patients in the high-IRRS group and low-IRRS group in patients with 
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nucleocytoplasmic transport (Figure 6C). These differences 
may explain the lower OS in the high-IRRS group. 

Comparison of immune features and immunotherapy 
responsiveness of the two IRRS groups

We subsequently explored the correlation between IRRS 
and immune features in TCGA cohort. The association 

between IRRS and the TIME was determined using the 
stromal score (SS), immune score (IS), and ESTIMATE 
score. The results revealed a negative correlation between 
the IRRS and immune status (Figure 7A). There were 
also significant differences in the proportional infiltration 
of immune cells between the high- and low-IRRS 
groups. Naïve B cells, activated natural killer (NK) cells, 
macrophages (M0, M1, and M2), resting dendritic cells, 
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eosinophils, and neutrophils were enriched in the high-
IRRS group, whereas CD4 memory T cells (activated), 
plasma cells and mast cells (activated) were enriched in the 
low-IRRS group (Figure 7B). The correlations between 
IRRS and immune cell types and between different types 
of immune cells were also characterized (Figure 7C). We 
found that the expression of immune checkpoints differed 
significantly between the two IRRS groups (Figure 7D). 
To explore the usefulness and application value of IRRS in 
predicting the prognoses of patients with LUAD receiving 

immunotherapy, Kaplan-Meier survival analysis was 
performed in the GSE135222 cohort. The results showed 
that the IRRS could predict the prognosis of patients with 
LUAD receiving immunotherapy (Figure 7E). Moreover, 
we found that the IRRS negatively correlated with the IPS, 
the IPS of cytotoxic T-lymphocyte-associated protein 4 
(CTLA4) was significantly higher in the low-IRRS group, 
but the IPS score of PD-1 did not quite reach statistical 
significance between these groups (P=0.06) (Figure 7F,7G). 
Collectively, these results indicated that IRRS correlated 
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Figure 7 Immune status analysis and anticancer drug sensitivity analyses. (A) The relationships between IRRS, immune score, stromal score, 
and ESTIMATE score. (B) Infiltration of various types of immune cells in the high-IRRS group and low-IRRS group. (C) The correlations 
between IRRS and immune cells. (D) The expressions of immune checkpoints in the high-IRRS group and low-IRRS group. (E) Kaplan-
Meier survival curve of patients in the high-IRRS group and low-IRRS group in the GSE135222 cohort. (F,G) IPS of the high-IRRS group 
and low-IRRS group. (H) The IC50 of cisplatin in the low-IRRS group and high-IRRS group. (I) The IC50 of erlotinib in the low-IRRS 
group and high-IRRS group. (J) The IC50 of gemcitabine in the low-IRRS group and high-IRRS group. (K) The IC50 of vinorelbine in the 
low-IRRS group and high-IRRS group. (L) The IC50 of paclitaxel in the low-IRRS group and high-IRRS group. *, P<0.05; **, P<0.01; ***, 
P<0.001. IRRS, immunotherapy responsiveness related risk score; IPS, immune cell proportion score; TME, tumor microenvironment; 
NK, natural killer cell; PD-1, programmed cell death protein 1; CTLA4, cytotoxic T-lymphocyte associated protein 4; IC50, half maximal 
inhibitory concentration.

with the immune status of LUAD and had prognostic 
value in patients with LUAD receiving immunotherapy. In 
addition, we also used GSE135222 to test whether the IRRS 
could evaluate the PFS of patients with LUAD treated with 
PD-1/PD-L1. However, we found that the PFS in the high-
IRRS group was longer than that in the low-IRRS group, 
which may indicate that low IRRS may indicate malignancy 
in patients with LUAD.

Anticancer drug sensitivity analysis in high-IRRS and 
low-IRRS groups

To further explore whether IRRS could predict anticancer 
drug sensitivity, we compared the IC50 of different 
anticancer drugs in the high-IRRS and low-IRRS groups. 
The anticancer drugs tested covered almost all the common 
drugs recommended for LUAD treatment according to 
the National Comprehensive Cancer Network (NCCN; 

https://www.nccn.org). The IC50 of cisplatin, erlotinib, 
gemcitabine, vinorelbine, and paclitaxel was higher in the 
low-IRRS group (Figure 7H-7L). These results suggest that 
the IRRS is also valuable in predicting anti-LUAD drug 
sensitivities. 

Construction and validation of a nomogram incorporating 
the IRRS

We additionally performed univariate Cox regression 
analysis to verify whether the IRRS could independently 
predict the OS of patients with LUAD. The results showed 
that the IRRS, together with clinical stage, T stage, N stage, 
and M stage, were independent predictors of OS in patients 
with LUAD, while age and sex were not (Figure S2A).  
After other confounding factors were controlled for via 
multivariate regression analysis, the IRRS remained an 
independent predictor for OS of LUAD, while the other 

https://cdn.amegroups.cn/static/public/TLCR-24-309-Supplementary.pdf
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parameters, including clinical stage, T stage, N stage, and 
M stage, were not (Figure S2B). These results revealed 
that IRRS was an independent predictor for OS in patients  
with LUAD.

We further established a nomogram incorporating 
certain parameters, including age, sex, T stage, N stage, 
M stage, clinical stage, and IRRS. Each parameter was 
assigned a specific score (Figure 8A), and calibration plots 
verified that the calculated scores could accurately predict 
the prognoses of 1-year survival probability, 3-year survival 
probability, and 5-year survival probability in patients with 
LUAD, with an area under curve (AUC) of 0.718, 0.702, 
and 0.68, respectively (Figure 8B-8E). The establishment of 
a nomogram should facilitate the application of the IRRS in 
clinical practice. 

Discussion

LUAD, the most common form of lung cancer, is 
one of the leading causes of death worldwide, and its 
prognosis remains poor (17,18). Immunotherapy is 
a novel treatment option and has been approved for 
treating LUAD, exhibiting promising outcomes with both 
monotherapy and combination therapy regimens (19).  
However, a large proportion of patients respond poorly 
to immunotherapy, and currently the cost of this 
therapy hinders its accessibility; therefore, it is critical to 
identify novel means to predict prognoses and treatment 
responsiveness in patients with LUAD (20). Based on 
previous data on immunotherapy response, in the present 
study, we constructed and validated a prognostic signature 
incorporating immunotherapy responsiveness-related DEGs 
and established an IRRS formula. We found that the IRRS 
reliably predicted the 1-, 3-, and 5-year OS in patients with 
LUAD and was an independent predictor of OS for LUAD. 
Subgroup analyses further revealed that the IRRS had a 
good performance in predicting OS in different LUAD 
subgroups (categorized by clinical stage, age, and sex). We 
also validated the usefulness of the IRRS in predicting 
immunotherapy responsiveness in another LUAD cohort 
(GSE135222). Mechanistically, we found that the IRRS 
correlated well with the immune status and mutation 
landscape in LUAD, and the DEGs between the high-IRRS 
and low-IRRS groups were enriched mainly in biological 
processes including ribonucleoprotein complex biogenesis, 
antigen processing and presentation, and ribosome 
biogenesis and were enriched in pathways including cell 
cycle, focal adhesion, and nucleocytoplasmic transport. 

The tumor mutational burden was significantly higher in 
the high-IRRS group, among which the TP53 and TTN 
were the mutations with the most significant differences. 
Moreover, we found that IRRS could predict anticancer 
drug sensitivity in LUAD, and we further constructed a 
nomogram incorporating parameters including sex, age, 
T stage, N stage, M stage, clinical stage, and IRRS. These 
provide examples of the applications of IRRS in clinical 
practice. 

In the prognosis prediction model, we incorporated 
34 prognostic-related DEGs into the risk score formula, 
among which Leucine-rich repeat containing 37 member 
A3 (LRRC37A3) and CD68 had the greatest positive and 
negative coefficient values, respectively. LRRC37A3 is a 
newly identified paralog of the core duplicon LRRC37A 
located on chromosome 17, and its functions remain 
largely unknown; however, one study did report that single-
nucleotide polymorphisms (SNPs) of LRRC37A3 are 
involved in growth retardation, hepatopathy, and intellectual 
disability (21). The functions of other paralogs of LRRC37A 
are also ambiguous although a few studies have suggested 
their participation in the pathogenesis of Parkinson  
disease (22), coronary heart disease (23), and antibody 
reaction (24). LRRC37A was found to be a membrane-
associated protein implicated in inflammation, cellular 
migration, and chemotaxis (22). Further investigations are 
needed to clarify the role and mechanisms of LRRC37A3 
in LUAD or in immunotherapy responsiveness. CD68 
is a macrophage-myeloid cell-associated antigen, and 
macrophages are the predominant cells expressing CD68 
in the TIME (25). CD68-positive tumor-associated 
macrophages (CD68+ TAMs) are one of the hallmarks of 
TIME in LUAD (26), indicating that our model reflects 
differences in TIME between immunotherapy responders 
and nonresponders. Our model also revealed that the 
biological process with the most notable difference between 
the high- and low-IRRS groups was ribonucleoprotein 
complex biogenesis. Ribonucleoprotein complexes are 
RNA-binding proteins that are conjugated with RNA and 
exert broad spectral functions inside the cells, including 
tumorigenesis (27) and anticancer drug sensitivity (28,29). 
The IRRS established in the present study could also predict 
the anticancer drug sensitivities of LUAD. We found that 
patients in the high-IRRS group had a higher IC50 for 
cisplatin, erlotinib, gemcitabine, vinorelbine, and paclitaxel, 
which have been proven to be effective and approved for 
treating LUAD (3). This indicates that the IRRS could be 
used to guide clinicians in choosing anticancer drugs for 
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patients with LUAD. 
The exploration of predictive models and the underlying 

mechanisms of immunotherapy responsiveness or resistance 
in LUAD is currently an area of intense research activity. 

Our recent study suggested that a Golgi apparatus-
related signature could satisfactorily predict prognosis 
and immunotherapy responsiveness in LUAD (11), 
and recent studies have revealed that other signatures, 
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including exosomes, lipid metabolism and immunity, 
basement membranes, one-carbon metabolism, tumor 
microenvironment, and epidermal growth factor receptor 
inhibitor resistance also correlate with immunotherapy 
efficacy (30-32). To our knowledge, this study is the first 
to predict the OS and immunotherapy efficacy in patients 
with LUAD based on immunotherapy responsiveness-
related DEGs. We found that IRRS, the signature we 
established in this study, correlated with the TIME status 
in LUAD. The stromal, immune, and ESTIMATE scores 
all revealed significantly lower tumor micro environment 
(TME) scores in the high-IRRS group, which indicated 
lowered immune response in this group, and thus it is 
currently clear that a lower immune response correlates 
with poorer immunotherapy response in LUAD (33-35). 
We also observed remarkable differences in the infiltration 
proportions of various types of immune cells. For example, 
our model revealed that there was significantly higher 
infiltration of neutrophils in the high-IRRS group, and 
previous studies have demonstrated that the accumulation of 
neutrophils could lead to immunotherapy resistance (36,37). 
In addition, we found substantial differences in macrophage 
infiltration between the high- and low-IRRS groups. M0, 
M1, and M2 macrophage infiltration was significantly 
higher in the high-IRRS group. TAMs are one of the most 
abundant immune cells in the TIME, and M1 macrophages 
are generally believed to have antitumor properties and 
may increase after immunotherapy, while M2 macrophages 
are believed to exert protumor effects and may decrease 
in immunotherapy responders (38). The explanation for 
the results we obtained could be that the increased M2 
macrophage infiltration overwhelms the antitumor effects 
of increased M1 macrophage infiltration, which addresses 
the speculation that suppressing M2 macrophage function 
should be more effective than promoting M1 macrophage 
function in enhancing immunotherapy responses (36). 
Moreover, we found that the expression levels of multiple 
immune checkpoints and the levels of tumor-related 
mutation burden varied significantly between the high- and 
low-IRRS groups. Numerous studies have confirmed that 
expression levels of immune checkpoints and tumor-related 
mutation burdens correlate with OS and immunotherapy 
responses in LUAD (39-42). Collectively, these mechanisms 
may explain the lower OS in the high-IRRS group.

Our risk formula could effectively distinguish the 
differences in OS and responses to various anticancer 
drugs between the high- and low-IRRS groups. We also 
found that patients with high-IRRS in the GSE135222 

cohort had a longer PFS than did those with low IRRS. 
Further, we have found that the IRRS correlated with 
drug sensitivities to cisplatin, erlotinib, gemcitabine, 
vinorelbine, and paclitaxel. In addition, we have found 
that the IRRS correlated with TP53 mutation burdens. 
It is well-known that TP53 mutation mediates multiple 
anticancer drug resistances (43), it is reasonable to 
deduce that TP53 mutation burden difference was one 
of the main mechanisms for the correlation between the 
IRRS and anticancer drug sensitivities. One possible 
explanation for this result is the patients with low IRRS in 
the cohort we examined might have had an overall higher 
severity of malignancy than did those in the high-IRRS 
group; therefore, although they might respond better to 
immunotherapy, the OS benefits were overwhelmed by the 
higher extent of malignancy. Incorporating more cohorts 
would clarify this discrepancy. We also found that the 
IC50 of multiple anticancer drugs were higher in the low-
IRRS group than in the high-IRRS group, and also the 
IPS score of CTLA4 is higher in low-IRRS group. These 
indicating that despite patients in the low-IRRS group 
potentially responding to better to immunotherapy, they 
are more likely to be resistant to other anticancer drugs. 
This result was not unexpected because immunotherapy 
is based on different mechanisms from chemotherapy or 
targeted therapies, and patients who might benefit less from 
immunotherapy might respond better to other anticancer 
modalities. This result highlights the importance of a 
comprehensive evaluation and assessment of each patient in 
clinical practice. 

This study had some limitations which should be 
addressed. First, the data sources were publicly available 
databases, and the lack of local data might influence the 
application of this model in actual clinical practice. Second, 
the data sources used were open-source datasets. Given 
that the LUAD guidelines are updated rapidly nowadays, 
it is possible that the therapy regimens used in the datasets 
vary from current recommendations, and the results might 
differ if real-time data are used to construct the same 
prognostic model. Third, as mentioned above, the functions 
of the prognostic-related genes incorporated in the IRRS 
formula were beyond the scope of the present study, and 
further investigations are needed to clarify their roles and 
mechanisms in LUAD.

Conclusions

In conclusion, we successfully established and validated 
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a prognostic prediction model for LUAD based on 
immunotherapy-responsive DEGs. The IRRS model 
could predict the overall and subgroup prognoses and was 
an independent predictor of OS in patients with LUAD. 
The most significantly varied biological process between 
the high- and low-IRRS groups was ribonucleoprotein 
complex biogenesis, and the IRRS correlated with TP53 
and TTN mutation burdens. Moreover, the immune status 
and anticancer drug sensitivities between the high- and 
low-IRRS groups were significantly different. A nomogram 
based on the IRRS was also established. Our novel model 
can be practically used for prognosis prediction and clinical 
decision-making.
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