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MEssagE
Computer-aided diagnosis using deep learning 
(CAD-DL) may be an instrument to improve 
endoscopic assessment of Barrett’s oesophagus 
(BE) and early oesophageal adenocarcinoma 
(EAC). Based on still images from two databases, 
the diagnosis of EAC by CAD-DL reached sensi-
tivities/specificities of 97%/88% (Augsburg data) 
and 92%/100% (Medical Image Computing 
and Computer-Assisted Intervention [MICCAI] 
data) for white light (WL) images and 94%/80% 
for narrow band images (NBI) (Augsburg data), 
respectively. Tumour margins delineated by 
experts into images were detected satisfactorily 
with a Dice coefficient (D) of 0.72. This could be 
a first step towards CAD-DL for BE assessment. 
If developed further, it could become a useful 
adjunctive tool for patient management.

In MorE dETaIl
The incidence of BE and EAC in the West is 
rising significantly, and because of its close asso-
ciation with the metabolic syndrome this trend is 
expected to continue.1–3 Reports of CAD in BE 
analysis have used mainly handcrafted features 
based on texture and colour.4–7 In our study, 
two databases (Augsburg data and the ‘Medical 
Image Computing and Computer Assisted-In-
tervention’ [MICCAI] data) were used to train 
and test a CAD system on the basis of a deep 
convolutional neural net (CNN) with a residual 
net (ResNet) architecture.8 Images included 148 
high-definition (1350×1080 pixels) WL and NBI 
of 33 early EAC and 41 areas of non-neoplastic 
Barrett’s mucosa in the Augsburg data set, while 
the MICCAI data set contained 100 high-defini-
tion (1600×1200 pixels) WL images—17 early 
EAC and 22 areas of non-neoplastic Barrett’s 
mucosa. All images were pathologically validated 
and this served as the ground truth for the clas-
sification task. Manual delineation of tumour 
margins by experts was the reference standard 
for the segmentation task.

The ResNet consisted of 100 layers. Training 
and subsequent testing were done completely 
independent of each other using the principle 
of ‘leave-one-patient-out cross-validation’. For 
training, small patches were generated from 
the endoscopic colour images and augmented 
to simulate similar instances of the same class 
(figure 1). The class probability of each patch of 
the test image was then estimated during the clas-
sification task, after which the class decision for 

the full image was compiled from the patch class 
probabilities.

Using Augsburg data, our CAD-DL system diag-
nosed EAC with a sensitivity of 97% and a specificity 
of 88% for WL images, and a sensitivity and speci-
ficity of 94% and 80% for NBI images, respectively. 
CAD-DL achieved a sensitivity and specificity of 92% 
and 100%, respectively, for the MICCAI images. 
Thirteen endoscopists, who were shown the same 
WL images, achieved a mean sensitivity and speci-
ficity of 76% and 80% for the Augsburg data and 
99% and 78% for the MICCAI data set, respectively. 
The McNemar test revealed statistically significant 
outperformance of the CAD-DL system for 11 of the 
13 endoscopists for the Augsburg data either for sensi-
tivity or specificity or for both.

The measure of overlap (Dice coefficient D) 
between the segmentation of CAD-DL and that of 
experts was computed for images correctly classi-
fied by CAD-DL as cancerous (figure 2). A mean 
value of D=0.72 was computed for the Augsburg 
data, equally for WL and NBI images. In the 
MICCAI data, D was 0.56 on average.

Find more details on the methods and results in 
the online supplementary material.

CoMMEnTs
In this manuscript, we extend on our prior study 
on CNN in BE analysis,9 and demonstrate excel-
lent performance scores (sensitivity and speci-
ficity) for the computer-aided diagnosis of early 
EAC using a deep learning approach. In addition 
to the classification task, an automated segmen-
tation of the tumour region based on the cancer 
probability provided by the deep learning system 
showed promising results.

However, the results of this study are preliminary 
and represent only the first step towards implemen-
tation in real life. The experimental setting involved 
assessment of optimal endoscopic images. Further-
more, video sequences were not part of the evalu-
ation, and images were limited to flat or elevated 
EAC, while high-grade/low-grade dysplasia was 
not included in the analysis. For this reason, future 
work should focus on further development of the 
CAD system to assist endoscopists immediately 
onsite and on real-life endoscopic video sequences 
while including low-grade/high-grade dysplasia.

A further limitation of our evaluation involves 
the histological reference standard used for the clas-
sification task, whereby we assumed that cancer was 
spread uniformly across the lesion. However, the 
idea of one uniform region of cancer is not always 
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Figure 1 Illustration of the deep learning system. The training of the Augsburg data (top row) is done for three classes (EAC: orange; background: 
blue; and Barrett: green) after patch extraction and augmentation. The patch sampling for the test image is done equidistantly (bottom row) in 
contrast to the training patch extraction (top row). The probability of EAC class is stored in the image result for the size of the patch sampling 
offset. EAC, early oesophageal adenocarcinoma. 

Figure 2 Automatic tumour segmentations on Augsburg image (A, B) and MICCAI image (C, D) are shown by green contours overlaid on the 
original images and the pseudocoloured, patch-based probability maps. For comparison, the manual segmentations of an expert are drawn in red. 
Note that the CAD-DL segmentation is restricted to the area indicated by the orange dashed line. CAD-DL, computer-aided diagnosis using deep 
learning; MICCAI, Medical Image Computing and Computer-Assisted Intervention. 

the case. Very often, multifocal patches of cancer, dysplasia and 
normal Barrett’s mucosa are scattered across the surface of the 
lesion. However, because the image was classified as cancer 
depending on the patch-specified probability, the authors do not 
think that the histological pattern described above had a decisive 
influence on the performance of the CAD-DL system.

Finally, the reference standard used for the segmentation task 
was based on the macroscopic delineations provided by experts 
and not on the histological margins. In the Augsburg data set, 
these delineations were always controlled by a second expert, 
while in the MICCAI data set the intersection area of five experts 
was taken as the ground truth. For this reason, we assume that 
the reference standard used for the segmentation task still had 
a high level of validity. However, even if the results of tumour 
segmentation by our CAD-DL system are viewed critically, it still 

holds a lot of promise as a tool for better visualisation of tumour 
margins, but may need further improvement and enhancement.

In conclusion, we have shown that CAD-DL on the basis of a 
deep neural network can be trained to classify lesions in BE with 
a high level of accuracy. Furthermore, a rough segmentation of 
the tumour region is possible automatically. However, the diag-
nostic ability of CAD-DL on less optimal real-life images as well 
as video sequences needs to be evaluated before its implementa-
tion in the clinical setting can be considered. At least, this pilot 
study may show that CAD with deep learning has the potential 
to become an important add-on for endoscopists facing the chal-
lenge of tumour detection and characterisation in BE.
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