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ABSTRACT

Motivation: Although several recently proposed analysis packages
for microarray data can cope with heavy-tailed noise, many
applications rely on Gaussian assumptions. Gaussian noise models
foster computational efficiency. This comes, however, at the expense
of increased sensitivity to outlying observations. Assessing potential
insufficiencies of Gaussian noise in microarray data analysis is thus
important and of general interest.

Results: We propose to this end assessing different noise models
on a large number of microarray experiments. The goodness of fit
of noise models is quantified by a hierarchical Bayesian analysis of
variance model, which predicts normalized expression values as a
mixture of a Gaussian density and t-distributions with adjustable
degrees of freedom. Inference of differentially expressed genes is
taken into consideration at a second mixing level. For attaining far
reaching validity, our investigations cover a wide range of analysis
platforms and experimental settings. As the most striking result,
we find irrespective of the chosen preprocessing and normalization
method in all experiments that a heavy-tailed noise model is a better
fit than a simple Gaussian. Further investigations revealed that an
appropriate choice of noise model has a considerable influence
on biological interpretations drawn at the level of inferred genes
and gene ontology terms. We conclude from our investigation that
neglecting the over dispersed noise in microarray data can mislead
scientific discovery and suggest that the convenience of Gaussian-
based modelling should be replaced by non-parametric approaches
or other methods that account for heavy-tailed noise.
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1 INTRODUCTION

The importance of microarray data for the biological sciences
has generated a large number of sophisticated analysis methods.
Approaches like z-tests (Baldi and Long, 2001; Tusher er al.,
2001), linear models (Smyth, 2005) and many Bayesian methods
(Bae and Mallick, 2004; Ibrahim et al., 2002; Ishwaran and Rao,
2003; Lewin et al., 2007; Zhao et al., 2008) consider data to be
approximately Gaussian distributed. Recent investigations have,
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however, cast doubt on the correctness of the Gaussian assumption.
By testing for Gaussianity, Hardin and Wilson (2009) find that
microarray data does not follow a Gaussian distribution. The
observed overdispersion leads to a large number of outlying values
which can have a considerable influence on the inference results. The
cost of measurements and the possibility that outlying data points
are caused by biological processes rule out that such samples get
removed. All samples must thus be taken into account carefully,
as excluding outlying values or including them based on incorrect
distribution assumptions would falsify the biological findings. The
adverse effects of outliers in microarray data can be overcome
with non-parametric approaches (cf. de Haan er al., 2009; Gao
and Song, 2005; Lee et al., 2005; Troyanskaya et al., 2002; Tusher
et al., 2001; Zhao and Pan, 2003). Non-parametric methods replace
the restrictive assumptions linked with the Gaussian distribution
with very general ones, however, at the expense of losing some
power of tests (cf. Whitley and Ball, 2002). Alternatively, we can
analyze overdispersed data with robust parametric noise models like
Student’s-7 distributions (cf. Gottardo et al., 2006).

The issue of appropriate noise models led to an ongoing
discussion, with Giles and Kipling (2003) arguing that microarray
data are Gaussian distributed. Similar methods let Hardin and Wilson
(2009) conclude that microarray data require heavy-tailed noise
models. The conclusion of Novak et al. (2006) was that 5-15%
of genes are non-Gaussian distributed, with the majority following
Gaussian distributions. Finding such diverse conclusions about noise
in microarray data suggest an in-depth investigation of this issue.
We propose to this end inferring the appropriate degree of over-
dispersion in microarray data with a hierarchical Bayesian model,
which is inspired by the proposal of Gottardo et al. (2006). Built-
in means for ranking genes according to differential expression
enable investigations of the biological implications of deviating
from the optimal noise model. The essential components of the
proposed model are thus two indicator variables, one decoding
whether a gene is differentially expressed, the other decoding the
most appropriate noise model. These variables are built into a
hierarchical Bayesian analysis of variance (ANOVA) model which
can be used for analyzing a variety of experimental designs.

Inferring the proposed model with uninformative prior settings
provides reliable probability measures, which quantify the suitability
of competing noise models. This mode of operation compares the
goodness of fit of a Gaussian noise model with ¢-distributions of
different degrees of freedom and infers the appropriate robustness
level required for analyzing a microarray dataset. The ultimate
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goal of microarray data analysis is, however, obtaining sound
biological conclusions about which transcripts are involved in a
particular process. Judgements about different noise models should
therefore be linked with their implications on biological findings.
The proposed model provides for this purpose a second mode of
operation, in which we fix the noise model either to a Gaussian
density or to a z-distribution with optimal degrees of freedom as
found in the adaptive mode of operation. The biological implications
of deviating from the optimal noise model can then be assessed from
the noise model-dependent gene rankings.

To warrant reliable conclusions, we calibrated the model on
synthetic data and the golden-spike experiment from Choe et al.
(2005), before analysing 14 microarray datasets. Independent of
normalization and preprocessing, we found in every case that a
t-distribution with small degrees of freedom provides a much
better fit of the noise characteristics than a Gaussian density. The
importance of robust inference is apparent from our observation that
exchanging the optimal Student’s-¢ density with a Gaussian leads
to between 119 and 3561 differences in gene lists and to between
14 and 316 differences in Gene Ontology (GO) (cf. Ashburner
et al., 2000) term lists. We have thus strong evidence that opting
for Gaussian noise models in microarray data analysis may result
in seriously misleading biological leads. Microarray data analysis
should thus preferably use non-parametric approaches (cf. de Haan
et al., 2009; Gao and Song, 2005; Lee et al., 2005; Troyanskaya
etal., 2002; Tusher et al., 2001; Zhao and Pan, 2003) or approaches
that allow for heavy-tailed noise models (cf. Gottardo et al., 2006).

2 METHODS

The methods in this article provide a framework for thoroughly investigating
whether microarray data analysis requires robust approaches, or whether we
may safely rely on Gaussian assumptions. The Bayesian ANOVA model
shown in Figure 1 as directed acyclic graph (DAG) infers to this end optimal
robustness levels and a measure whether genes are differentially expressed.
The proposed approach achieves robustness by using a parametric heavy-
tailed noise model, with non-parametric methods (cf. de Haan et al., 2009;
Gao and Song, 2005; Lee et al., 2005; Troyanskaya et al., 2002; Tusher
et al., 2001; Zhao and Pan, 2003) being popular alternatives. To put our
investigation into the context of these tools, we include the two methods by
Lee et al. (2005) and de Haan et al. (2009) in our assessment. Similar to
the approach in Gottardo et al. (2006), we propose inferring differentially
expressed genes, while at the same time inferring the most appropriate noise
model from a set of Student’s ¢-distributions, which include the Gaussian as a
special non-robust case. Whereas Gottardo et al. (2006) allow for all possible
ANOVA contrasts simultaneously and infer a per gene posterior probability
over all contrasts, our model follows the conventional strategy in microarray
data analysis and infers differential expression with one common contrast.

An important aspect of our investigation is assessing the practical
relevance of deciding for appropriate noise models. We propose to this
end repeating inference of gene lists twice, once using the inferred noise
characteristics and once using a Gaussian instead. When leaving all other
settings identical, the differences in gene and GO term lists are indicative for
the effect of using suboptimal noise models. Gaining far reaching validity
requires analysing a representative collection of microarray datasets covering
important organisms and measurement platforms and repeating assessments
with different normalization and preprocessing methods.

2.1 Bayesian ANOVA with flexible noise model

The Bayesian one-way ANOVA model shown in Figure 1 as DAG constitutes
the core of our evaluation. ANOVA models are commonly used for analysing

Fig. 1. We represent the proposed model as DAG with rectangular nodes
denoting observed quantities and circular nodes denoting random variables.
Hyperparameters associated with priors are shown in brackets. Sheets
indicate replication. With n denoting the sample and g the gene index, we
denote the measurements as y, ¢, the group indicators as x,, the group specific
means as fB¢, the differential expression indicators as I, their prior probability
as p, the noise precision as 7, the precision of the coefficients prior as A, the
auxiliary variables of the Student’s-t density as ¢, 4, the degrees of freedom
as v and the corresponding model indicator as J. All hyperparameters are
discussed in Section 2.1.

multi-level microarray experiments like time course data. The model is based
on a linear relation between the gene expression y,, ¢, measured for sample
n and gene g and the mean expression B,. The S-dimensional vector x, is an
indicator for the biological state. If sample n belongs to state s, x,, has a 1
at the s-th position and zeros everywhere else. Depending on whether gene
g is differentially expressed or not, the latent indicator variable I, switches
between two different dimensional representations of B, (cf. Holmes and
Held, 2006; Sykacek et al., 2007). The case that gene g is not differentially
expressed is coded by I, =0 and corresponds to the null hypothesis of the
classical ANOVA that all groups have the same mean. Vector f, contains
in this case S identical entries of mean expression B, o, the latter being
equipped with a Gaussian prior with mean p and prior precision A. The
alternative hypothesis that gene g is differentially expressed is coded by
I, =1 with B, being multivariate with a Gaussian prior with mean p and
diagonal precision matrix A. The indicator I is a priori binomially distributed
with probability p of differential expression. To reduce the sensitivity of
the approach, the model is extended hierarchically by allowing for a beta
prior over p with hyperparameters a and b. The observations y, , follow
a symmetric distribution centred around 3, ¢ =x,{ By with precision @, .
Different robustness levels are achieved by selecting the noise model for
the observations y, , from a set containing K —1 Student’s ¢-distributions
of different degrees of freedom, v, and a Gaussian distribution (with v=
00). For obtaining computationally tractable representations of Student’s
t-distributions with arbitrary degrees of freedom, we introduce the auxiliary
variables @, ¢, represent p(yn,g,®n,¢|Bg. 7. V) as a certain Gaussian-Gamma
density and integrate over ¢, ; (cf. Bernardo and Smith, 1994).

An essential aspect of robustness is adjusting the degrees of freedom v
to the level required by the data. We propose to this end selecting the best
fitting degrees of freedom from a finite set of possible choices (cf. Berger,
1994), which includes the Gaussian (v=00) as the non-robust special case.
The proposed model implements this selection via the multinomial-one
distributed indicator variable J, which chooses a particular v from the
set v:={veR|v:=vyin +j~cgrid,oo}1 withj€[0,..,K —2] and vpi, > 1. This

!To simplify notation v denotes the set and individual values of the degrees
of freedom parameter.
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formulation gives rise to K possible noise models. As we have no reason for
preferring a particular choice, we use 1/K as uninformative prior probability
for all J. The proposed model can be summarized by the joint density
formulated in Equation (1)

pU.p.B.¢,J,1,71X,Y,a,b,c,d,e,h,K)xp(pla,b) (¢))

p(Ale.d)p(zlg, h)p(JIK)H (p(lg IP)P(Bellg. 1t 1)
8

1@ elPOnelBes oo L) ).

n
where I, B, ¢, X and Y are shortcuts for denoting all Iy, Be, @ng, Xu
and y,, , respectively, and p(pla,b) denotes a Beta density, p(A|c,d),
p(tlg,h) and p(@n¢|v/2,v/2) denote Gamma densities, p(J|K) denotes a
Multinomial-one density, p(I¢|p) a Binomial-one density and p(B¢|/,, 1, A)
and p(yn,¢|Bg, @n,g.1g, T.x,) denote Gaussian densities.

2.2 Algorithm

The complexity of the model requires approximate inference. Although
closed form approximations (Liu et al., 2006; Sykacek et al., 2007) have
computational advantages, we prefer here an unbiased approximation and
follow (Bae and Mallick, 2004; Gottardo et al., 2006; Huang et al., 2002;
Lewin et al., 2007; Shahbaba and Neal, 2006; Tadesse et al., 2003) who,
among many others, have previously used Markov chain Monte Carlo
(MCMC) in a bioinformatics context. MCMC is an application of the Law
of Large Numbers and allows approximating expectations by averages of
random draws from a given distribution. The random samples are realizations
of a Markov chain that behave under certain conditions like draws from a
single stationary distribution (cf. Gilks et al., 1996; Robert and Casella,
2004). Denoting the sampling density as f and the random samples obtained
from MCMC as ﬂg(i), MCMC allows us for example to approximate the
expectation of the group-specific mean expression S, as

n
Ey[Be]= /X Bof (B)dBy~ By = %Zﬁg@.

i=1
Algorithm 1 illustrates MCMC sampling as pseudo-code. Inference requires a
combination of Gibbs, Metropolis Hastings and Reversible Jump steps. Gibbs
steps are used for updating the prior probability of differential expression,
p. the prior precision A, the error precision, 7, and, when keeping the
differential expression indicator /, fixed, for updating the group means fg.
A Metropolis Hastings step is used for updating J as long as we keep
the Student’s-# noise model. Updates of J that propose changing from a
Student’s-f to a Gaussian density and vice versa and updates of I, rely on
the reversible jump approach introduced in Green (1995). Further details
about the model, the algorithm and a MatLab implementation are provided
in http://bioinf.boku.ac.at/alexp/robmca.html.

2.3 Data collection

For reliably inferring the optimal noise characteristics and evaluating the
implications of potentially oversimplified Gaussian assumptions, we have
to consider two aspects. A reliable assessment of different noise models
requires calibrating the proposed inference scheme. Calibration makes sure
that MCMC converges rapidly and that inference result are insensitive to
the chosen hyperparameters. These aspects are best assessed when knowing
the expected outcome by using synthetically generated data and dedicated
spike-in experiments. Warranting that our findings are generally applicable
requires analysing carefully selected microarray datasets, which cover a wide
range of model organisms, experimental settings and measurement platforms
and using several normalization and preprocessing methods.

Artificial data were generated with Gaussian and Student’s-f noise
distributions, the latter with 4 and 10 degrees of freedom. We simulated
a two way comparison of 500 hypothetical genes with each gene assigned to
one of five groups, the later defining the amount of hypothetical differential

Algorithm 1 Hybrid MCMC Sampler
Random initialization of parameters
Corid=1
for n=1 to burnin do

update parameters={
update v, J and ¢, ¢ jointly
update p
update 1
update B, and I, jointly
update 7 }
end for
Cgrid=0.05
for n=1 to burnin+ simulationlength do
update parameters (see first burn-in)
end for

Table 1. Depending on sample type which is either 1 or 2, genes from subset
i are drawn from distributions with means equal to i, 1 and ;2 , respectively

Subset i i1 2 %
1 —12.0 12.0 20
2 -5.0 5.0 10
3 —-1.0 1.0 30
4 -0.5 0.5 20
5 0.0 0.0 20

The proportion of genes in subset i is shown in column %.

expression. The mean structure and fraction of occurrence of each group
are reported in Table 1. Variances have been chosen in the range of 0.1-10,
without altering the reported results. To mimic a realistic microarray scenario,
we generated five replicates per group, resulting in 10 data points per gene.
Some aspects of computer-generated data might deviate from real microarray
measurements. We endorse therefore our respective conclusions by including
the spike-in experiment of Choe et al. (2005) in our analysis.

For warranting far reaching validity of our results, we analysed 14
microarray experiments covering various organisms and measurement
platforms. The data include investigations of plant soil responses, drosophila
sleep deprivation, primate dietary comparisons and animal liver metabolism.
The experiments, which are summarized in Table 2, are identified by
the Gene Expression Omnibus (GEO) reference number (cf. Edgar et al.,
2002). Further details about each dataset can be found in the corresponding
reference. The selection provided in Table 2 covers several different
platforms and quantification algorithms (cf. column ‘Prep.’). We used all
data as provided by the owner and applied the conservative normalization
method vsn (cf. Huber et al., 2002).

2.4 Alternative normalization and analysis methods

It is well known that results from microarray data analysis may depend on
the chosen normalization method (cf. Bolstad et al., 2003). To ensure that
our conclusions hold in general, we repeated the analysis for a subset of
the data in Table 2 with additional normalization methods. Guided by their
popularity in applied microarray papers, we chose loess (cf. Yang et al.,
2002) and quantile (cf. Bolstad et al., 2003) normalization.

In the light of recent findings that intensities of highly expressed targets
cross-talk to neighbouring probes due to scanner inadequacy (cf. Upton
and Harrisson, 2010), we may expect that Affymetrix probe sets contain
outlying measurements. Being designed to alleviate the effect of artefacts
contaminating individual probes, the mmgMOS approach (cf. Liu et al.,
2005) and the PPLR method (cf. Liu et al., 2006) could help improving
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Table 2. Overview of the biological datasets describing the organism (Org.), the GEO ID (CAMDA 08 refers to the Endothelial Apoptosis contest datasets of
the meeting), the preprocessing method (Prep.), the overall number of arrays (V), the average degrees of freedom (v), the number of common genes (Comm.),
the number of genes with noise model depending differential expression assessment (Diff.), the number of common GO terms (Comm.) and finally the number

of noise model dependent GO terms (Diff.)

Org. GEO ID Reference Prep. N v Comm. genes Diff. genes Comm. GO terms Diff. GO terms
Arabidopsis thaliana GDS3216 Dinneny et al. (2008) MASS5.0 12 4.71 1176 150 111 78
Arabidopsis thaliana GDS3225 Van Hoewyk et al. (2008) MAS5.0 4 5.50 832 290 161 21
Danio rerio GDS1404 Cameron et al. (2005) PathStat 10 13.58 1776 136 11 14
Drosophila melanogaster GDS1686 (I) Zimmerman et al. (2006) RMA 9 3.62 136 174 11 96
Homo sapiens CAMDA 08 Affara et al. (2007) CLSS4.1 24 4.04 400 304 26 67
Homo sapiens GDS1375 Talantov et al. (2005) MASS5.0 70 3.25 6861 3561 160 316
Homo sapiens GDS810 Blalock er al. (2004) MAS5.0 31 437 72 135 9 51
Homo sapiens GDS2960 Yao et al. (2007) RGP3.0 101 4.33 318 166 51 2
Mus musculus GDS660 Small et al. (2005) MAS5.0 22 10.48 584 126 20 26
Mus musculus GDS3221 Somel et al. (2008) RMA 24 421 180 119 108 52
Mus musculus GDS3162 Someya et al. (2008) MAS50 10 438 1797 446 112 66
Mus musculus GDS1555 MacLennan et al. (2006) MASS5.0 8 3.90 131 183 24 110
Rattus norvegicus GDS2946 Li et al. (2008) MASS5.0 15 4.57 146 157 14 306
Rattus norvegicus GDS972 Jin et al. (2003) MAS5.0 44 498 369 163 94 71
Drosophila melanogaster golden-spike Choe et al. (2005) MASS.0 6 3.74 401 1748 — -

The GEO entry GDS1686 (I) refers to the behavioural subset of the data (only the sleep-deprived flies). In column Prep., we use MASS.0 to refer to the Affymetrix MAS 5.0
quantization method, RMA to refer to the ‘Robust Multi-array Average’ method by Irizarry et al. (2003) (both used for Affymetrix arrays), PathStat for referring to the package
described in Middleton et al. (2004), CLSS4.1 to refer to the Codelink Software Suite 4.1 and RGP3.0 to refer to Research Genetics’ Pathway software v. 3.0.

the Gaussianity of residuals. For testing whether such sophisticated
representations of microarray expression can reduce the need for heavy-
tailed noise models, we applied our algorithm to mmgMOS normalized data
and the posterior expression estimates obtained by the PPLR method.

Our investigation relied so far on achieving robustness by representing
the noise in microarray data with a suitably chosen parametric density. A
different strategy for achieving robustness in microarray data analysis is
obtained by abolishing distributional assumptions and using non-parametric
methods (cf. de Haan et al., 2009; Gao and Song, 2005; Lee et al., 2005;
Tusher et al., 2001). To investigate whether non-parametric approaches are
a viable alternative for robust analyses of microarray data, we compare gene
rankings obtained with such approaches with gene rankings we obtain (i)
with the Bayesian ANOVA when using the optimal (possibly heavy tailed)
noise distribution and (ii) with the proposed model when assuming Gaussian
distributed noise. Compatibility with our ANOVA model suggests applying
a Kruskal-Wallis permutation test (cf. Lee et al., 2005) and a robust ANOVA
(cf. de Haan et al., 2009). Unknown differences in scale which we have to
expect when comparing P-values and Bayesian probabilities are overcome
by using a P-value threshold of 0.01 for assigning differential expression
in the statistical test and adjusting the probability threshold such that the
number of differentially expressed genes match.

2.5 Biological implications

An important aspect in our assessment of different noise models for
microarray data analysis is evaluating the biological implications of
deviations from the appropriate noise model. The implication of choosing
Gaussian noise instead of the optimal noise model can be quantified by
comparing the number of genes, which are irrespective of the noise model
assessed as differentially expressed with the number of genes which show
a noise model-dependent assessment. For investigating the implications
of unsuitable noise models at a higher level of biological abstraction, we
propose inferring GO terms from the gene lists which we obtain with different
noise models. We use to this end, GO term-specific Fishers exact tests (cf. Al-
Shahrour et al., 2004; Dennis. et al., 2003) on the gene lists obtained with
different noise models and compare the number of significant GO terms

which are found irrespective of the chosen noise model with the number of
GO terms with noise model-dependent assessment.

2.6 Calibrating the algorithm

Calibration efforts are important for assuring unbiased and efficient inference
with MCMC methods. Making sure that inference is unbiased requires
considering the influence of all hyperparameters individually. We have a
and b which are prior counts and thus easy to grasp with small values
corresponding to small influence. A Jeffreys prior (cf. Jeffreys, 1961) is
obtained when using a=b=0.5. The hyperparameters g and h of the
Gamma prior over the noise precision t also have no indirect consequences
and can safely be set to O for obtaining the corresponding Jeffreys prior.
Independent of whether we use a r-distribution or a Gaussian as noise
model, the precision A deserves more attention. Large values of A indicate a
strong preference for small B, values. By entering the Bayes factors of the
models represented by I, =0 and I, =1, the precision A influences, however,
also P(I¢|X,Y,a,b,c,d,e,h,K) (cf. MacKay, 1992), with smaller A making
identifying differentially expressed genes harder. This problem can be solved
by regarding A as a random variable and providing a conjugate Jeffreys
hyper-prior which is a Gamma density parameterized with c=0,d =0. Such
hierarchical Bayesian models (cf. Lewin et al., 2007; Shahbaba and Neal,
2006) are preferably used, because an indirect prior specification minimizes
the dependency of inference results on hyper parameter settings. Jeffreys
priors are theoretically well motivated in single variable cases, they can,
however, exhibit strong indirect influence in multi-variable models (cf.
Bernardo and Smith, 1994).

Having an indirect influence on decisions about differential expression, the
precision A deserves particular attention. We, therefore, propose investigating
the influence of the hyperparameters ¢ and d on the posterior probabilities
of differential expression P(I¢|X,Y,a,b,c,d, e h,K). By representing the
precision A in the Gaussian prior over ¢ as a random variable, the influence
of ¢ and d on A is related to the prior variance V[Alpjc,a) = d% A sensitivity
analysis can therefore keep the prior expectation E[A]p(ic,qy=§ constant
(e.g. 1, for other values please refer to the Supplementary Material) and
change the prior variance. By displaying the ordered posterior probabilities,
P(l4|X,Y,a,b,c,d,e,h,K), for several ¢, d combinations, the graphs in
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Fig. 2. The hyperparameters ¢ and d in the prior p(i|c,d) have to be
chosen carefully to avoid side effects. The graphs show the ordered posterior
probabilities of differential expression P(l;|X,Y,a,b,c,d,e,h,K) with the
legend denoting the corresponding c,d pair for a Gaussian and Student’s-¢
noise model. Choices larger than around 100 increase the influence of these
hyperparameters on the posterior of interest. This motivates our choice of an
improper prior (c=0,d =0).

Figure 2 illustrate this sensitivity analysis for synthetic data that was
generated according to the description in Section 2.3. Choosing the Jeffreys
prior ¢=0,d =0 is justified by observing that up to a prior variance of less
than 1/100, the hyper-parameters ¢ and d have, independently of the noise
model, little influence on the posterior probabilities of differential expression.

Another important aspect of our inference scheme is providing accurate
assessments of noise characteristics. This requires a clear distinction between
Gaussian and Student’s-# noise models and thus an appropriate choice
for the upper limit for the degrees of freedom parameter v, which marks
the bound between Student’s-# and Gaussian distributions. Simulations on
synthetic data showed that taking v,,,x =45 as upper limit is a good choice
because larger degrees of freedom parameters render Student’s-t densities
as indistinguishable from Gaussians and smaller values would unnecessarily
misjudge Student’s-¢ densities as Gaussians.

Further calibration efforts were concerned with assuring fast convergence
of the sampling algorithm to the stationary distribution. Our simulations
showed that convergence speed can be dramatically improved by adjusting
the grid size cgrig between two burn-in phases. After starting with an initial
value in the range of 1-5, we switch to a smaller value of about 0.05 which
is then also used for sampling. A large initial grid size allows the algorithm
to quickly determine the approximately correct error model with the smaller
grid size improving the convergence properties of the Markov Chain and
leading to better approximations of the true continuous degrees of freedom.
Convergence towards the stationary distribution was assessed with the R
package coda (cf. Plummer et al., 2006). We found that 11000 draws were
a suitable overall simulation length and that the first 500 draws should be
considered as burn-in phase (cf. Algorithm 1).

After calibration, we could confirm that the resulting algorithm infers
the correct noise model in synthetic data. Data generated with Student’s-¢
distributed noise with 4 and 10 degrees of freedom lead to little variation
of the samples around the true value, whereas data generated with Gaussian
distributed noise would assign all mass to the Gaussian density. We also
tested whether the proposed algorithm infers differentially expressed genes
reliably. We used for that purpose the golden-spike experiment from Choe
et al. (2005). Resulting from a wet lab experiment, these data are both a
realistic test case for microarray data and a gold standard with known ground
truth. When using a cutoff probability threshold of 0.85, we find for Gaussian

Table 3. An assessment of robustness levels in dependence of normalization
and preprocessing showing the expected degrees of freedom parameters

GEO ID Loess Quantile mmgMOS PPLR
GDS3216 2.02 1.13 2.23 1.17
GDS810 1.13 1.18 3.23 1.14
GDS3225 1.24 1.29 - -
CAMDA 08 1.06 1.11 - -
GDS1375 1.14 1.15 - -
GDS2960 2.94 2.85 - -
GDS1555 1.15 1.17 - -
GDS972 1.38 1.4 3.67 1.15

v for various datasets. Dashes indicate unavailable results, which require for mmgMOS
and PPLR to have Affymetrix cell files available. The results confirm that neither
normalization nor sophisticated preprocessing compensate for the need of heavy-tailed
noise models.

noise 72% and for the optimal Student’s-7 noise 78% of correctly assigned
genes. These performance figures are in the top range of the results reported
in Choe et al. (2005). The better performance of the Student’s-r model is
paired with a by far larger evidence in favour of this noise model. This
observation allows the conclusion that already the technical noise component
in microarray data, which is the only remaining source of variation in the
golden-spike data, requires considering robust models.

3 RESULTS

To highlight the importance of choosing valid noise models for
microarray analysis, we applied the proposed inference scheme to 14
microarray datasets, which are summarized in Table 2. The arresting
result of our evaluation is that a heavy-tailed Student’s-7 noise model
is a better fit than a Gaussian noise model for every dataset we looked
at (cf. column ‘v’). For most datasets, a ¢-distribution with degrees
of freedom between 3 and 5 got the highest posterior probability.
This indicates the need of robust noise models, which can handle
outlying data points well and suggests that Gaussian noise models
are unsuitable for microarray data analysis, even if according to
Novak et al. (2006) only about 5—15% of samples are non-Gaussian
distributed.

Our assessments also revealed that biological inference depends
considerably on the chosen noise model. For obtaining a quantitative
statement, we inferred the differentially expressed genes set
twice: once with a Gaussian noise model and once with the
optimally inferred z-distribution. This approach provided for every
dataset two gene lists with the intersect representing agreement
and the symmetric difference representing different biological
interpretations, which are solely caused by the different noise models
(cf. Table 2, columns ‘Comm. genes’ and ‘Diff. genes’).

Microarray data analysis depends often critically on chosen
preprocessing and normalization (cf. Bolstad et al., 2003). To rule
out being mislead by a particular choice, we repeated the assessment
of optimal noise models using loess and quantile normalization
and mmgMos and PPLR preprocessing. The expected degrees of
freedom, v we report in Table 3 for these data allow concluding
that our observations are independent of normalization and even
sophisticated analysis methods do not compensate for the need of
robust noise models. The robust model is in general less sensitive
to outlying values. Models with z-distributed noise will therefore
assign lower posterior probabilities of differential expression,
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Fig. 3. Noise model dependencies of posterior probabilities. Subplot (A) illustrates the Arabidopsis data (GDS3216) ranked by the posterior probabilities of
differential expression obtained with the most probable Student’s-¢ distribution (probabilities shown as black line). The probabilities obtained for the same
genes by a Gaussian-based analysis are shown as dots. Subplot (B) illustrates the Human melanoma data (GDS1375) ranked by the posterior probabilities
of differential expression obtained by a Gaussian-based analysis (probabilities shown as black line). The probabilities obtained for the same genes from an

optimally adjusted robust analysis are shown as dots.

when differential expression is caused by one or a few outlying
measurements. In situations where outliers lead to an increase
of variance or a decrease in average differential expression, the
Gaussian noise model will overlook differentially expressed genes,
which would be captured by the more appropriate ¢-distributed noise
model. A wrongly chosen noise model will therefore lead to false
positives and false negatives. Both error types are confirmed by
the illustrations in Figure 3, which show many genes with noise
model-dependent probabilities of differential expression.

Subgraph (A) in Figure 3 is ranked by the posterior probabilities
obtained with the optimal #-distributed noise model (probabilities
shown as black line). A subset of posteriors obtained with Gaussian
noise is shown as dots. Subgraph (B) is ranked by the posterior
probabilities obtained with a Gaussian noise model (probabilities
shown as black line). A subset of the posteriors obtained with
optimal Student’s-¢ noise is shown as dots. We find in both subgraphs
for many genes a substantial influence of the noise model on the
posterior probability of differential expression. In the context that
inference over degrees of freedom v clearly favoured the Student’s-¢
model, we can consider all genes which get only under z-distributed
noise a large posterior probability of differential expression as
potential false negatives under a standard Gaussian noise model.
Genes that get only under a Gaussian density a large posterior
probability of differential expression are likely to be false positives.
Table 2 shows that the number of genes with noise model-dependent
assessment of differential expression range from 119 to 3561.
This is about one tenth to two times the number of genes, which
are independently of the noise model assessed as differentially
expressed. We can thus conclude that the choice of noise model
can have a considerable influence on the inferred gene lists with a
wrongly chosen noise model introducing both false positives and
false negatives.

To investigate the biological significance of the noise model-
dependent differences in gene lists, we applied a GO term inference
(cf. Al-Shahrour et al., 2004) twice: once using the gene list which
we obtained with the Gaussian noise model and a second time using
the gene list which we obtained when the noise is fixed to the most

Table 4. For comparing non-parametric robust methods with robust

parametric methods, we provide the percentage agreement about
differentially expressed genes
GEO ID KW perm. RANOVA

T (%) N (%) T (%) N (%)
GDS3216 39 37 - -
GDS1375 86 84 86 83
GDS2960 76 71 76 72

The columns under KW perm. illustrate the agreements of the Kruskal-Wallis
permutation test with the robust parametric method (column “7") and with a Gaussian-
based analysis (column ‘A). The two columns under RANOVA show the same
information for the robust ANOVA method. Dashes indicate that the non-parametric
method did not find differentially expressed genes. These results allow the conclusion
that non-parametric methods are viable for analysing microarray data robustly, as long
as we have sufficiently many samples.

probable ¢-distribution. Table 2 lists the number of GO terms, which
were found unambiguously and the number of GO terms with a noise
model-dependent assessment (cf. columns ‘Comm. GO terms’ and
‘Diff. GO terms’). Observing that the noise model-dependent GO
term lists contain between one fifth and 22 times as many differences
than common entries suggests that an unsuitably chosen noise model
is likely to have a profound implication on biological conclusions
drawn from an analysis.

Having gathered substantial evidence that microarray data should
be analysed by considering heavy-tailed noise, the question arises
whether non-parametric approaches can help solving this issue. We
compare to this end the agreement in gene lists obtained with two
non-parametric tests with our robust Bayesian ANOVA and compare
this with the agreement we observe between the same tests and the
Gaussian version of our Bayesian ANOVA. The results in Table 4
show a better agreement of rankings between the robust methods,
which suggests that non-parametric methods should be considered
for analysing microarray data. Our results do, however, in agreement
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with Whitley and Ball (2002)) also reveal the loss in power inherent
to non-parametric methods. In our analysis this manifests in finding
no significant P-values with the robust ANOVA method for GEO
ID GDS3216. For GEO ID GDS3225, GEO ID GDS1555 and
the CAMDA 08 data, both non-parametric methods fail in finding
significant P-values (data omitted from table). From Table 4, it is
also obvious that small sample sizes (cf. Table 2, column ‘N’) lead
in general to poor agreement. If sample sizes permit application, we
can however recommend non-parametric methods for microarray
data analysis.

4 DISCUSSION

This article provides an in-depth assessment of two competing
assumptions about the noise characteristics in microarray data.
Assuming Gaussian noise has the benefit of leading to highly
efficient analysis methods. A considerable sensitivity to outlying
observations is, however, an unfortunate weakness of Gaussian
noise-based data analysis. This weakness may be overcome with
non-parametric methods or by methods which assume heavy-
tailed noise distributions. Applying robust analysis methods to
microarray data has the disadvantage of introducing more involved
computations. The application of non-parametric methods is in
addition limited to problems with sufficiently many samples.
Comparing robust analysis methods with Gaussian-based
microarray data analysis has to provide conclusions, which are
relevant for biological practise. Certain technical aspects can be
tested by gold standards like the spike-in data from Choe et al.
(2005). Other aspects like, for example, biological variation are
only captured by data analysing real-world biology. Although
certain facts about individual experiments are well known, complete
knowledge of ground truth is not available for any biological
microarray experiment. An assessment of biological implications
has thus to resort to indirect strategies. The route chosen in this
article first compares the technical suitability of Gaussian noise and
heavy tailed 7-distributions. This requires a mode of operation in data
analysis, which allows comparing different noise models. Once we
established which noise model is preferred for technical reasons,
we can turn to investigating the biological implications caused by
changing the noise model. This mode of operation relies in our
analysis on counting the number of genes which show a noise model-
dependent difference in differential expression. These gene counts
are complemented by investigating which GO terms are significantly
affected from the noise model-dependent gene lists. For providing
conclusions of far-reaching validity, we analysed 14 carefully chosen
microarray experiments, covering a wide range of model organisms
and measurement platforms. To avoid reporting spurious results, our
simulations included careful tuning of hyperparameters to minimize
model sensitivity, steps for assessing convergence of the algorithm
and applied different normalization and preprocessing methods.
The arresting result of our assessment is that we find highly
decisive evidence in favour of #-distributions with high kurtosis for
every experiment we looked at. The significance of this finding
is backed up by the observation that the choice of error model
considerably influences the biological conclusions drawn from the
analyses. Gene lists differ in dependence of the noise model by
between 119 and 3561 genes. These differences have a substantial
influence on the conclusions we draw on a higher level of biological
abstraction. The number of differences in the GO term lists we find

in dependence of the chosen noise model ranges from 14 to 316. For
many datasets, the number of GO terms with noise model-dependent
equivocal assessment is larger than the number of GO terms we
can unambiguously assign to these experiments irrespective of the
chosen noise model. We may thus conclude that a substantial number
of outlying measurements is present in many microarray studies.
Relying on implicit Gaussian assumptions means ignoring the heavy
tails of the residuals and that can have adverse effects on biological
conclusions drawn from microarray data. Practitioners should thus
apply robust approaches for microarray data analysis, which work
reliably irrespective of whether noise is Gaussian or heavy tailed. We
suggest for this purpouse considering non-parametric approaches
(cf. de Haan er al., 2009; Gao and Song, 2005; Lee et al., 2005;
Troyanskaya et al., 2002; Tusher et al., 2001; Zhao and Pan, 2003),
or, for small sample sizes, apply Bayesian approaches like Gottardo
et al. (2006) or the MatLab implementation which accompanies this
paper at http://bioinf.boku.ac.at/alexp/robmca.html.
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