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Transactivation assays
are appropriate for
functional characteri-
zation of the majority
of RUNXT missense
variants observed in
RUNX1-FPD.

Implementation of
transactivation assays
for RUNX1 variants
with unknown function
accelerates their
translation into clinical
care.

Familial platelet disorder with associated myeloid malignancies (RUNX1-familial platelet
disorder [RUNX1-FPD]) is caused by heterozygous pathogenic germline variants of
RUNX1. In the present study, we evaluate the applicability of transactivation assays to
investigate RUNX1 variants in different regions of the protein. We studied 11 variants to
independently validate transactivation assays supporting variant classification following
the ClinGen Myeloid Malignancies Variant Curation Expert Panel guidelines. Variant
classification is key for the translation of genetic findings. We showed that new assays
need to be developed to assess C-terminal RUNX1 variants. Two variants of uncertain
significance (VUS) were reclassified to likely pathogenic. Additionally, our analyses
supported the (likely) pathogenic classification of 2 other variants. We demonstrated
functionality of 4 VUS, but reclassification to (likely) benign was challenging and
suggested the need for reevaluating current classification guidelines. Finally, clinical
utility of our assays was illustrated in the context of 7 families. Our data confirmed
RUNX1-FPD suspicion in 3 families with RUNX1-FPD-specific family history, whereas for
3 variants identified in RUNX1-FPD-nonspecific families, no functional defect was
detected. Applying functional assays to support RUNX1 variant classification can be
essential for adequate care of index patients and their relatives at risk. It facilitates
translation of genetic data into personalized medicine.

Introduction

Heterozygous pathogenic germline variants of RUNX7 cause familial platelet disorder with associated
myeloid malignancies (RUNX1-familial platelet disorder [RUNX1-FPD], FPDMM, FPD/AML)."? Patients
typically show mild to moderate thrombocytopenia or even platelet counts in the low-normal range as
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Figure 1. Validation of transactivation assays and characterization of RUNX17 variants of interest to support variant classification. Variant nomenclature refers
to RUNX1 transcript variant 2 (NM_001001890.3) encoding for isoform RUNX1b. (A) Schematic overview of the investigated set of RUNX1b nonsense variants. Protein
domains refer to Lam and Zhang.?' The bar graphs displays the firefly/renilla ratios relative to wild-type (WT) RUNX1b of applied reporter constructs rCSF1R, rETV1, and
rMYL9 analyzing the set of RUNX1b nonsense variants in HEK293T cells (mean + standard deviation [SD]; 3 biological with 3 technical replicates; 1-way ANOVA in
comparison with WT; Dunnett post hoc test; *P = .05; **P = .01; ***P < .001; ****P = .0001). The threshold 115% and 20% of WT activity is highlighted regarding the
MM-VCEP recommendations defining these thresholds for the application of BS3 and PS8, respectively.® Differing results of variants for different reporters might be
explained by effects of different coactivators/corepressors required. (B) Schematic overview of the analyzed set of RUNX1b variants of interest and used controls.
Representative bar graphs displaying firefly/renilla ratios relative to WT RUNX1b of reporter constructs rETV1 in HEK293T cells and rMYL9 in HEL cells analyzing the set of
RUNX1b variants of interest. Besides the potential impact of different coactivators/corepressors, differing results for individual reporters might be explained by effects of the
cellular context (mean + SD; HEK293T: 3 biological with 6 technical replicates; HEL: 2 biological with 5 technical replicates; 1-way ANOVA in comparison with WT;
Dunnett post hoc test; *P = .05; **P = .01; ***P = .001; ***P = .0001). (C) At the top is a heat map summarizing analyses of RUNX7 variants scored relative to WT
RUNX1b activity. Purple results were not included in the classification because of the detection limit of rCSF7R. Below the heat map, resulting PS3/BS3 criterion based on
TA results is shown as functional class and concluded as follows: (1) PS3 moderate, =2 TA results with <20% of WT activity without conflicting results (ie, =80% of WT
activity); (2) PS8 supporting, =2 TA results >115% of WT; and (3) BS3 supporting, =2 TA results with >80% to 115% of WT without conflicting results (ie, =1 with
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Figure 1 (continued) <20% or =2 with >115% of WT activity). Subsequently, we included already published results from secondary assays (eg, dimerization and DNA
binding, for detailed references see supplemental Table 3) to adapt the strength of the criterion according to the MM-VCEP recommendations.® Our data provide evidence
for the applicability of PS3 supporting for His58Asn, but other studies demonstrate functionality of this variant.>> No functional class was assigned (ie, variants of uncertain
function) according to Brnich et al.'' At the bottom, available ClinVar classifications (not following MM-VCEP guidelines, except for the likely benign classification of

His58Asn), classification based on American College of Medical Genetics/Association for Molecular Pathology (ACMG/AMP) and MM-VCEP guidelines without (w/o), and

with (w/) applied functional criterion is shown. ANOVA, analysis of variance; aa, amino acid; TAD, transactivation domain.

well as qualitative platelet defects.”” Affected individuals face an
~40% risk of developing hematologic malignancies.® Germline var-
iants of RUNXT are classified following American College of Medi-
cal Genetics/Association for Molecular Pathology guidelines®
specified by recommendations of the ClinGen Myeloid Malignancies
Variant Curation Expert Panel (MM-VCEP).2 In general, classification
is based on criteria such as population, computational, segregation,
and functional data. RUNX7 missense variants must frequently be
classified as variants of uncertain significance (VUS) not allowing
clinical conclusions because only variants considered as (likely)
pathogenic confirm diagnoses. As demonstrated,'® functional analy-
ses of VUS can contribute to their reclassification to (likely) patho-
genic. Independent of patients’ phenotype and family history,
transactivation assays (TAs) address RUNX1's major function and
are, therefore, suitable for first-line screening.10 In the present study,
we evaluate applicability of TAs'® for different regions of RUNX1
and applied them to 11 RUNX1 variants for independent validation
of their clinical utility.

Methods

We analyzed the ability of variants to activate transcription of RUNX1
target genes CSF1R, ETV1, and MYL9 by applying luciferase
reporter assays in nephrogenic HEK293T and hematopoietic HEL
cells.'® As controls, wild-type (WT) RUNX1b, the pathogenic variant
Arg139Gin, and the benign variant Leu29Ser were included. The
ability to activate transcription was scored into categories according
to the MM-VCEP recommendations: (1) <20% (PS3 moderate); (2)
20% to 80%; (38) >80% to 115% (BS3 supporting); and (4)
>115% (PS3 supporting) of WT activity.® Since there are no spe-
cific instructions on combining results of multiple TAs, we followed
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general recommendations®'" and concluded the applicability of the

functional BS3/PS3 criterion (for details, please refer to Figure 1C).
If available in the literature, we included data from secondary assays
to further adapt the strength of BS3/PS3 criteria (supplemental Table
3; Figure 1C). This led to a final functional class independent of
patients’ phenotype and family history. When both BS3 and PS3 or
neither could be applied, variants were classified as variants of uncer-
tain function. Finally, variants were classified following MM-VCEP rec-
ommendations including all available data.® Variant nomenclature
refers to transcript variant 2 (NM_001001890.3) encoding for
RUNX1b (for RUNX1c, please refer to supplemental Table 1).

Results and discussion

First, we aimed to validate if TAs are suitable to detect pathogenic
RUNXT1 variants affecting different regions of the protein. We chose
a set of 7 RUNX1 (likely) pathogenic variants leading to premature
termination codons. We studied them in TAs using CSF1R, ETV1,
and MYL9 reporters (Figure 1A). Using ETV1 and MYL9 reporters,
premature termination codon variants up to codon 308 displayed
less than 20% of WT activity. The CSF1R reporter was suitable to
detect pathogenic variants up to codon 235 because for GIn235%,
enhanced transactivation of the CSF1R reporter was seen. In con-
clusion, present TAs can be applied to variants N-terminal of codon
308 (rETV1, rMYL9) or codon 235 (rCSF1R) covering most of the
missense variants in RUNX1-FPD.®'2? Of note, of 31 reported mis-
sense germline RUNXT variants classified as VUS in the RUNX1
Database, 6 are located C-terminal of codon 308."2

In the present study, we focused on 11 RUNX1T variants affecting
codons before residue 308 (Figure 1B). All variants have been

APPLICATION OF RUNX1 VARIANT CLASSIFICATION ASSAYS 3197
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Figure 2. Pedigrees of investigated patients. Panels A-G display pedigrees of investigated patients. Color-coded triangles above individual symbols refer to their
genotypes (NM_001001890.3). Numbers below individuals indicate platelet counts. Arrows indicate index patients. (A) Ser67Arg. Familial leukemia was suspected in a man
with MDS because 2 siblings had thrombocytopenia and died of AML. Germline RUNX1:¢c.201C>G p.(Ser67Arg) was identified in the index, and his daughter had mild
thrombocytopenia. At 49 years of age, clonal hematopoiesis was observed in the peripheral blood of the daughter (ie, DNMT3A, NM_022552.4:c.216del
p.[Leu723Serfs*56], variant allele frequency [VAF] 32.5%; TP53, NM_000546.4:c.722C>A p.[Ser241Tyr], VAF 12.4%). RUNX1:c.199A>C p.(Ser67Arg) had been
previously reported in the RUNX1 Database and was included in our studies. Functional data obtained were applied to classify the patient’s variant. (B) Arg80Ser. The
variant was identified in a 19-year-old patient with quantitative and qualitative (ie, storage pool disease) platelet defects, psoriasis, and allergic rhinitis. No hematologic
malignancy or additional relatives with platelet defects were reported. (C) Arg205Trp. The index patient had storage pool disease, thrombocytopenia, and developed AML at
26 years of age when RUNX1:¢.263C>A p.(AlaB8Asn) was identified as an additionally acquired somatic RUNX1 variant. Arg205Trp was inherited from II-2 having
qualitative (ie, storage pool disease) but no quantitative platelet defects. Storage pool disease was also known in the maternal grandmother (II-2) whose maternal uncle (I-3)
died of AML. (D) Asp96His. This variant was identified in a mother and her daughter reported minor bleeding issues while having normal platelet counts. Functional platelet
tests displayed qualitative defects only in I-2. No MDS and/or AML was reported in the family. Whole-exome sequencing in lI-1 did not reveal alternative candidate variants,
so RUNX1-FPD was diagnosed, but following the MM-VCEP criteria publication, Asp96His was reclassified to VUS. (E) Pro218Ser. The variant was identified in
monozygotic twins with thrombocytopenia. RUNX1-FPD was diagnosed.'” However, the variant was also identified in the twins’ father, who had no quantitative and no
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identified as heterozygous germline variants in patients with throm-
bocytopenia, myelodysplastic syndrome (MDS), acute myeloid leu-
kemia (AML), or as secondary finding. We observed transactivation
defects for Ser67Arg, Arg80Ser, Val91Glyfs*11, Arg205Trp, and
partly for Gly143Arg (Figure 1B-C). Following present classification
standards,®°® we reclassified Ser67Arg and Arg205Trp from VUS
to likely pathogenic. Our data functionally confirmed the (likely) path-
ogenic classification of Arg80Ser and Val91Glyfs*11. Additionally,
TAs demonstrated functionality of Asp96His, Pro218Ser,
Arg223His, and GIn259Lys, but the lack of further benign criteria
does not allow reclassification to (likely) benign.

For 6 of the 11 protein variants included in our study, clinical data
were available to assess the clinical utility of our functional investiga-
tions (Figure 2). Families A-C were characterized by RUNX1-FPD-
typical phenotypes including AML, MDS, thrombocytopenia, and
platelet defects. Our functional analyses of Ser67Arg, Arg80Ser,
and Arg205Trp,'® identified in these families, revealed functional
defects and led to or confirmed their likely pathogenic classification.
Molecularly confirmed RUNX1-FPD allowed targeted management
of index patients, predictive genetic testing, and, subsequently, sur-
veillance of carriers."* Surveillance permits early detection of MDS
and, thus, may improve prognosis because stem cell transplantation
can be timely performed.'® In family D, 2 carriers of the variant
Asp96His were identified, 1 of them presenting with platelet
defects. Owen et al'® have reported a classical RUNX1-FPD family
also carrying this variant. It was recently reclassified to VUS follow-
ing expert guidelines® and present TAs displayed functionality. In
pedigree E, Pro218Ser was identified in twins presenting with
thrombocytopenia'”'® and, later, also in their father having normal
platelet counts and function. This raised suspicion regarding the
causality of the variant. In line with this, no experimental evidence for
a functional impairment was observed. The variant Arg223His was
reported to us in 2 independent families. In family F, it was identified
by whole exome sequencing as a secondary finding in a girl with a
complex phenotype. It was additionally reported in the index patient
in family G having thrombocytopenia and MDS, but no RUNX1-
FPD-specific family history. No functional impairment was observed
by our TAs because all reporters showed at least 70% of WT activ-
ity. In conclusion, our functional data and the resulting variant classi-
fication confirmed RUNX1-FPD suspicion in families A-C, which
was consistent with patients’ phenotypes and family histories. In
families D-F, no FPD-suspicious family history was reported; from
our perspective, this is a rare occasion in known RUNX1-FPD fami-
lies. In line with this, we demonstrated functionality of the reported
variants. Implementation of easy-to-apply TAs for missense VUS
N-terminal of codon 308 is recommended and allows functional
classification independent of patients’ phenotype. This improves
translation of genetic data into personalized clinical care by support-
ing RUNX1-FPD diagnoses or denying functional impact of variants
investigated.

In summary, we validated the clinical utility of our previously reported
TAs'® by studying additional RUNX7 variants and discussing them
in their clinical context. Limitations of TAs regarding variants
C-terminal of the codon 308 have to be considered, but, in the con-
text of RUNX1-FPD, this applies only to a minority of observed
RUNXT missense variants.>'? Implementation of adequately per-
formed TAs in the MM-VCEP classification scheme can be key to
reclassify VUS observed in RUNX1, which is essential for patient
care because only (likely) pathogenic variants molecularly confirm
diagnoses. Following the present guidelines, the majority of VUS
without functional impairments cannot be reclassified to (likely)
benign, even if secondary assays demonstrate functionality.'® This
limitation illustrates the need to consider a careful reevaluation of
the present MM-VCEP guidelines. TAs support translation of
genetic data into personalized clinical care, regarding both index
patients and relatives at risk and, if applicable, should be integrated
as first-ine screening when VUS are identified. Future attempts
must focus on the establishment of functional assays covering the
C-terminal part of the protein and consider high-throughput assays
that allow fast and accurate classification of RUNX7 variants.
Because RUNX1-FPD may be underdiagnosed among patients with
AML'>'319 and germline testing of all patients with hematologic
malignancies might be considered in the future,?° variant classifica-
tion will become even more important to support clinical decision-
making.
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Figure 2 (continued) qualitative platelet defects. This raised suspicion regarding pathogenicity of the variant. To date, even after an extended thrombocytopenia panel, the

genetic origin of the thrombocytopenia remains unknown. (F) Arg223His. The variant was reported as secondary finding by whole-exome sequencing in a 5-year-old girl

who, following preterm birth, had developed bronchopulmonary dysplasia with subsequent chronic lung disease, hearing loss, and skeletal dysplasia with infantile scoliosis.

Larsen syndrome was diagnosed. No thrombocytopenia or abnormal whole blood cell counts were seen. Functional platelet tests had not been performed. Idiopathic

thrombocytopenia was reported for the maternal grandmother; however, her mother did not carry the variant. (G) Arg223His. In this family, the same variant as in family

F was identified in a 12-year-old patient with refractory cytopenia in childhood. She was tested for hereditary bone marrow failure while being scheduled for hematopoietic

stem cell transplantation (HSCT). na, no genetic testing.
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