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BACKGROUND Accurate, rapid quantification of ventricular scar
using cardiac magnetic resonance imaging (CMR) carries importance
in arrhythmia management and patient prognosis. Artificial intelli-
gence (AI) has been applied to other radiological challenges with
success.

OBJECTIVE We aimed to assess AI methodologies used for left ven-
tricular scar identification in CMR, imaging sequences used for
training, and its diagnostic evaluation.

METHODS Following PRISMA recommendations, a systematic
search of PubMed, Embase, Web of Science, CINAHL, OpenDisserta-
tions, arXiv, and IEEE Xplore was undertaken to June 2021 for
full-text publications assessing left ventricular scar identification
algorithms. No pre-registration was undertaken. Random-effect
meta-analysis was performed to assess Dice Coefficient (DSC) over-
lap of learning vs predefined thresholding methods.

RESULTS Thirty-five articles were included for final review. Super-
vised and unsupervised learning models had similar DSC compared
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to predefined threshold models (0.616 vs 0.633, P 5 .14) but had
higher sensitivity, specificity, and accuracy. Meta-analysis of 4
studies revealed standardized mean difference of 1.11; 95% confi-
dence interval -0.16 to 2.38, P 5 .09, I2 5 98% favoring learning
methods.

CONCLUSION Feasibility of applying AI to the task of scar detec-
tion in CMR has been demonstrated, but model evaluation remains
heterogenous. Progression toward clinical application requires
detailed, transparent, standardized model comparison and
increased model generalizability.
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Imaging – cardiac magnetic resonance imaging (MRI); Machine
learning; Neural networks
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Background and objectives
Accurate identification of cardiac scar is growing in impor-
tance. Previous studies demonstrate that ventricular scar vol-
ume/mass is associated with ventricular arrhythmia episode
risk1 and response to medical and device therapies.2 Descrip-
tive delineation can improve electrophysiological procedural
outcomes.3 Subsequently, scar metrics are increasingly inte-
grated into clinical practice as a decision aid guiding patient
therapy.4

Cardiac magnetic resonance imaging (CMR) is the current
gold standard for tissue characterization.5 However, expert
manual delineation is time-consuming, with significant inter-
operator variability. Methods to improve objective quantifi-
cation through means such as thresholding and full-width
half-maximum can reduce time and improve reproducibility.
However, outcome variability between these methods exists
and none are preferentially recommended.5,6 Moreover, these
techniques are often solely based on signal intensity and may
require further human postprocessing (Figure 1).

Artificial intelligence (AI) is a broad term encompassing a
multitude of functions, including the undertaking of tasks
normally requiring human intelligence. Subsets including
machine learning (ML) and deep learning (DL) have been
investigated as solutions to clinical challenges. The use of
AI in general medical and cardiac imaging research has
developed rapidly owing to technological advances and the
data-rich environment of imaging. Models ranging from sim-
ple task automation to deep investigative associations have
been developed.7

Classical AI methods typically make decisions based on
hand-crafted rules or predefined thresholds, whereas ML
models can “learn” rules and associations from patterns sta-
tistically discerned from datasets. DL is a subcategory of
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KEY FINDINGS

� Artificial intelligence models have been shown to be
feasible for the segmentation of cardiac structures
including scar.

� There is no clear benefit of supervised or unsupervised
learning models over predefined thresholding models.
Random-effect analysis may suggest a benefit of
learning models, but high heterogeneity exists.

� Comparison of models to identify superior methodolo-
gies remains challenging in humans owing to a lack of
true scar “ground truth” as reference, with significant
variation in assessment methods utilized and limited
access to final Algorithm codes.

� Standardization of model evaluation, transparency in
training/testing data, and highly generalizable models
are recommended before transition to clinical practice
can be considered.
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ML that specifically uses multilayer artificial neural networks
for decision-making. Training can be supervised or unsuper-
vised.8 The proposed advantage of AI tools for scar identifi-
cation includes rapid precision-based undertaking of routine
tasks utilizing the wealth of data available with CMR.

We undertook a targeted systematic review of publications
including AI methods for the identification of left ventricular
(LV) cardiac scar in CMR to answer the following questions:

(1) What AI methods are being employed for ventricular
scar assessment in those with cardiac disease onCMR?

(2) What CMR sequences are being utilized?
(3) What are the diagnostic evaluations of these methods?
Methods
This review adhered to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) recommen-
dations9 (Supplemental Appendices A and B). No pre-
registration was undertaken.
Search strategy and data sources
We performed a systematic search up to June 2021 of
PubMed, Embase, Web of Science, Cumulative Index to
Nursing and Allied Health Literature (CINAHL), OpenDis-
sertations, arXiv, and IEEE Xplore. Full Boolean criteria
appear in Supplemental Appendix C.

Records were imported into Rayyan (Qatar Computing
Research Institute, Doha, Qatar) and duplicates were manu-
ally removed.
Study selection
Articles underwent independent abstract screening for eligi-
bility and full-text review by at least 2 reviewers (NJ, AP,
AS), with conflicts resolved by a third.
Full-text articles evaluating AI algorithms for LV scar
identification with CMR annotations were included. Exclu-
sion criteria included animal-based studies, algorithms pri-
marily utilizing predefined thresholds, absence of scar
annotations, non-CMR imaging, letters to editors, editorials,
abstract-only publications/posters, studies not in the English
language, and non-LV scar studies.

Data extraction and analysis
We extracted following variables, where available: AI Algo-
rithm characteristics, dataset characteristics, primary cardiac
disease, CMR characteristics, ground-truth assessment, and
evaluation measures.

Owing to the unique complexities of individual algo-
rithms and to enable study comparison, methodologies
were broadly categorized into supervised and unsupervised
methods, with further subcategorization if appreciable in
the main text. The definition of “fully automated” required
no human interaction from image input to result output.

CMR sequence categorization accounted for nomencla-
ture among different manufacturers. Dataset size was as-
sessed through total caseload, with cases defined as
individual CMR scans. Primary cardiac disease was broadly
categorized, with mixed-etiology studies highlighted.

Where required, conversion to mean was undertaken.10,11

Grouped means were calculated using Cochrane’s formula.
Welch test was used for comparison of means. Random-
effect meta-analyses of continuous primary outcome (Dice
coefficient) was expressed as standardized mean difference
with a 95% confidence interval. Comparison between pro-
posed and comparator predefined thresholding methods
was undertaken. Analysis was visualized by a forest plot.
The extent of between-study heterogeneity was assessed
with the I2 statistic. Funnel plots were used to assess publica-
tion bias. The ROBINS-I tool was used to evaluate the risk of
bias of each study included in quantitative analysis by inde-
pendent assessors and the robvis tool was used for visualiza-
tion.12 P values were 2-tailed, with values ,.05 considered
statistically significant. Extracted data are available in
Supplemental Appendix C.
Results
Of 6156 results, 35 were included for qualitative analysis.
Four contained predefined thresholding comparators for
quantitative analysis (Figure 2).

Articles included were published between the years 2010
and 2021, with increasing publications in recent years, with
the highest in 2020 (n 5 8).

CMR dataset

Sequences and magnet strength
All studies used CMR; however, 1 study did not specify se-
quences.

All 34 articles describing CMR sequences utilized late
gadolinium–enhanced short-axis imaging as a minimum,



Figure 1 Simplified comparison of distinct cardiac magnetic resonance image segmentation methods. Far-left image demonstrates a short-axis view of trans-
mural septal scar. In subsequent images, green represents epicardial border, magenta endocardial, and purple segmented scar for thresholding (top) and manual
(bottom) techniques.
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with most undertaken with 2D imaging and breath-holds
(82.35%). Of the 6 of 34 (17.65%) utilizing 3D late gadolin-
ium enhancement, 4 utilized 3D whole-heart imaging, with
the remaining consisting of breath-hold sequences.

Additional sequences were only used in combination with
2D late gadolinium enhancement (25/28, 89.29%), with the
most frequent being a variation of cine imaging.

Ten articles did not declare CMR magnet strength. Of the
remaining, 12 used only 1.5 Tesla (T), 6 only 3 T, and 7 a
combination.

Manufacturers
CMR manufacturer was declared in 25 of 35 articles: 59.3%,
25.9%, and 18.5% for Siemens, Philips, and General Electric,
respectively. Only 5 studies used multiple manufacturers; 1
utilized all 3 manufacturers, 2 used Philips and Siemens,
and 2 were unclear on designations.

Dataset size
Excluding postprocessing transformations, a total of 3856
human CMR studies in 32 of 35 articles were utilized, with
a range of 3–1073 and a median (interquartile range) of 45
(24–143.5). Three articles had unclear datasets.

Nine studies employed augmentation to increase the num-
ber of examples for model training.

Cardiac diseases
The most common cardiac disease examined was ischemic
heart disease (21/35); however, only 14 contained solely
ischemic images. The remaining ischemic cohorts were
combined with “normal” images (4), tetralogy of Fallot (1),
unspecified (1), or a combination (1). Four studies assessed
hypertrophic cardiomyopathy (11.4%) and 9 did not specify
any disease etiology (25.7%). Intracardiac device presence
was not declared.
AI methods
DL and ML were represented in 60% and 40%, respec-
tively. Subcategorization of DL algorithms were convolu-
tional neural networks based on 2D models (12/21), 3D
models (4/21), or other/unspecified (5/21). Most DL ap-
proaches used a convolutional neural network with
U-Net architecture. ML algorithms that referred to clas-
sical ML methods using hand-crafted features included
13 various models with at least 6 studies employing mul-
tiple models.

Only 4 papers utilized unsupervised primarymethods—all
classic ML. Twenty-four of 35 ML/DL methods were fully
automated, with 9 of 11 nonautomated algorithms utilizing
ML methods (Table 1).
Diagnostic evaluation
Ground truth
Ground-truth segmentations were all acquired from human
delineation, 9 of which highlighted semiautomated thresh-
olding techniques as segmentation aids. No histological
confirmation was undertaken.



6156 records identified from: 
PubMed (n = 935)
Embase (n = 2724)
CINAHL (n = 236)
OpenDissertations (n = 33)
IEEE Xplore (n = 138)
Web of Sciences (n = 2068)
Arxiv (n = 22)

Records removed before 
screening:
Duplicate records removed (n = 
1743)

Records screened
(n = 4388)

Records excluded
(n = 4241)

Reports sought for retrieval
(n = 147)

Reports not retrieved
(n = 19)

Reports assessed for eligibility
(n = 128)

Reports excluded:
Abstract Only (n = 23)
Animal Only Study (n = 2)
Duplicates (n = 4)
Review article (n = 16)
Non-Cardiac (n = 2)
No scar identification (n = 24)
No “learning” algorithm 
(n = 22)

Studies included in review
(n = 35)

Studies included in meta-
analysis
(n=4)

Identification of studies via databases and registers
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Figure 2 PRISMA flowchart of study selection process.
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Evaluation metrics
All methods were compared to a minimum of human delin-
eated ground truth. Four studies compared performance of
proposed and predefined thresholding methods.19,22,43,44

Twenty-seven different reported evaluation metrics were
utilized. Common metrics existed in 3 groups: overlap, dis-
tance, and volume metrics (Table 2).

DSC was the most common statistical metric in 54% of
studies, followed by sensitivity (17.1%).

Tables 3 and 4 compare results of 5 evaluation methods in
studies with comparable data. No statistically significant dif-
ference was seen in DSC between predefined threshold
models compared to supervised and unsupervised learning
methods (0.633 vs 0.616, P 5 .14), with unsupervised
methods performing better than supervised (0.732 vs 0.599,
P , .05). However, substantial dataset size variance is pre-
sent.

Higher sensitivity, specificity, and accuracy were seen in
proposed methods, namely supervised, compared to prede-
fined thresholding with an associated lower Haussdorf dis-
tance.

In 4 studies with direct predefined thresholding vs super-
vised/unsupervised learning comparisons, weak evidence
of a small effect with high heterogeneity was seen in
learning models with higher DSC, standardized mean differ-
ence5 1.11; 95%CI -0.16 to 2.38, P5 .09 (Figure 3). Visual
inspection of funnel plots did not reveal asymmetry in
studies, though sparse data existed (Figure 4). Studies had
low (n 5 2) and moderate (n 5 2) risk of bias
(Supplemental Appendix C).



Table 1 Summary of reviewed studies

Author, year of
publication

Supervised
learning?

Full
Automation?

Final code
available? MRI sequences

Dataset condition
cohort

Abramson, 202013 Yes Yes No Cine, 2D LGE Ischemic
Brahim, 202014 Yes Yes No 2D LGE Mixed – Ischemic,

healthy,
not specified

Brahim, 202115 Yes Yes No 2D LGE Mixed – Ischemic,
healthy

Brahim, 202116 Yes Yes No 2D LGE Mixed – Ischemic,
healthy

Campello, 202017 Yes Yes No Cine, 2D LGE, T2 Not specified
Carminati, 201518 No No No 2D LGE Ischemic
Carminati, 201619 No No No 2D LGE Ischemic
De la Rosa, 201920 Yes Yes No Cine, 2D LGE Mixed – Ischemic,

healthy
Engblom, 201621 Yes Yes No 2D LGE Ischemic
Fadil, 202122 Yes Yes Yes Cine, 2D LGE, pre- &

postcontrast T1, T2
Mixed – Ischemic,
healthy,
not specified

Fahmy, 202023 Yes Yes Yes Cine, 2D LGE Hypertrophic
cardiomyopathy

Fahmy, 202124 Yes Yes Yes 2D LGE Hypertrophic
cardiomyopathy

Heidenreich, 202125 Yes Yes Yes 2D LGE Ischemic
Kotu, 201126 Yes Yes No 2D LGE Not specified
Kurzendorfer, 201827 Yes No No 3D LGE Not specified
Larroza, 201728 Yes No Yes Cine, 2D LGE Ischemic
Larroza, 201829 Yes No No Cine, 2D LGE Ischemic
Lau, 201830 Yes Yes No 2D LGE Not specified
Mantilla, 201531 Yes Yes No 2D LGE Hypertrophic

cardiomyopathy
Merino-Caviedes, 201632 Yes No No Cine, 2D LGE Hypertrophic

cardiomyopathy
Metwally, 201033 No Yes No 2D LGE Not specified
Moccia, 201834 Yes Yes No 2D LGE Ischemic
Moccia, 201935 Yes Yes No 2D LGE Ischemic
Moccia, 202036 Yes Yes No Cine, 2D LGE Ischemic
Morisi, 201537 Yes No No 3D LGE Not specified
Rajchl, 201438 No No No 3D LGE (WH) Mixed – Ischemic,

Tetralogy
of Fallot

Rukundo, 202039 Yes Yes No 2D LGE Not specified
Wang, 201140 Yes Yes No 2D LGE Ischaemic
Wang, 202041 Yes Yes No Not specified Mixed – Ischemic,

healthy
Zabihollahy, 201842 Yes No No 3D LGE (WH) Ischemic
Zabihollahy, 201943 Yes No No 3D LGE (WH) Ischemic
Zabihollahy, 202044 Yes Yes No 3D LGE (WH) Ischemic
Zhang Z, 202045 Yes Yes No Cine, 2D LGE, T2 Not specified
Zhang X, 202046 Yes Yes No Cine, 2D LGE, T2 Not specified
Zhuang, 201947 Yes No No Cine, 2D LGE, T2 Not specified

LGE 5 late gadolinium enhancement; WH 5 whole-heart imaging.
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Discussion
In this article, we reviewed published literature surrounding
methods for CMR scar segmentation. As expected, with tech-
nological advances, increasing numbers of studies using
learning methods have been published internationally, high-
lighting the subject’s global interest and clinical potential.

With the recent rapid expansion of AI, many state-of-the-
art reviews exist covering current and potential applications
for general cardiology.7 Our review focuses on progress
within 1 specific aspect of cardiology to provide clinically
relatable interpretation. For this purpose, it is important to
consider evaluation, practicality, and patient/scanner general-
izability.

Evaluation
Our review has not demonstrated clear benefit of supervised/
unsupervised learning vs predefined thresholding methods
for LV scar segmentation methods. Unsupervised models



Table 2 Summary of evaluation metrics utilized

Reported evaluation metrics

Overlap
Dice coefficient, Jaccard index/intersection over union, Sensitivity
specificity, Accuracy, Precision, F-score, Mean BF1, Recall,
Segment overlap, Repeatability, True/false positive & negative

Distance
Haussdorf distance, Surface distance, Average contour distance,
Root-mean-squared area

Volume
Left ventricular volume, Scar/infarct volume, Scar mass, Absolute
volume difference 6 normalization, Total volume error,
Percentage volume error, Scar as myocardial percentage, Mean
absolute error 6 normalization, Left ventricular mass
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performed better than other models when considering vol-
ume overlap (DSC), but the inverse was seen in sensitivity,
specificity, and Haussdorf distance, with supervised methods
outperforming others. However, limited comparisons and
significant heterogeneity in evaluation methods was evident.
In direct comparison from 4 studies, there was weak evidence
favoring supervised/unsupervised learning methods. Further-
more, it is questionable whether the small differences demon-
strated would translate to clinical benefit.

Three evaluation categorieswere present: overlap, distance,
and volume metrics. Combinations of metrics are required to
extensively assess segmentationmodels. Unfortunately, owing
to absence of clear guidance regarding minimal and/or prefer-
ablemetrics,manymodelsdescribed todatemaynot bedirectly
comparable. The use of segmentation challenges mitigates
some of these issues with standardized datasets and reporting
measures but is associated with its own caveats.48

Moreover, studies predominantly compared their pro-
posed model to initial ground-truth or other supervised
models, with little comparison to various clinically utilized
non–learning methods.

For integration into clinical practice, future research must
compare standard clinical applications against novel methods
through robust multimodal comparable metrics.
Practicality
A noteworthy benefit of the described AI methods is automa-
ticity. Guidelines recommend objective quantification of
Table 3 Comparison of reported Dice coefficient and Haussdorf distanc

Dice coefficient

Mean (SD)
Total test
cases

Predefined threshold 0.633† (0.15) 306
Supervised and unsupervised
learning

0.616† (0.256) 1125

Supervised learning 0.599‡ (0.264) 984
Unsupervised learning 0.732‡ (0.153) 141
†P 5 .14.
‡P , .05.
cardiac structures and function.5 Hence, full automation of
scar assessment is desirable to reduce operator burden.
Many existent predefined thresholding algorithms for scar
quantification are applied once myocardial borders are delin-
eated—a semiautomatic process.5,6 Myocardial border anno-
tation deviations may lead to scar misevaluation and this
issue extends to all methodologies dependent on predefined
ground-truth borders. Subsequently, published segmentation
results may not be directly transferable clinically when reliant
on border segmentation quality. Fully automated AI methods
for both myocardial and scar segmentation may result in
more reproducible and objective segmentation labels.

However, the black-box problem of DL decision-making
processes being essentially noninterpretable remains a
considerable issue. Until this problem is solved, human over-
sight and manual input for segmentation and correction re-
mains essential to ensure patient safety in the clinical
context, currently limiting the potential of a truly automatic
approach outside the research environment. Unsupervised
methods and rule-based ML algorithms have an advantage
in this respect owing to relatively explainable methodologies,
which may be important for clinical confidence.
Generalizability
Clinical use and external generalizability of models requires
applicability to a variety of patients/scanners and is depen-
dent on image or model complexity and training datasets.

Scar patterns vary across different cardiomyopathies.
Ischemic scar arises from the subendocardium, with epicar-
dial progression compared with a more heterogenous distri-
bution in nonischemic cardiomyopathies.49 With the high
prevalence of ischemic heart disease and its associated signif-
icant mortality, predominance of ischemic scar models is un-
derstandable and clinically necessary.50 Nonischemic
etiologies have been investigated but are more sparse.23,24

Of greater concern is that 25.7% of publications did not
specify disease etiology.

Training datasets have significant impact on model perfor-
mance. Hence, detailed descriptions of dataset disease etiol-
ogies are of great importance for clinical utility, especially as
studies assessing model transferability across disease cohorts
without retraining are sparse.

Metadata can vary between manufacturers and magnet
strengths,51 and models trained with specific data may not
e for scar segmentation

Haussdorf distance

No. of
studies Mean

Total test
cases

No. of
studies

4 37.973 82 2
13 18.135 230 3

9 18.135 230 3
4 - - -



Table 4 Comparison of reported mean sensitivity, specificity, and accuracy for scar segmentation

Sensitivity
Total
test cases

No. of
studies Specificity

Total
test cases

No. of
studies Accuracy

Total
test cases

No. of
studies

Predefined threshold 83.91 160 1 90.79 160 1 88.51 160 1
Supervised and unsupervised learning 91.4 882 4 97.11 870 3 92.99 1296 6
Supervised learning 95.09 520 2 98.95 520 2 94.03 776 4
Unsupervised learning 83.79 372 5 94.38 350 3 88.4 520 3
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be generally applicable. Only a small subset of studies
included multiple CMR manufactures to mitigate this
risk.13,21-23,30,39 Training data on various field strengths
would allow greater generalizability clinically, but 1.5 T re-
mains the current standard, with 3 T employed mainly by
more experienced imaging centers.5 Similarly, regional
manufacturer predominance may exist.52 Inclusion of multi-
ple manufacturers and field strengths for generalizability is to
be commended and should be actively sought; however, data
suggest 1.5 T Siemens scans have the largest data support for
clinical application.52

Small datasets are the main limitation for optimal Algo-
rithm creation. Access to data remains a limitation to re-
searchers explaining, in part, the large variation in dataset
size range.

Reducing barriers to data accessibility may reduce
training/testing data variability and improving model compa-
rability. Collaborative sharing and access to such data is an
important consideration.21 Critically, labeled data are
required to avoid time-consuming reanalysis and promote
transparent result comparison. Other smaller datasets exist
in the form of CMR challenges for more standardized model
comparison. Further options to improve generalizability
within existing datasets include augmentation through image
transformations or using generative adversarial networks to
produce synthetic images.13,30
Conclusion
Feasibility of applying AI to the task of scar segmentation in
CMR has been demonstrated. Progression toward clinical
Figure 3 Forest plot of supervised and unsupervis
application requires dataset transparency, evaluation, stan-
dardization, and model generalizability.
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Figure 4 Funnel plot. Visual analysis suggests no bias, though data points
are sparse. SE 5 standard error; SMD 5 standardized mean difference.
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Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.cvdhj.2
021.11.005.
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