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Abstract

Background: With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of
DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose
computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream
processors within graphics processing cores and provides a cost-effective and energy efficient alternative to
traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of
BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of
sequencing reads generated by these instruments to a reference DNA sequence.

Findings: Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we
ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive
parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when
compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of
supporting multiple CUDA devices in parallel to further accelerate the alignment throughput.

Conclusions: BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of
millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the
current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing
technology.
BarraCUDA is currently available from http://seqbarracuda.sf.net

Background
Next-generation sequencing (NGS) is a technique based
on sequencing by synthesis or sequencing by ligation in
a massively parallel fashion and generates short sequen-
cing reads ranging from 25 to 400 bp. The first com-
mercially available next-generation sequencer, the
Genome Sequencer 20 was released by 454 Life Sciences
in 2005 [1] with the hope of enabling the analysis of
complete genomes within a short period of time [2]. It
produced a throughput of 20 megabases from a 5-hour
run, which was 30 fold higher than traditional Sanger
capillary electrophoresis systems. Over these years, the

output of next-generation sequencers has increased 30,
000 fold to 600 gigabases from a single instrument run
(Illumina Hiseq 2000) which is about 200 times the
depth of coverage of an entire human genome.
The advancement of the technology has generated an

enormous amount of sequence data [3]. Sequence align-
ment is one of the first steps for downstream data ana-
lyses, during which sequencing reads have to be mapped
either to other reads to form a genome (also known as
de novo sequence assembly) [1,4]; or on to a reference
DNA sequence, usually a genome, for downstream
applications such as single-nucleotide polymorphism
(SNP) discovery [3], Chip-Seq [5] or RNA-Seq [6]. Here
we focus on the latter type of alignments.
A handful of software packages have been developed

for computing alignments of sequencing reads generated
by NGS instruments on to a reference sequence. Early
generation aligners such as MAQ [7], RMAP [8,9] and
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Soap [10] use hash-based algorithms to perform the
mapping of sequencing reads on to reference genomes.
Even though these tools can be accelerated by several
seeding approaches, or parallelized by using multiple
cores and cloud computing (e.g. CloudBurst [11]), the
computational cost remains expensive. For example, by
extrapolating the result from Schtaz et al. [11], it would
take over 30, 000 CPU hours to align reads generated
from a single HiSeq 2000 run.
Later in 2009, a new generation of sequence aligners

were released, namely Soap2 [12], Bowtie [13] and BWA
[14]. These tools use a suffix tree-based algorithm (also
known as FM-index) based on Burrows-Wheeler Trans-
form (BWT). BWT is a block-sorting algorithm origin-
ally designed for lossless data compression [15], it can
also be used for string matching by a backward search
approach [16]. The major advantages of this approach
include a low time complexity of O(n) to find an exact
match where n is the length of the query [16] and the
performance is independent from the size of the refer-
ence sequence. In addition, a high compression ratio of
2.5 bit per base for the reference genome [17] also
means a full human genome can fit into 1.3 GB of
space. The new algorithm is a magnitude quicker and
much more memory efficient than their hash-based pre-
decessors [14]. In an experiment performed by Li and
Durbin [14] the alignment throughput for 12.2 million
51 bp reads being mapped to the Human genome went
down from 94 CPU hours (MAQ) to 4 CPU hours
(BWA) on a 2.5 GHz Intel Harpertown-based Xeon
E5420 while retaining comparable accuracy in alignment
mapping.
Modern graphics cards are designed primarily for ren-

dering real time, high-definition complex 3D graphics fea-
tures for various visual applications such as gaming and
graphics design. Each graphics processing unit, or GPU,
consists of many high performance stream processors cap-
able of performing billions of independent calculations per
second in order to meet the high visualization demand
required for graphics applications. It is this processing
capability that can be translated into a general-purpose
computation capability equivalent to a small cluster of tra-
ditional CPUs. In addition, the lower energy profile and
cost means the use of GPU to perform parallel computing
tasks has become increasingly attractive. Many modern
supercomputers including the Chinese Tianhe-1A, Nebu-
lae and Japanese Tsubame 2.0 (http://www.top500.org/
lists/2010/11) also contain multiple GPU nodes on top of
traditional nodes with CPUs to take advantage to the par-
allel computing capability of GPUs.
MUMmerGPU [18,19] is one of the first GPGPU-

based DNA alignment software that utilizes the NVIDIA
Compute Unified Device Architecture (CUDA) to per-
form variable-length maximal exact DNA alignments.

Unlike other BWT aligners it uses a different suffix-tree
approach, namely Ukkonen’s algorithm [20] to find
exact matches in the reference sequence of all the sub-
strings in the query DNA sequence. The current version
of MUMmer GPU out-performs its CPU counterpart by
13 fold [18,19]. However, unlike other sequence aligners
mentioned in the previous section, MUMmerGPU does
not support inexact alignments by itself and has to be
used in conjunction with the original MUMmer soft-
ware package [21] to perform inexact alignments.
Here we introduce BarraCUDA, a program that takes

advantage of GPGPU to perform inexact alignment of
sequencing reads on to a reference sequence. Barra-
CUDA is built on the foundation of BWA and we have
rewritten the BWT-based alignment core module to
make use of the massive parallelism of GPGPU. It also
employs the fast and memory efficient BWT-based algo-
rithm employed in the original software and supports
mismatches and full gapped alignment of sequencing
reads.

Software implementation
BarraCUDA utilises NVIDIA’s GPGPU implementation,
namely Compute Unified Device Architecture (CUDA)
to parallelise the alignment of sequence reads. Firstly,
the program loads the complete BWT-encoded refer-
ence sequence and sequence reads from disk to GPU
memory; This is followed by launching a GPU align-
ment kernel, where the alignment task of each of the
sequence reads are distributed to hundreds of proces-
sors within the GPU and computations are performed
in parallel; Once the kernel finishes, the alignment
results are transferred from GPU back to disk. The fol-
lowing sections describe the details of each of the steps
performed in BarraCUDA. (Please also refer to the
Additional file 1 for the pseudo-code algorithm
framework)
1. Transferring BWT-encoded reference sequence and
sequence reads from disk to GPU
BarraCUDA first loads the full BWT suffix array from
disk into cached texture memory in the GPU using a 1-
dimensional uint4 array to ensure fast data access.
Sequence reads are loaded into GPU memory in batches
and packed in a single continuous block to minimise
internal fragmentations, and the data is also bound to
the texture cache to maximise the data throughput.
2. CUDA thread assignments
Mapping a sequence read to a reference sequence is a
data independent process and does not require any
information from any of the other reads, thus Barra-
CUDA employs a straightforward data parallelism by
assigning an alignment kernel thread to each of the indi-
vidual sequencing reads and launching the GPU kernel
with tens of thousands of threads at the same time.
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3. Inexact sequence alignment–a depth-first search GPU
kernel
The alignment kernel in BarraCUDA, like BWA and all
other BWT-based sequence aligners, consists of a back-
ward search string-matching algorithm [13,14] to look for
alignments. Inexact alignment requires a search space of
O(9n) in order to generate and evaluate a series of base
substitutions that could lead to an exact string match (Fig-
ure 1a). BarraCUDA differs from BWA in its strategy to

perform search traversal. While BWA utilises a time effi-
cient breadth-first search (BFS) approach as shown in Fig-
ure 1b, it can utilize a maximum of 40 MB of memory
space for each computational thread (please refer to the
Additional file 1 for explanations). With thousands of con-
current threads on the GPU, the memory to each thread is
very limited and BFS does not seem to be an option.
Therefore in BarraCUDA, we adopted a difference-bound
DFS approach (as outlined in Figure 1c) where it uses 20,
000 fold less memory to perform alignments (see Addi-
tional file 1). Rather than storing all partial hits while tra-
versing through the search space, the DFS algorithm only
stores in memory the branch of the search space with the
local best hit score, i.e. (1), (1, 1) followed by (1, 1, 1) to
give a full alignment (Figure 1c). Nonetheless, DFS is not
as time efficient as BFS employed in BWA, BarraCUDA
has to re-assess nodes multiple times until all possible hits
from that node are evaluated, for instance in Figure 1c, the
program has to return from (1, 1, 1) to (1, 1) in order to
reach (1, 1, 3) as the next best hit, and this is particular a
problem when the read length is long and the search
space is extremely large.
4. Multiple kernel design
Long sequence reads are divided into short fragments 32
bp (default seed length) and alignment is performed by
multiple consecutive DFS kernel runs. Figure 2 illus-
trates an example of such approach with the alignment
of a 5 bp read, the first DFS kernel (GPU thread A)
only maps up to the third base (nodes 3.1, 5.1 and 6.1),
and partial alignments at this point are returned from
the GPU and stored in a temporary memory stack on
the host computer (rounded square). After that, similar
to BWA’s BFS, all partial hits in the host memory store
are ranked by their number of differences by the host
code where the best hits are prioritised for the subse-
quent kernel launch, (i.e. GPU thread B, GPU thread C
followed by GPU thread D). By doing this, we could
reduce significantly the number of revisits by the DFS
agent to the length of the fragments (32 bp), and thus
lower the serialisations caused by thread divergence
compared to alignment using one single kernel. In addi-
tion, this could also allow us to discard partial hits that
have more than z + 1 differences on the memory stack,
as in BWA, when a full alignment is found, to increase
the computing efficiency.
5. Alignment data management
During runtime, the alignment data for each of the
sequence reads including BWT suffix array (SA) coordi-
nates and the number of differences is stored tempora-
rily in GPU memory. Once the kernel finishes, the data
are copied from the GPU back to the host and subse-
quently written onto disk storage in a binary file format.
Similar to BWA, the SA coordinates can then be trans-
lated to linear space using BarraCUDA’s ‘samse’ or
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Figure 1 The search space traversal for inexact alignments. A.
There are 4 types of alignments for each base, namely exact match,
mismatch, insertion and deletion. A mismatch alignment is
performed by substituting the reference base G with the three
other possible bases (A, T and C). Insertions are detected by
deleting the base from the query sequence, and deletions by
inserting all 4 bases into the query sequence. B. A BFS strategy: BFS
starts from the first base (1) and stores all hits in daughter nodes (1,
1)...(1, 3) in memory (with shaded squares), then it chooses (1, 1)
and expands it into (1, 1, 1) ... (1, 1, 3). With all the nodes in
memory, the agent then evaluates (1, 1, 1) which returns an
alignment followed by (1, 1, 3), a suboptimal alignment, which is
the next best hit in memory. After that the agent proceeds to (1, 2)
which has the same number of differences as (1, 1, 3). BWA does
not process nodes with more than z + 1 differences, i.e. (1, 3), (1, 1,
2) with the default option. C. A DFS strategy: DFS chooses the best
hit (1, 1) from (1), and subsequently chooses (1, 1, 1) which returns
an alignment. Then the agent goes back to (1, 1) to reach (1, 1, 3)
as the next best hit to return the sub-optimal alignment. After that,
the agent returns to (1, 1), then (1) to reach (1, 2) (not shown). Like
BWA, BarraCUDA skips nodes with > z + 1 differences by default.
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‘sampe’ cores for single-end or paired-end libraries
respectively.

Findings
BarraCUDA shares a similar alignment accuracy as BWA
It is important that the changes in the search algorithm
and alignment criteria in BarraCUDA do not penalize the
alignment accuracy of the software. To test this, we first
generated a library of 1 million pairs of simulated reads of
70 bp from the Caenorhabditis Elegans genome
(WS200.55, 102 million bp) using ‘wgsim’ from SAMtools
[22] with a base error rate of 0.02. We then mapped the
reads back to the same genome using BWA and Barra-
CUDA. To measure the mapping accuracy we calculated
the percentage of reads mapped, and the rate of incorrect
mappings using a mapping quality threshold of 10 (Phred-
scale). As shown in Table 1, both BWA and BarraCUDA
reported a similar percentage of reads mapped to the C.
Elegans genome at around 90% and 96% single-end and
paired-end respectively. The error rate was also very simi-
lar between BWA and BarraCUDA, where about 0.06% of

both single and paired end reads were incorrectly aligned
to the genome.

Ungapped alignment has minimal effects on alignment
accuracy
Gapped alignment is costly in terms of alignment
throughput, due to the much larger search space O(9n)
compared to O(4n) when gap opening is disabled (Figure
1a). In a separate experiment, we performed the align-
ment of the same set of data above with gap opening
disabled (using option ‘-o 0’) and found that the number
of confident mappings and the error rates were largely
unaffected (Table 1).
The choice between gapped and ungapped alignment

is largely dependent on the nature of the sequencing
experiments. For re-sequencing studies, gapped align-
ment is essential to minimise false positive variant calls
[23]. On the other hand, we would recommend dis-
abling gap opening using option ‘-o 0’ for experiments
such as Chip-seq or RNA-seq for good performance.

Gapped alignment throughput of a GPU is equivalent to
that of 6 CPU cores
The alignment throughputs of BarraCUDA and BWA
were measured by mapping 2 sets of paired-end whole-
genome shotgun libraries containing sequencing reads
of 37 bp, and 76 bp in length (1000 Genomes Project,
European Nucleotide Archive accession: ERR003014 and
SRR032215 respectively) on to the human genome
(NCBI36.54).
For BWT-index construction, both BWA and Barra-

CUDA utilize the same BWT-indexing core [24] and
took about 1.5 h to complete (data not shown). The
encoded genome was 2.6 GB including both the forward
and reverse BWT indices. It is useful to note that all
BWT-related files (.bwt,.rbwt,.ann,.sa,.rsa,.pac,.rpac) only
needed to be generated once, and that the files are com-
patible between the two programs.
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Figure 2 A multiple kernel design. The alignment of a
sequencing read is performed by multiple DFS kernel threads. Each
of the sequencing reads is partitioned into short fragments and
multiple kernel threads are launched to map each of the fragments
to the reference in a consecutive manner. The figure shows an
example of mapping a 5 bp read: The first kernel thread (A)
processes only the first 3 bp and returns partial hits (3), (5) and (6)
to a temporary memory store in the host computer, ranked
according to the number of differences in these hits, mimicking the
BFS strategy in BWA. Following that, threads (B), (C) and (D) are
launched in an orderly manner to map the remaining 2 bp to
obtain the full alignments (5, 3) and (6, 3).

Table 1 Alignment accuracy compared to BWA using
simulated reads

BWA BarraCUDA

Gap
enabled

Gap
disabled

Gap
enabled

Gap
disabled

Single-
end

% Mapped 89.95 91.01 91.42 91.14

% Error 0.06 0.04 0.05 0.05

Paired-
end

% Mapped 96.53 96.50 96.61 96.64

% Error 0.04 0.04 0.06 0.06
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Figure 3a and 3b depicts the relative alignment
throughputs (including the alignment ‘aln’ core in blue
and SAM output ‘sampe’ core in red) for the 37 bp read
library of BWA and BarraCUDA respectively. For
gapped alignments, running BWA alignment core with
an Intel Westmere-based Xeon X5670 2.93 GHz CPU
and 8 GB DDR3 memory with 1 thread took 67 m 56 s
to map all the 11.3 million pairs of reads in the library,
while the time taken was reduced to 11 m 51 s when
the same task was performed using all 6 cores on the
CPU (Figure 3a). On the other hand, BarraCUDA took
10 m 51 s to perform the same task using an NVIDIA
Tesla M2090, which was on a par with BWA using all 6
cores on the X5670.
For ungapped alignments, while BWA exhibited a

speed increase of 14.6% with 6 threads, we observed a
2.1 fold speed-up in BarraCUDA compared to gapped
alignment (Figure 3b). In this experiment, BarraCUDA
only took 5 m 46 s to align all 11.3 million pairs of read
onto the human genome, almost half the time taken by
BWA with 6 threads.
The SAM conversion ‘samse’ and ‘sampe’ cores in

BWA, which convert alignments coordinates from BWT

SA intervals back to linear space on the reference gen-
ome, are comparative less computational intensive than
the alignment core as seen in Figure 3 and thus do not
make use of multiple threads. We did not port the
‘samse/sampe’ to GPU in this version of BarraCUDA,
but we improved the conversion speed by an average of
27% through the use of a more efficient memory man-
agement strategy in working with BWT indices.
With increased number of reads and a longer read

length when aligning the 76 bp library, both software
took a longer time to complete the mappings (Figure
3c). BWA with a single thread took almost 4 h to com-
plete the gapped alignment of 14 million pairs of
sequencing reads in the library, it was significantly shor-
tened to 46 m 10 s when all 6 cores on the X5670 were
used. BarraCUDA took 40 m 1 s to complete the align-
ment that was again similar to BWA with 6 threads.
When gap opening was disabled, the throughput of

BWA was doubled (Figure 3d). Similarly, the time taken
for BarraCUDA was also significantly shortened when
gapped alignment was disabled, to 16 m 21 s which is
56% faster than BWA with 6 threads.
The ‘sampe’ core, on the other hand was not affected

by the size and the read length of the library and took
roughly the same time as the 37 bp library to convert
the alignment coordinates. Again, BarraCUDA version
of ‘sampe’ was slightly faster than BWA in this test.

Percentage of mappings
The percentage of confident mappings was similar
between BWA and BarraCUDA (Table 2), and like the
artificial C. Elegans data set, the effect on the percentage
of mapping by disabling gapped alignments was
minimal.

Multiple GPU configuration
For computers with multiple CUDA-capable GPUs, Bar-
raCUDA automatically selects the best GPU based on
number of stream processors and the amount of gra-
phics memory available to the software. Users can also
specify which CUDA device the software is to be
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Figure 3 A comparison of alignment throughput of BWA and
BarraCUDA in align real-life sequencing reads to the human
genome. Two whole-genome shotgun libraries from the 1000
Genomes Project were used to compare the paired-end alignment
throughput between BWA and BarraCUDA. A. 11.3 million pairs of
37 bp reads (ENA accession: ERR003014) were aligned to the human
genome (NCBI 36.54) using BWA v0.5.8 with a server class Intel
Xeon 5670 (utilising 1 or 6 threads) and BarraCUDA with an NVIDIA
Tesla M2090, both with default options. The figure shows the time
taken for ‘aln’ core (in blue) and ‘sampe’ core (in red); B. The time
taken with gap opening disabled using the option ‘-o 0’; C. The
time taken to align 14.5 million pairs of 76 bp reads (ENA accession:
SRR032215) using the same set of hardware; D. The timings with
gap opening disabled.

Table 2 The percentage of confident mappings between
BWA and BarraCUDA

BWA BarraCUDA

Gap
enabled

Gap
disabled

Gap
enabled

Gap
disabled

37 bp
library

% Mapped 77.19 76.91 77.16 76.99

76 bp
library

% Mapped 82.74 82.87 82.75 82.58
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executed on by using the ‘-C’ option followed by the
device number. In order to take advantage of multiple
GPUs in a system, BarraCUDA is accompanied with two
scripts, namely ‘barracuda-multi-se’ and ‘barracuda-
multi-pe’ to align parallel single-end reads and paired-
end reads respectively using multiple GPUs. ‘barracuda-
multi-se’ automatically detects the number of CUDA
devices in the computer, splits the input.fastq read files
according to the number of CUDA devices and calls
multiple instances of BarraCUDA to align sequencing
reads (’aln’ and ‘samse’) in parallel. Once the alignment
finishes, the script joins the files back into one single
SAM file. For paired-end reads, ‘barracuda-multi-pe’
calls two instances of BarraCUDA to align the two
paired.fastq read files at the same time and generates a
single SAM output using the ‘sampe’ core. At the time
of writing, ‘barracuda-multi-pe’ does not support more
than 2 GPUs while ‘barracuda-multi-se’ is not bounded
by the number of CUDA devices.

Multiple GPUs show a better scalability than CPUs
Figure 4 shows the scalability of using multiple GPUs
and CPUs in aligning another whole-genome shotgun
library of 13.5 million single-end 95 bp reads (ENA
accession: SRR063699) to the Drosophila Melanogaster
genome (BDGP5.25.63). Similar to the human library we
examined earlier, the alignment throughput of Barra-
CUDA with 1 Tesla M2050 GPU was similar to that of
BWA with 6 CPU cores (Xeon X5670 2.93 GHz with 8
GB DDR3 RAM). We tried to boost further the speed of
BWA with more CPU cores, but we did not find any
additional benefit beyond 8 cores. On the other hand
we found that using BarraCUDA with two GPUs already

outperformed BWA using all 12 cores (2× Xeon
X5670s) at 2.5 Mbp/s, and the alignment throughput
when used with 8 GPUs took only 3.8 min, which was
2.8 times the speed of BWA utilising all 12 CPU cores
available on the computer node. The difference in the
scalabilities between CPUs and GPUs is mainly due to
the difference in memory bandwidths, where each GPU
has exclusive access to their own dedicated on-board
memory, the system memory on the computer is shared
among 12 CPU cores, and this become a bottleneck
when there are more than 8 BWA threads running at
the same time.

Conclusions
Here we present BarraCUDA, a next generation sequen-
cing alignment software to perform mapping of sequen-
cing reads to reference genomes using NVIDIA graphics
cards. Being based on BWA, BarraCUDA can perform
gapped alignment with gap extensions and supports
mappings for single- and paired-end reads with compar-
able alignment accuracies. BarraCUDA also generates
alignments in the SAM format for compatibility with
downstream data analysis applications.
Due to the limited amount of on-board memory and

the tremendous number of threads to handle concur-
rently, a memory efficient DFS approach was used to
perform inexact matches. Although DFS is not as time
efficient as BFS utilized in BWA, BarraCUDA still offers
a throughput of 6X the speed of a CPU core for gapped
alignment and even faster when gap opening is disabled.
We also show here that multiple GPUs scales better

than CPUs. A normal computer can easily take up 4
GPUs, meaning that using this test library as an exam-
ple, a single-end alignment can be done in 5 min, which
is twice the speed of a high-end 12-core workstation.
Using 8X GPU, we can achieve an alignment speed 3X
faster than a traditional computing node with 12 CPU
cores, making GPU nodes a more favourable option, in
terms of HPC environment, than using those with
CPUs.
The software lays an important milestone in low-cost

and energy efficient computing in bioinformatics using
GPGPU. The software is still under active development
and work is underway to further improve the program
efficiency.

Availability and requirements
Project Name: BarraCUDA
Project Home Page: http://seqbarracuda.sf.net
Operating System(s): Linux
Programming Language: C/C++, CUDA
Other Requirements: NVIDIA graphics cards with

compute capability 1.3 or above, 768 MB VRAM,
CUDA toolkit V4.0 or above
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Figure 4 The scalability of alignment throughputs using
multiple GPUs and CPUs. This figures shows the effect on
alignment throughputs (in megabases per seconds, Mbp/s) when
multiple GPUs and CPUs were used to map a single-end library
containing 13.6 million 96 bp reads to the D. Melanogaster
genome. A computer node containing two 6-core Intel Xeon 5670 s
and eight NVIDIA Tesla M2050 were used in this test. The
throughputs of BWA were measured with 1, 2, 4, 6, 8, 10 and 12
threads and BarraCUDA with 1, 2, 4, 6 and 8 M2050s using default
options.
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Licence: GNU GPL
Any Restrictions to use by non-academics: Nil

Additional material

Additional file 1: Pseudo-code for BarraCUDA GPGPU alignment
core and determining the memory workspace requirements for
BWA’s BFS and BarraCUDA’s DFS alignment cores.

Abbreviations
NGS: Next-generation sequencing; CUDA: Compute unified device
architecture; SNP: Single-nucleotide polymorphism; BWT: Burrows-wheeler
transform; DFS: Depth-first search; BFS: Breadth-first search; GPGPU: General
purpose computing using graphics processing units; SM: Stream multi-
processer; SIMT: Single-instruction multiple-thread; HPC: High-performance
computing.
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