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Incorporating social knowledge structures
into computational models

Koen M. M. Frolichs 1,2 , Gabriela Rosenblau3 & Christoph W. Korn 1,2

To navigate social interactions successfully, humans need to continuously
learn about the personality traits of other people (e.g., how helpful or
aggressive is the other person?). However, formal models that capture the
complexities of social learning processes are currently lacking. In this study,
we specify and test potential strategies that humans can employ for learning
about others. Standard Rescorla-Wagner (RW) learning models only capture
parts of the learning process because they neglect inherent knowledge
structures and omit previously acquired knowledge. We therefore formalize
two social knowledge structures and implement them in hybrid RWmodels to
test their usefulness across multiple social learning tasks. We name these
concepts granularity (knowledge structures about personality traits that can
be utilized at different levels of detail during learning) and reference points
(previous knowledge formalized into representations of average peoplewithin
a social group). In five behavioural experiments, results from model compar-
isons and statistical analyses indicate that participants efficiently combine the
concepts of granularity and reference points—with the specific combinations
in models depending on the people and traits that participants learned about.
Overall, our experiments demonstrate that variants of RW algorithms, which
incorporate social knowledge structures, describe crucial aspects of the
dynamics at play when people interact with each other.

Humans constantly meet new people and interact with them. Suc-
cessfully navigating social interactions crucially depends on quick and
accurate learning about others’ personality from brief encounters.
Humans are skilled in amassing social information by abstracting from
concrete, situation-specific observations to personality traits. How-
ever, so far these learning processes have not been described in terms
of underlying computational mechanisms. Here, we set out to specify
how social knowledge structures shape learning about others.

Rescorla-Wagner (RW) models, that in the cognitive sciences fall
under the wide umbrella term of reinforcement learning (RL)1,2, entail
simple and robust algorithms that characterize dynamic learning
processes across a wide range of (non-)social tasks2–10. In general, RL
models have been fundamental for understanding learning about the

valueof objects or situations regardinghow rewarding these are (in the
form of food, money, pain, etc.). Specifically, these models describe
learning as stepwise reductions of prediction errors (PEs) through
outcomes or feedback, where the PE is the difference between a pre-
dicted value and the actually received outcome or feedback in a given
time step. Learning results from using these PEs to update the esti-
mates of future values.

Akin to non-social learning, social learning can be described by
such RL and RW models8,11. Variants of these models capture how
humans learn from others i.e., observational learning12–15 and for
others16. Moreover, studies have shown that they can also account for
how humans learn about others on specific characteristics such as
trustworthiness, generosity or emotional states8,17–19.
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However, these models likely fail to explain the complexities of
social learning about others’ multi-faceted personality because they
only rely on environmental feedback and are typically restricted to
learning about the current situation or dimension at hand. Human
personality cannot be accurately represented on a one- or low-
dimensional continuum (such as nutritional or monetary value).

Research in personality psychology presupposes a multi-
dimensional structure to human personality traits20,21. A sub-
stantial literature in this field has revealed that the vast number of
commonly used personality traits can be reduced to a few inde-
pendent dimension or factors22. The Big-Five personality factors
(neuroticism, extraversion, openness to experience, agreeable-
ness, and conscientiousness) are the most commonly discussed
factors to describe various samples of people across the world23,24.
According to influential theories, such factors can be represented
in human cognition via schemata that bundle frequently co-
occurring features25,26. As a consequence learning can be influ-
enced by schemata with preconceived personality prototypes (i.e.,
stereotypes)26 and the group the other belongs to (in- versus out-
group)27. In some cases, people might rely more on concrete pro-
totypes and trait-exemplifying behaviours when judging others’
personality. In situations people are experienced with, they can
abstract from concrete exemplars to more general personality
traits and to more fine-grained relations between them28.

In order to capture the complexities of social learning about
others’ personality, computational models should implement such
prototypes and abstractions to allow for multi-dimensional
learning29,30. So far, studies that explore learning about others have
not investigated personality traits specifically or have looked at single
traits31. Focusing on learning about a single aspect of personality such
as trustworthiness32,33 or on learning about specific groups of
people34,35 makes learning processes amenable to standard RW mod-
els. But models on single aspects do not take the multi-dimensionality
of human personality into consideration and thus cannot appro-
priately describe learning about personality structures in real life.

In this study, we aimed at testing how humans learn about the
multi-dimensional personality of others. In order to account for the
complexities of learning about humanpersonality, we employed hybrid
learning models that weigh prior experience, contextual knowledge,
and RW models36. We therefore constructed and tested a number of
computational models with varying complexities, from a simple linear
regression that functions as a baseline to hybrid models that combine
standard RW learning models37 with two social knowledge structures
that we refer to as Reference Points (RPs) and Granularity (G).

Reference points capture prior experience and expectations that
humanshavedistilledaboutmanyotherpeople (from in-orout-groups).
Using these RPs, humans can compare newly encountered people with
average people. In this study, RPs thus function as points of comparison.

Granularity refers to the level of detail or abstraction with which
humans represent the structure of personality traits. As soon as
humans learn some new characteristic of a person, their whole view of
that personmight change (for better orworse), which implies that they
update their expectations across many traits based on new informa-
tion about a single characteristic. That is, receiving information on a
single trait may be generalized to similar traits. In order to do so,
humans may use representations (or schemata) of the underlying
similarities betweenpersonality traits (e.g., if you learn that someone is
very polite you will also expect her to be friendly because these two
traits are related). Alternatively,when information is sparseornodetail
is needed, one can generalize individual traits into coarse repre-
sentations that distil the most important parts of personality (i.e., akin
to the factors of the Big-5).

We expect that the use of both reference points and granu-
larity underlies social learning about others. Different learning
situationsmight require information to be represented on a coarse-

or fine-grained level of detail. Using variations of social learning
experiments and computational models, we tested how well both
reference points and granularity accounted for learning behaviour.
Models were evaluated against participants’ behavioural data to
illuminate what strategies participants might use. Additionally, we
usedmodel simulations to quantify the different learning strategies
based on their performance (when solving the same learning task as
participants). This allowed us to evaluate if participants behaved in
accordance with these best performing models given the set of our
models. Crucially, several statistical analyses (e.g., regressions &
correlations) were conducted to support the model-based
analyses.

In recent work, we showed how adults and adolescents learn
about others’ preferences38,39 by trading off reference points (in the
form of prior knowledge about the average population’s preferences)
and different levels of granularity (in the formof updating information
based on past feedback about preferences for similar items). This type
of updating requires social knowledge of the similarities between
preferences.

The current study builds on our previous studies by applying a
considerably wider range of models to learning about a much more
generic type of social information, i.e., others’ personality traits in
various social contexts.

We tested how humans use social knowledge structures for social
learning by comparing a set of models that differently formalize
reference points and granularity. Specifically, wemodelled granularity
on two levels: a fine-grained level specifying the similarities between all
relevant traits and a coarse-grained level, which can be seen as
dimensionality reduction of the fine-grained level where only the fac-
tors of the Big-Five are represented.We also investigatedwhich type of
granularity affords best fitting learning outcomes and whether parti-
cipants used optimal representations based on the group of people
they were learning about. Additionally, we tested the potential of our
models to capture stereotypes. Taken together, we expected that the
winning models combine reference points and granularity to refine
computational models of social learning.

Results
Experimental outline
In all five experiments included here, participants rated a number of
unknown people on personality traits. Participants never met these
people. Instead, they were presented—trial-by-trial—with the self-
ratings that these unknown people had previously given (Fig. 1). That
is, participants could learn from the explicit self-viewsof other persons
(and not via direct interactions).

In each trial, participants rated a person on a given trait (Fig. 1).
Directly after each rating participants received feedback about the
other person’s self-rating on the given trait. Through this feedback,
participants could learn about the other person’s character traits by
adapting their ratings to those of the person in question. In each
experiment, participants learned consecutively about four or five other
persons, i.e., four orfiveprofiles. Every experimentwas changed slightly
to test consecutive hypotheses (see Table 1, and the sectionDifferences
between experiments in themethods; SupplementaryTables 1–3 list the
items used in the experiments). The instructions mentioned the possi-
bility to learn about the other persons but participants were not mon-
etarily incentivized to give an accurate impression of the others’ traits.

Before we present the results, we briefly outline the different
experiments and models. The first experiment functioned as our
baseline from which the other experiments were varied.

Experiment 1 [Real Profiles & Wide Traits] included real feedback
from people who had given self-ratings in a previous study on positive
andnegative traits fromall Big-Five factors (Kornet al., 2012). A total of
60 traits were used. A minimum of 8 traits and a maximum of 19 traits
were presented per factor (see Supplementary Table 1).
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Experiment 2 [Constructed Profiles & Narrow Traits] consisted of
artificially constructed feedback on 30 positive traits from the two
factors agreeableness and conscientiousness. This experiment allowed
a tighter experimental control on a narrow set of traits.

Experiment 3 [Real Profiles & Narrow Traits] combined aspects of
Experiments 1 & 2 to clarify the differences in their results. Real feed-
back on 30 traits from each of the two factors agreeableness and
conscientiousness was given.

Experiment 4 [Fashion Models] used real feedback from self-
ratings of an out-group. We chose fashion models because they are
members of an out-group that everybody knows but that few people
personally interact with. The same traits as in Experiment 1 were used.

Experiment 5 [IPIP Items] consisted of feedback from real self-
ratings on 50 items from the German translation of the International
Personality Item Pool (IPIP). For each of the Big-Five factors 10 sen-
tenceswere presented. This experiment thus aimed atgeneralizingour
findings across different types of items describing personality traits.

Computational models
In each of the five experiments, we tested (a minimum of) five com-
putationalmodels to explorewhichmodel best described participants’
learning about others. In our models, we tested two concepts:

Reference Points (RPs) and Granularity (G) (Fig. 2). In brief, reference
points capture an average person (of a specific group). That is, parti-
cipants may have an average person in mind when rating an unknown
person and use this average person to guide their learning. Granularity
refers to the level of generalization during learning, i.e., the level of
detail in the similarity between represented traits: Coarse representa-
tions of trait relationships imply that participants only consider dif-
ferences between the Big-Five factors—but do not distinguish between
traits within a factor. Fine-grained representations take the similarities
of all traits into account. In short, granularity generalizes updating
based on PEs across similar items.

In the following, we verbally summarize the five models (please
refer to the methods section, Fig. 2 and, Supplementary Fig. 1 for
mathematical and conceptual details about themodels). Eachmodel is
described as if it was learning about oneprofile,models never combine
information or learning across profiles.

Model 1 [No Learning] functions as our baseline model. This
regression model entails a simple linear transformation of popu-
lationmeans (on trait ratings) as reference points to predict others’
traits.

Model 2 [Coarse Granularity] combines Rescorla-Wagner (RW)
learning and coarse granularity. That is, it applies coarse granularity to
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Fig. 1 | Overviewof the experimental tasks. In this study,we testedcomputational
models of how humans learn about others. In five distinct experiments participants
performed a social learning task on several profiles of other persons (with every
profile being presented in a separate run). General overview of the learning task:
Two trials for Experiment 1 (left) and Experiment 5 (right) are shown. During the
learning task, participants estimated which self-ratings a person (here called

profile) hadgiven for specific traits (on a Likert scale from 1does not apply at all to 8
does apply very much). After each estimate, participants received direct feedback
in the form of the actual self-rating of that person. This process continued for all
traits (in random order). The tasks shown here are translated to English, original
German trait words and sentences can be found in Supplementary Tables 1–3.

Table 1 | Overview of the stimuli for the five experiments

Experiment Stimuli n Factors Profiles n Profiles Scale n Trials

1 (Original) 60 traits 5 Real (Online) 4 1–8 240

2 (Constructed Profiles) 60 traits 2 Constructed 4 1–8 240

3 (Two Factors) 60 traits 2 Real (Online) 4 1–8 240

4 (Fashion Models) 60 traits 5 Real (Fashion) 4 1–8 240

5 (IPIP items) 50 IPIP items 5 Real (IPIP) 5 1–5 250

In Experiments 1–4, we used personality adjectives (i.e., trait words such as generous, diligent; see Supplementary Table 1 for Experiments 1 & 4 and Supplementary Table 2 for Experiments 2 & 3).
Sixty adjectives were presented per profile (i.e., for each of the four people about which participants learned). We used traits from all five factors of the Big-Five or traits from only two factors (i.e.,
agreeableness and conscientiousness). In Experiment 5, for each of the five profiles, participants saw 50 items from the German translation of the IPIP (International Personality Item Pool, which
consists of lexical Big-Five factor markers; see Supplementary Table 3). Profiles for Experiments 1 were selected from self-ratings of people from an unrelated sample of a previous lab study (Korn
et al., 2012). Profiles for Experiment 2 were constructed by specifying the mean for the two factors and randomly adding noise according to a specified SD. Profiles for Experiment 3 were selected
from the self-ratings of participants in Experiment 2. Profiles for Experiment 4 were selected from self-ratings given by a group of female fashion models for a related online study. All four selected
persons have worked internationally as fashionmodels for several years. Profiles for Experiment 5 were selected from self-ratings of a large online dataset on the IPIP with over 1 million participants
(Open Source Psychometrics Project; https://openpsychometrics.org/). We selected five profiles with average ratings on 4 out of the 5 factors (mean within 1 SD) but divergent scores on the
remaining factor (mean above 1 SD). That is, each profile was divergent on another factor.
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the personality domain (i.e., learns a single value for each Big-Five
factor).

Model 3 [Coarse Granularity & Population RP] combines Models 1
& 2 and thus allows to balance participants’ use of populationmeans as
reference points and learning according to coarse granularity.

Model 4 [Fine Granularity] employs RW learning by updating the
estimated values of all the traits on every trial based on how similar the
other traits are to the trait that is currently presented.

Model 5 [Fine Granularity & Population RP] combines Models 1 &
4, i.e., population reference points and learning according to fine
granularity.

In Experiment 4, three models are added that have the same
mathematical equation as Models 1, 3 & 5 but use stereotypical RPs
calculated separately for anout-group (i.e., a groupof fashionmodels).

Experiment 1: real profiles & wide traits
In our first experiment, participants rated four people on 60 self-
ratings of trait words sampled from a list of positive and negative
German trait adjectives suchaspolite and aggressive. These traits were
selected to be representative of the Big-Five factors, i.e., adjectives for
each Big-Five factor were included albeit not in equal numbers (see
Supplementary Table 1). The real self-ratings of the four other persons

were combined with fabricated personal information (e.g., name and
age) into four distinct veridical profiles.

Analyses that were not based on computational models indicated
that participants were learning i.e., the absolute PEs decreased over
trials (Fig. 3c, top). A pairwise Pearson correlation between trial num-
ber and the mean of the absolute PE over all participants showed a
negative correlation, r(58) = −0.523, p <0.001. Furthermore, we con-
ducted a general linear model (GLM) analysis that consisted of three
separate regressors to predict participants’ answer accuracy (i.e.,
higher accuracymeans lower PE). Each of the regressors represented a
substantial part of the models. Regressor 1 captures learning in the
standard Rescorla-Wagner model by tracking the total number of
previous trials for each item (i.e., if participants are learning, one
should see a decrease in PEs over trials). Regressor 2 captures the
coarse granularity by tracking the total number of previous trials
within a factor for each item (i.e., if participants learn based on each
factor, one expects to see a decrease in PEs over trials within this
factor). Regressor 3 assesses the fine granularity by computing the
summed absolute correlations of the previous items with the current
item (i.e., assuming that the correlation is the informationdensity of an
item to the current item, one can expect that the sum of all previous
items predicts the decrease in PE). Results from this GLM indicated
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Fig. 2 | Overview of the models and knowledge structures. To explore partici-
pants’ behaviour we constructed fivemain computationalmodels that made use of
two main knowledge structures: Reference Points (RPs) and Granularity (G). a The
Reference Points represent what participants can use as a basis for estimating an
average person (shown is a selection of student personality trait averages). Parti-
cipants can use these RPs on each trait to compare this average rating with their
current estimate for a specific person. Traits are ordered based on the Big-Five
Factors (different shades of grey). Granularity (G) refers to the level of detail in the
represented structure of others’ personality traits. The granularity matrix gen-
eralizes the PEs across similar items in two distinct ways: for coarse granularity it
generalizes per Big-Five factor, and for fine granularity it updates every individual
trait based on how correlated they are to the current trait. b Using both RPs and
granularity the models can be divided into three sets, which are depicted in three

different colours. First, No Learning (blue), consists of a single regression model,
Model 1 [No Learning] that functions as a baseline model. Second, Coarse Granu-
larity (pink), updates based on the (Big-Five) factor to which the current adjective
belongs. Model 2 [Coarse Granularity] uses the standard Rescorla–Wagner (RW)
function to update the factor estimates and Model 3 [Coarse Granularity & Popu-
lation RP] combines Model 2 with information from the RP. Third, Fine Granularity
(orange), consists of two models that update all adjectives based on their corre-
lation with the current trait. Model 4 [Fine Granularity] updates all items according
to the Fine Granularity and Model 5 [Fine Granularity & Population RP] combines
model 4 with information from the RP (see Supplementary Fig. 1 for details on the
models). P prediction, Int intercept, RP reference point, α learning rate, PE pre-
diction error, γweighting parameter, F (generalizes over Factor) coarse granularity,
All (generalizes over All items) fine granularity, SIM similarity matrix.
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that participants used the fine-grained correlation structures (i.e.,
regressor 3); Fig. 3d).

Bayesianmodel comparisons revealedModel 5 [Fine granularity &
Population RP] as the best fitting model among our set of five models
according to both fixed- and random-effects analyses (Fig. 3a & Sup-
plementary Fig. 2a). That is, participants relied on previous knowledge
about an average person when judging the traits of others. Impor-
tantly, they not only used population averages as reference points to
make estimates but they also scaled the extent to which they updated
these estimates by the fine-grained similarity between the currently
presented traits and potential other traits in the item set (in line with
results from the GLM). These results indicate that participants used a
representation of the similarities between traits for their reference
group. They represented how single traits relate to one another and
used this fine-grained structure in combination with average popula-
tion ratings to make estimates about others.

To assess the winning model’s ability to capture learning we
simulated how this model learns (Fig. 3c, bottom). A pairwise Pearson
correlation between trial number and themean of the absolute PE over
all simulations showed a negative correlation, r(58) = −0.563, p<0.001.

These results are in-line with participants’ results. Moreover, we tested
which of the fivemodels was the best performing strategy. This analysis
disregards participants’ behaviour and solely focusses on the models
performing the task. These simulations give us an unbiased estimate
which model (out of the set of available models) is best suited for the
current task. This was achieved by fitting the models on the actual
experimental task (i.e., profile responses) rather than participants’
responses (see Supplementary Fig. 7 for a detailed explanation of the
rationale). Analyses that quantified this model performance corrobo-
rated that Model 5 [Fine granularity & Population RP] was also the best
performingmodel for this task (Fig. 3b). In summary, these simulations
indicated that participants used a good strategy for learning in this task.

To test the robustness and distinguishability of our models, we
performed parameter recovery and calculated a confusionmatrix. For
parameter recovery, we independently simulated data 200 times using
uniformly distributed and randomly sampled parameters with noise
added in the last step. Parameter recovery compares known input
parameters versus recovered output parameters and uses correlations
as ametric of fit, where high correlations indicate better recovery. The
correlations for the three parameters of the winning model were
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Fig. 3 | Overview of the main analyses for experiment 1. In this experiment,
participants learned about the personalities of four strangers. Results indicate that
participants used fine-grained correlation structures during learning. a Model
comparison results using fixed-effects analysis (losingmodel as reference) indicate
Model 5 [Fine Granularity (FG) & Population ReferencePoint (RP)] as the best fitting
model (n = 35). b Simulated data (n = 35), the best performing model indicates
which of the models performs the task most optimally (see Supplementary Fig. 7).
The best performingmodel (Model 5) demonstrates that participants used the best
strategy. cA decrease of the prediction errors (PEs) over time can be interpreted as
learning. Both plots display the average absolute PEs over time ± SEM. We calcu-
lated a pairwise Pearson correlation between trial number and the mean absolute
PEs to determine if the PEs decrease over time. Top) Participants’ data shows a
decrease in the PEsover time (ρ:−0.523, least squares line (red)). Bottom) Simulated
data using Model 5 shows a similar decrease in PEs over time (ρ: −0.563). d General

linear model (GLM) on three core model features: (1) Rescorla–Wagner RL, 2)
coarse models, and 3) fine models that predict the accuracy per trial per partici-
pant. Only the third regressors was significant (n = 35), indicating participants’ use
of fine granularity: (one-sided t-test) regressor 1: t(34) = 0.927, p =0.8198, regressor
2: t(34) = 1.2915, p =0.8974, regressor 3: t(34) = −1.7109, p =0.0481. Individual data
points are participants’ parameter estimates which are summarized by boxplots
(median (middle line), 25th, and 75th percentile (box), the whiskers extend tomost
extreme data points not considered outliers (1.5 times interquartile range), outliers
are indicatedwith + signs).Conclusions basedon thisGLMshould take into account
that all three regressors arehighly correlated (ρbetween0.76 and0.92). [One-sided
t-test; * indicates p <0.05, ** indicates p <0.001, no correction for multiple com-
parisons]. CG coarse granularity, FG fine granularity, RP reference point, # number
of, PEs prediction errors, SEM standard error of themean, LSLine least squares line.
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deemed satisfactory (see Supplementary Figs. 4–6): learning rate
(r ≥0.79), weighting parameter (r ≥0.97) and starting value (r ≥0.82).
Data were also simulated 200 times for the construction of the con-
fusion matrix—now for every model separately. All models were fitted
to this simulated data using BIC as themetric of model fit. Ideally, data
simulatedwith amodelwill also be bestfitted by thatmodel, indicating
that models can be distinguished. All five models were recovered
correctly in ≥96.5% of the simulations (see Supplementary Fig. 3).
Having found evidence that participant employed social knowledge
structures for learning about veridical profiles over a wide range of
traits, we conducted a second experiment, in which participants per-
formed the same task but were presented with artificially constructed
profiles over a narrow range of traits. That is, Experiment 2 entailed
more controlled feedback.

Experiment 2: constructed profiles & narrow traits
In this experiment, we removed the veridical structure of trait self-
ratings by artificially constructing feedback for 60 positive trait
adjectives belonging to two Big-Five factors, agreeableness and con-
scientiousness (30 adjectives belonged to each factor) for four

profiles. An average value was determined for each factor based on
independent self-ratings from a previous study (Korn et al., 2012). To
create feedback for each adjective separately, normally distributed
noisewas added to the average factor to create 30distinct trait ratings.
It is important to note that through this procedure we kept the refer-
ence point component consistent with average trait ratings in the
population. We only changed the relationship between traits, i.e. the
trait similarity structure. We hypothesized that for this experiment
using a fine-grained similarity structure (i.e., single trait similarities)
should be less advantageous than employing coarse granularity (e.g.,
average values per Big-Five factor). Otherwise, the experimental set-up
was analogous to the first experiment (i.e., participants were not aware
that theprofileswere artificial nor that theywouldonly learn about two
factors). Participants were not given any clues that would encourage
them to use a coarse instead of fine granularity structure during
learning.

To asses if participants were learning over time (i.e., showed a
decrease of PEs over trials), we calculated the Pearson correlation
coefficient to compare the mean absolute PEs with the trial number
and found a negative correlation, r(58) = −0.546, p < 0.001 (Fig. 4c,
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Fig. 4 | Overview of the main analyses for experiment 2. In this experiment
participants learned about artificial profiles which did not have the trait similarity
structures. Results indicate that participants use a coarse granularity structure
when less social information is present. aModel 3 [Coarse Granularity & Population
RP] is the best fitting model (n = 41). This model uses the average population as a
reference point and coarse granularity for generalization. b Simulated data for the
best performing model (n = 41). Unlike participants’ data, Model 2 [Coarse Granu-
larity] was the best performing model, demonstrating that participants could have
used a more optimal strategy. c Both plots display the average absolute PEs over
time ± SEM. Top) Participants’data shows a decrease in thePEs over time (ρ:−0.546,
least squares line, red), this indicates participants were learning over time. Bottom)
simulateddata from thebestfittingmodel (Model 3) showsa similar decrease in PEs
over time, indicating that the models learned in a similar way to participants. d All
three regressors (representing: 1 RW learning, 2 Coarse granularity, 3 Fine

granularity), were significant (one-sided t-test), regressor 1: t(40) = −5.4617,
p <0.001, regressor 2: t(40) = −5.7377, p <0.001, regressor 3: t(40) = −7.7059,
p <0.001, indicating that participants (n = 41) learned over time but also made use
of both coarse and fine granularity. However, these regressors were correlated and
conclusions regarding this GLM should thus be drawn with caution. Participants’
parameter estimates (for each regressor) are indicating by the individual data
points, which are summarized by the adjacent boxplots of the same colour. The
boxplots indicate the median (middle line), and the box is formed by the 25th, and
75th percentile. The whiskers extend to most extreme data points not considered
outliers (1.5 times interquartile range), outliers are indicated with + signs. [One-
sided t-test; * indicates p <0.05, ** indicates p <0.001, no correction for multiple
comparisons]. CG coarse granularity, FG fine granularity, RP reference point, #
number of, PEs prediction errors, SEM standard error of the mean, LSLine least
squares line.
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top). Calculations of a GLMwith three regressors, each representing an
integral part of our computational models, indicate that participants
learned over trials but also seemed to use both coarse and fine gran-
ularities during learning (Fig. 4d).

As hypothesized before we indeed found that the winning model
for this experiment wasModel 3 [Coarse Granularity & Population RP].
Model 3 assumes that participants use a coarse representation of traits
for generalizing. It only keeps track of a factor average combined with
using anaveragepersonas RP. Bothfixed- and random-effects analyses
showed that Model 3 was the best fitting model (Fig. 4a & Supple-
mentary Fig. 2b). This indicates that—in absence of innate similarity
structure within traits—participants use the coarser granularity com-
bined with the population mean as a reference point.

Model simulations with the winning model showed a similar
decrease in the absolute PE over time as participants’ data
r(58) = −0.489, p < 0.001 (Fig. 3c, bottom). Simulations for the best
performing model had a better fit for Model 2 [Coarse Granularity]
than for Model 3 (Fig. 4b), which shows that in this experiment parti-
cipants properly used coarse granularity but could improve their
performance by abandoning the use of the reference points
altogether.

Tests for model robustness and distinguishability were imple-
mented by performing parameter recovery and calculating a confu-
sion matrix. Parameters for the winning model were recovered
satisfactorily (learning rate, r ≥0.85,weightingparameter, r ≥0.98, and
starting value, r ≥0.75) (Supplementary Figs. 4–6). The confusion
matrix indicated that models were distinguishable with all models
being recovered in ≥99% from the simulated data (Supplementary
Fig. 3). In Experiment 2, we not onlymanipulated the feedback but also
included traits that belonged to two instead of the five Big-Five per-
sonality factors originally used in Experiment 1. To rule out the pos-
sibility that this narrower item set was responsible for the observed
changes in the winning models, we conducted a third experiment in
which participants received veridical feedback (like Experiment 1) but
with items that belonged to only two factors (like Experiment 2).

Experiment 3: real profiles & narrow traits
Experiment 3 differed from the previous experiments in two distinct
ways. First, as in Experiment 2, participants only rated others on traits
belonging to twoBig-Five factors (agreeableness& conscientiousness).
This was a narrower item set compared to the one used in Experiment
1, inwhich traits fromall five factorswere included. Second, in contrast
to Experiment 2, self-ratingswere sampled from real self-ratings (given
by participants from Experiment 2). Similar to the previous experi-
ments, participants rated 60 trait adjectives in total (30 for each of the
two factors). As the innate personality structure between traits
remained intact, we hypothesized that, similar to Experiment 1, parti-
cipants would use a fine-grained representation of the traits combined
with a reference point of the population mean when rating others
traits, i.e., we expected Model 5 to win.

The Pearson correlation between trial number and absolute PEs
revealed a negative correlation (r(58) = −0.42, p <0.001), indicating
that participants learned over the course of a run (Fig. 5c, top). In a
further analysiswecalculated aGLMwith three regressors. These three
regressors captured learning over time as well as coarse- & fine-
granular learning. We found all three regressors to be significant,
indicating that participants learned over time but also made use of
both the granularity structures (Fig. 5d). For an in-depth and more
stringent look at the knowledge structures used by the participants we
used computational models.

Using a reduced number of factors and veridical feedback in this
experiment, we replicated our results from Experiment 1. Model
comparison showed that the winning model according to our mea-
sures of fixed- and random-effects was Model 5 [Fine granularity &
Population RP] (Fig. 5a & Supplementary Fig. 2c). This indicates that, in

accordance with our hypothesis, even when learning on a reduced
number of factors, participants still used fine-grained similarities
between traits combined with the population means as reference
points to aid learning.

We performed model simulations to assess whether the models
showed learning over time. These simulations, using the winning
model, showed a decrease in the absolute PE akin to participants
(r(58) = −0.764, p <0.001) (Fig. 5c, bottom). Model simulations for the
best performing model confirmed that Model 5, which assumes fine-
grained representations of traits combined with RPs in the form of
population means, was also the best performing model of the five
models in the set (Fig. 5b).

We tested for model distinguishability by calculating a confusion
matrix that showed that all models could be retrieved with ≥98%
accuracy (Supplementary Fig. 3). Parameter recovery was also robust
with high correlations between employed and recovered parameters
(learning rate, r ≥0.83, weighting parameter, r ≥0.97, and starting
value, r ≥0.78) (Supplementary Figs. 4–6).

In thefirst three experiments,we found evidence thatparticipants
consistently relied on average population ratings as reference points.
Next we wanted to test if participants would deviate from these stan-
dard population averages as a reference point when learning about a
subpopulation that couldbeperceived as dissimilar to participants. To
achieve this, we varied the group of the profiles from students, which
are the same as the participants (i.e., an in-group), to anout-group (i.e.,
fashion models), who are likely to be perceived as having a different
personality from the students.

Experiment 4: fashion models
Based on our evidence from Experiments 1–3, Experiment 4 was pre-
registered on the Open Science Framework (https://osf.io/8r6gv) and
conducted accordingly. That is, we preregistered the computational
modelling approach (the models and their respective analysis) and
made no deviations from this preregistration. However, any additional
analyses (e.g., GLM and correlations) were added later and were thus
not part of the preregistration. In this experiment we tested partici-
pants on the self-ratings of an out-group, i.e., fashion models. We
chose fashion models as the out-group because we assumed partici-
pants to have prior knowledge (or opinions) about them coupled with
a high probability that they would not know a fashion model person-
ally. Thismeant that participantsmight change their reference point to
a stereotypical referencepoint. Like theother experiments, self-ratings
were combined with fabricated personal information into profiles.
Participants were tasked with learning four profiles on all five of the
Big-Five factors (i.e., the same stimuli as in Experiment 1). In order to
test for stereotypical views, we added three computational models to
our regular five models. In these additional models, we changed the
previous reference points to an average of fashion model ratings that
were assessed before the learning task. Our hypothesis was that par-
ticipants would still use the fine granularity structure but combine it
with this new stereotypical referencepoint insteadof using the student
reference point.

First, we investigated whether participants held stereotypical
views of the fashion models. Before starting the learning task, parti-
cipants were asked to rate their impression of an average fashion
model on all 60 traits that were used in the experiment. From these
ratings, we calculated a new reference point that was based on these
perceived fashion model self-ratings. To compare the previously used
student reference points (M: 6.01, SD: .69) with the perceived fashion
model reference points (M: 5.13, SD: .32), we conducted a paired
sample t-test, which indicated that there was a significant difference
between the two reference points, t(59) = −9.7137 p <0.001.

As in the other experiment we conducted a Pearson correlation
analysis to test for a relation between the trial numbers and absolute
PEs. This produced a negative correlation r(58) = −0.307, p <0.001,
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indicating participants learned over time (Fig. 6c, top). A further ana-
lysis that used a GLM to test for the use of RL and both coarse and fine
granularities indicated, in-line with previous results, that participants
used fine-granular representations (Fig. 6d).

Model comparison confirmed our preregistered hypothesis: both
fixed- and random-effects analyses indicated Model 5-STE [Fine gran-
ularity & Stereotype RP] as the winning model (Fig. 6a & Supplemen-
tary Fig. 2d), suggesting that participants used a fine-grained
representation of the personality structure together with stereo-
typical reference points.

Simulations of the winning model showed a decrease in the
absolute PEs, r(58) = −0.788, p <0.001, indicating that these models
learned in a similar way to participants (Fig. 6c, bottom). Surprisingly,
simulations for the best performing model indicated that Model 1 [No
Learning] would have been the best strategy for this task (Fig. 6b).
After analysing the specific profiles used in Experiments 1 and 4, we
concluded that there was a higher correlation between the fashion
model profiles and the standard population RP (i.e., the average stu-
dent ratings) compared to the profiles for experiment 1 (Supplemen-
tary Fig. 8). This means that participants did not need all the

information that the more complex models provided and that the
simple No Learningmodel sufficed in capturing themain complexities
of each profile. Interestingly, the second best performing model was
Model 5 [Fine granularity & Population RP], indicating that the very
next best strategy would have used the standard population RP in
favor of the stereotypic RP. The fact that participants still used Model
5-STE [Fine granularity & Stereotype RP] even though better strategies
were available showsboth thepervasivenessof the stereotypicRPs and
the use of similarity learning functions as default strategies.

Both the parameter recovery and the confusion matrix were
robust. Correlations between simulated and recovered parameters for
the winning model were satisfactory (learning rate r ≥0.81, starting
value r ≥0.74 and weighting r ≥0.94). The confusion matrix indicated
that all models were distinguishable with all models being retrieved
with ≥97.5% accuracy (Supplementary Figs. 3–6).

In the first four experiments, we found evidence that partici-
pants used both the granularity and the reference point in multiple
meaningful ways for experiments with trait words as stimuli. In
order to test the scope of these models we next tested them on a
different set of stimuli. Specifically, we did not test use trait words

FG & Pop. RP

Fine Granularity

CG & Pop. RP

Coarse Granularity

No Learning

Computational Models (Model Fit)

a

-1500 -1000 -500 0

Summed BIC (Model 1 as reference)

Simulations (Best Performing Model)

b

-2000 -1500 -1000 -500 0
Summed BIC (Model 2 as reference)

0 20 40 60
Trials

1

1.5

2

M
ea

n 
ab

s 
P

E

Average PEs over trials

: -0.42

c
abs PE
SEM
LSLine

Participants

0 20 40 60
Trials

0.2

0.4

0.6

0.8

M
ea

n 
ab

s 
P

E : -0.764
abs PE
SEM
LSLine

Simulations

Experiment: 3

# Previous Trials
# Previous trials in factor

Sum abs. correlations
-0.08

-0.06

-0.04

-0.02

0

0.02

P
ar

am
et

er
 E

st
im

at
es

Standard Analysis (GLM)

p: < 0.001** p: < 0.001** p: < 0.001**

d

Fig. 5 | Overview of the main analyses for Experiment 3. In this experiment
participants learned about real profiles on two Big-Five factors. Results indicate
participants’ use of a fine correlation structure. a Similar to experiment 1, Model 5
[Fine Granularity & Population RP] is the best fitting model for experiment 3
(n = 59). This model uses the average population as a reference point and fine
granularity for generalization. b Simulated data to find the best performing model
(n = 59). In line with results from the participants, model 5 [Fine Granularity &
Population RP] was the best performing model, demonstrating that participants
used the best possible strategy. c Both plots display the average absolute PEs over
time ± SEM. Top) Participants’ data shows a decrease in the PEs over time (ρ:−.42,
least squares line (red)), which indicates that participants learned over time. Bot-
tom) Simulated data from the best fittingmodel (Model 5) also shows a decrease in
PEs over time (ρ:−0.764), showing that the models learned in a similar way to

participants. d All three regressors (representing: 1 RW learning, 2 Coarse granu-
larity, 3 Fine granularity), were significant (one-sided t-test), regressor 1:
t(58) = −3.414, p <0.001, regressor 2: t(58) = −3.6269, p <0.001, regressor 3:
t(58) = −9.4348, p <0.001, showing participants (n = 59) learned over time but also
made use of both coarse and fine granularity. Individual parameter estimates are
indicated by the coloured dots, which are summarized by the adjacent boxplots
(median (middle line), 25th, and 75th percentile (box), most extreme points not
considered outliers (whiskers), outliers (1.5 times interquartile range) indicated
with + signs). Due to high correlations between these regressors, conclusions
regarding these regressors should be drawn with caution. [One-sided t-test; *
indicates p <0.05, ** indicates p <0.001, no correction for multiple comparisons].
CG coarse granularity, FG fine granularity, RP reference point, # number of, PEs
prediction errors, SEM standard error of the mean, LSLine least squares line.
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but rather statements reflecting traits (e.g. I’m the life of the party
and I insult people).

Experiment 5: IPIP items
Our final experiment was preregistered in conjunction with Experiment
4 (https://osf.io/8r6gv) and adhered to the same standards i.e., the
modelling approach was preregistered and no deviations were made
from this, additional analyses were not part of the preregistration. In
this experiment, we assessed the robustness and generalizability of our
models by testing themonadifferent set of stimuli. For this experiment,
we tested the same sample of participants as in Experiment 4 immedi-
ately after they finished Experiment 4. We changed the learning task
from the trait adjectives to the German translation of the 50-item
International Personality Item Pool (IPIP).We selected five profiles from
a large online sample (Open Source Psychometrics Project; https://
openpsychometrics.org/) and used this same sample to calculate the
population mean, i.e., the reference point for each trait. We expected
that ourfivemodelswouldperform just aswell on this experiment since
both reference points and granularity can be applied to the personality

structures of the IPIP in the samemanner. This also led us to expect that
participants would use the same models as they did in the previous
experiments (i.e., Model 5). We thus hypothesized that participants
would use a fine-grained representation of the item similarity structure
and the population mean as a reference point.

A correlation analysis of the absolute PEs found a small negative
correlation (r(48) = −0.311, p < 0.001) showing that participants
learned over time (Fig. 7c, top). Furthermore, a GLM with separate
regressors that each represent a core part of our models (i.e.,
Rescorla–Wagner learning, and the use of both coarse and fine gran-
ularity) did not find evidence for their use by participants, potentially
as a result of the smaller rating scale (ranging from 1 to 5) and a lesser
number of items per factor (Fig. 7d).

Fixed- and random-effects analyses showed that Model 4 [Fine
Granularity] performed best (Fig. 7a & Supplementary Fig. 2e). This
indicated that participants used a fine-grained representation of the
item similarities but did not seem to make use of the reference point.

Simulating the winning model on the same dataset revealed a
large negative correlation r(48) = − 868, p < 0.001, in line with
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Fig. 6 | Overview of the main analyses for experiment 4. In this experiment
participants learned about anout-group (i.e., fashionmodels) insteadof the regular
in-group (i.e., students). Additionally, three models were added to our original set
of five models to capture stereotypic inclinations (STE). These stereotypic models
have a darker colour in the figures and are indicated by STE in the model names.
a As hypothesized, the best fitting model was Model 5-STE [Fine Granularity &
Stereotypic RP] (n = 29). This model uses the expected stereotypical self-ratings
from models as a reference point and fine granularity for generalization.
b Simulated data for the best performing model (n = 29). Contrary to participants’
data the best performing model was model 1 [No Learning]. This indicates that
participants used too complex a strategy for learning about the fashionmodels (see
Supplementary Fig. 8 for details). cBothplots display the average absolute PEs over
time ± SEM. Top) Participants’ data show a decrease in the PEs over time (ρ:−0.307,
least squares line (red)), an indication of learning over time. Bottom) Simulated

data from the best fitting model (Model 5-STE) show a large decrease in PEs over
time (ρ:−0.788). d Of the three regressors (representing: 1 RW learning, 2 Coarse
granularity, 3 Fine granularity), only the third regressor was significant (one-sided t-
test), regressor 1: t(28) = 2.0906, p =0.9771, regressor 2: t(28) = 4.3546, p =0.9999,
regressor 3: t(28) = −2.6794, p =0.0061, indicating participants (n = 29) used fine
granular representations during learning. Individual data points represent partici-
pants’ parameter estimates. Boxplots summarize these parameter estimates
(median (middle line), 25th, and 75th percentile (box), most extreme points not
considered outliers (whiskers), outliers (1.5 times interquartile range) indicated
with + signs).Due to the high correlations between regressorsone shouldbe careful
when drawing conclusions based on these regressors. [One-sided t-test; * indicates
p <0.05, ** indicates p <0.001, no correction for multiple comparisons]. CG coarse
granularity, FG fine granularity, RP reference point, # number of, PEs prediction
errors, SEM standard error of the mean, LSLine least squares line.
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participants’ data (Fig. 7c, bottom). Simulations for the best perform-
ing model showed that model 4 (Fig. 7b) was indeed the best strategy
to use, demonstrating that the reference point did not add enough
information to be useful.

Parameter recovery was robust with satisfactory correlations
between simulated and recovered parameters (learning rate
r ≥ 0.74, weighting r ≥ 0.89 and starting value r ≥ 0.51). Retrieval of
models on their own simulated data for the confusion matrix was
achieved with an accuracy ≥92% for all models (Supplementary
Figs. 3–6).

Results from this experiment are a first indication that themodels
can be applied to a broader scope of social learning situations.

Additional analyses
Additionally, we fitted all models described above with separate
learning rate parameters for positive and negative PEs (Supplementary
Fig. 9). This allowed us to investigate whether participants learned
differently from positive and negative feedback. For all experiments,
except for Experiment 4, these models were worse than the standard
models. In Experiment 4, Model 12 [Fine Granularity & Stereotypical
RP], with separate free parameters for positive and negative PEs, per-
formed best. Fitted parameters for this model indicated participants

learned more from positive PEs. Interestingly, the total number of
positive PEs over all participants was higher than the number of
negative PEs (2953 vs 1873), indicating participantsmight have had too
negative a perception of the fashion models.

When lacking experience with other groups, a consistent and
reliable reference point would be to use one’s own self-ratings on
traits. For all models that use the population RP we addedmodels that
use the participants’ self-ratings as RP (Supplementary Fig. 10) and
fitted thesemodels on all experiments. For all experiments, themodels
using self-ratings were worse than those using the population RP,
indicating that participants relied on a more accurate population RP
than on their own self-ratings.

Discussion
In the present study, we investigated which potential strategies parti-
cipants use in social learning about others. We formalized two con-
cepts, which we refer to as reference points and granularity, and
constructed a number of models to test their relevance for several
social learning tasks over five different experiments. We found evi-
dence for the flexible use of both reference points and granularity
across all five experiments using both model-based and model-free
analyses.
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Fig. 7 | Overview of the main analyses for experiment 5. In this experiment
participants learned about the German translation of the 50-item International
Personality Item Pool (IPIP). aModel 4 [Fine Granularity] was the best fittingmodel
(n = 28). b Model simulations (n = 28) confirmed that Model 4 was the best per-
forming model and thus the best strategy to use for this specific experiment.
Showing that the Population RP did not add enough information to be useful.
c Both plots display the average absolute PEs over time ± SEM. (Top) Participants’
data shows a decrease in the PEs over time (ρ:−0.311, least squares line (red)),
indicating participants learned over time. Bottom) Simulated data from the best
fitting model (Model 4) shows a large decrease in PEs over time (ρ:−0.868). Repli-
cating participants’ learning during the task. d A GLM with three regressors (1 RW

learning, 2 Coarse granularity, 3 Fine granularity) resulted in no significant
regressors (n = 28, one-sided t-test) regressor 1: t(27) = 1.3021, p =0.8981, regressor
2: t(27) = 1.2775, p =0.8939, regressor 3: t(27) = 1.9446, p =0.9688. Participants’
individual parameter estimates are indicated by coloured data points. These
parameter estimates are summarized by the boxplots of the same colour. Boxplots
indicate themedian (middle line), and the box by the 25th, and 75th percentile, the
whiskers are the most extreme points that are not considered outliers (1.5 times
interquartile range), outliers are indicatedwith + signs. [One-sided t-test; * indicates
p <0.05, ** indicates p <0.001, no correction for multiple comparisons]. CG coarse
granularity, FG fine granularity, RP reference point, # number of, PEs prediction
errors, SEM standard error of the mean, LSLine least squares line.
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When participants learned about veridical profiles from real
people on awide range of traits, theymadeuse of reference points that
summarised the average person of the other group. On top of that,
participants in Experiment 1 used a learning algorithm that combined
Rescorla–Wagner (RW) learning and a fine granularity social knowl-
edge structure i.e., they generalized updating via PEs according to the
similarities between traits.

To delineate this concept of granularity further, we constructed
profiles for Experiment 2. These artificial profiles lacked the fine-
grained similarities, with only the coarse-grained structure being
intact. Remarkably, this manipulation led to different behaviour. Par-
ticipants made use of coarser personality structures while maintaining
the use of reference points. Not only the profiles changed in Experi-
ment 2 but also the number of factors used. To make sure this did not
influence the results, we kept the same number of factors (i.e., two
factors) but used real profiles once again for Experiment 3. In this
experiment, model fit indicated that participants displayed the same
behaviour as they did in Experiment 1. That is, participants used a fine-
grained similarity structure and reference points based on the average
population during learning. As these past three experiments con-
sistently indicated participants’ use of reference points, we wanted to
explore nextwhether participants would change their referencepoints
according to the group the person they are learning about belongs to.
In order to achieve this, we presented participants with profiles from
anout-group (i.e., fashionmodels) in Experiment 4.Model comparison
revealed the use of fine granularity and a distinct reference point
specific to this out-group. This indicates that participants held differ-
ing views about the out-group under consideration. These prior
assumptions about the out-group influenced the employed reference
points—while keeping intact participants’ understanding of the
underlying similarities between traits. These findings illustrate—in
combination with the other experiments—that human trait learning
seems to rely on both reference points and granularity. In the final
experiment, Experiment 5, we explored the generalizability of these
models to new stimuli by changing the task from learning about trait
words to learning about personality statements. Model comparison
suggested participants still used the fine granularity but no longer the
referencepoint for these stimuli. This could indicate that the reference
point might not add enough information for such statements; poten-
tially because participants’ representation had become too abstract.

All models displayed high robustness and replicability over all five
experiments. Simulations done separately for each experiment indi-
cated that both parameter recovery and confusion matrices were
always within a satisfactory range (Supplementary Figs. 3–6). Results
were robust across experiments and for all implementations of the
computational models40 and statistical analyses (e.g., regressions &
correlations) largely corroborated these results. Finally, best fitting
parameters for simulations and participants’ data largely overlapped
(Supplementary Figs. 11–15). Participants seemed to use both granu-
larity and reference points throughout the experiments, often toge-
ther in their most complex form (i.e., Model 5), exemplifying the
complexity of human social learning. These results, coupled with the
subtle differences in learning that are picked-up by the models for the
varying experiments, highlight the usefulness of both granularity and
reference points in computational models and indicate their impor-
tance for guiding social learning. In the following, we discuss these
model components.

Across five experiments, we found evidence for the use of PEs in
learning, which is in line with a host of previous work on (non-)social
learning12,15,16. From a statistics perspective we found that participants
showed, on average, a decrease of the absolute PEs over time for all
experiments, importantly these results were replicated by simulations
of thewinningmodels (Figs. 3–7, panel C). These findings reinforce the
validity of using the hybrid Rescorla-Wagner learningmodels, because
the PEs are integral to these models.

In the current study we focused on learning about others, in this
context we did not expect any difference in positive and negative
feedback (i.e., PEs). Nonetheless, we performed an additional analysis
that constructedmodels based on the existing five such that they took
into account positive and negative feedback separately. Results from
all five experiments largely corroborated our expectations: the regular
models were better in every experiment, with a better fit for the
positive/ negative models only being achieved in Experiment 4. This
might be because the participants learned about an out-group for
which they used an incorrect RP with a more negative viewpoint. Due
to this negative RP there were simply more positive PEs during learn-
ing. In future research, we expect that positive and negative PEs are
more influential when learning about oneself, as previous work has
shown41,42. For example, stereotypical or false beliefs about others, as
often seen inpatientswith borderline personality disorder43may result
in excessive positive or negative PEs.

Wedefined referencepoints as an averageperson (of a group) and
formalized them as the average of a group of independent self-ratings
(i.e., individual trait ratings calculated from an independent sample).
RPs were used as points of comparison during learning by participants
in all experiments except for Experiment 5.We surmise the absence of
RPs in Experiment 5 to be related to the smaller scale of the answer
options (i.e., 1–5 compared to 1–8 for the other experiments) which
decreases their usability as well as the relatively small amount of ten
items within a factor.

The most striking use of the RP was exhibited in Experiment 4,
where participants were tasked with learning about people from an
out-group (i.e., fashion models). During this learning task they used a
different (stereotypical) RP than the one they had been using for the
other experiments where they learned about people from an in-group
(i.e., students). Interestingly, the best performing models indicated
participants would be better off using Model 1 [No Learning]. Addi-
tional analysis that compared the fashion model profiles and the stu-
dent profiles fromExperiment 1 showedhigher correlations among the
fashion model profiles and the standard population RP. This indicates
that one could potentially estimate the average fashion model accu-
rately with only the population RP available (Supplementary Fig. 8).
Notably, participants were persistent in their use of a learning model
scaled by fine granular knowledge and the stereotypical reference
point. We interpret this finding as a case of stereotypical reference
points in line with Jussim et al.44 who define stereotypes as cognitive
categories that people use when thinking about groups and about
individuals from those groups. It is widely accepted that stereotypic
expectancies can guide learning45, as exemplified in Experiment 4.

Finally, we introduced a separate set of analogous models with
participants’ self-ratings as RPs for all experiments (Supplementary
Fig. 10). Results from these experiments indicate that the average
(perceived student) RPs to always be slightly better, indicating the
higher accuracy from such perceived group averages compared to
self-ratings.

Granularity was introduced to create computational models that
are more akin to real-life learning, which necessitates generalization
across similar stimuli and situations. Previous learning models only
allowed updating about isolated traits. However, in a real-life situation
humans rarely learn about traits in an isolated manner but rather
update their whole view of a person’s personality (e.g., if you see
someone being impolite your view of that person as a whole can
change in a negative manner).

Granularity was defined on two levels of detail with which parti-
cipants could represent the personality space. Participants seemed to
use both levels of granularity in ourmodels depending on the specifics
of each experiment. We argue that coarse granularity roughly corre-
sponds to the use of schemata26. Schemata are representations of
features that often co-occur and influence learning and perception26.
These representations or cognitive structures contain units of
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information and their links46. Likewise, our implementation of coarse
granularity entailed the factors of the Big-Five (i.e., items within a
factor occur together most often and are summarized by a single
average value). Conversely, updating with fine granularity links all
traits together based on their correlations. Furthermore, splitting
granularity in two levels of detail was inspired by work of Klein et al.28

who showed that trait-representations are stored as two distinct
memories (episodic and semantic). Episodic memories correspond to
single exemplars of social information and semantic representations
are more abstract and generalized.

Both coarse- and fine-grained structures described participants’
behaviour depending on experimental manipulations. Interestingly,
this shows that participants represented and accessed both types of
structures when beneficial. Our findings might indicate that humans
flexibly change their representations of social knowledge to match
implicit task demands. Importantly, participants could only derive
clues about how to adapt their strategy from trial-level item and
feedback information, as the general task frameworks and instructions
were kept very similar across experiments. We believe that this flexible
updating of abstract representations also allows for the ability to
generalize across widely differing stimuli, as evidenced in
Experiment 5.

The granularity of knowledge structures employed in this study
were chosen to represent two extreme levels (coarse andfine). Inmany
cases, humans probably do not use either of the extremes but a level of
generalization that lies on a continuum between these extremes.
Because coarse- and fine-granularity are two levels of granularity, they
are inherently related. We attempted to tease their unique contribu-
tion apart with a GLM analysis, which, however, was limited due to the
high correlations between the three regressors. Results from the
confusion matrices of all experiments indicated that models could
differentiate between the different levels of granularity. This made us
confident that the computational modelling approach was better sui-
ted in distinguishing between these two levels of granularity. In future
work we aim to investigate the representations at various levels of
granularity across this continuum.

Social learning is a very broaddomain. Evenwithin a certain social
learning domain, there is large situational variability that determines
which learning strategy is most suitable. In five consecutive experi-
ments that vary with respect to participant populations, employed
items, and to-be learned profiles, we introduced a defined set of
computationalmodels that generalize across experiments and pick up
the systematic and subtle differences between experiments. The goal
of thismanuscriptwas to introduce themodelling framework in a clear
and concise manner and not be exhaustive in introducing its potential
applications. Nonetheless, we would like to argue for the potential
broad scope of their applicability to a majority of social learning set-
tings. As a first step for this broader scope, we included Experiment 5,
in which we used a different set of stimuli for which, as expected, the
models still functioned as in the former experiments.

We conjecture that thesemodels are especially useful for learning
about personality traits, as shown over the five experiments. However,
a very similar model space has also successfully been applied to
learning about others’ preferences39. The models integrated similarity
structures that can be derived from preference items (coarser grained
structures such as candy and fruit and fine-grained item-level corre-
lations). A fine-grained similarity learning model captured how parti-
cipants learned about others’ preferences best.

Moreover, recent studies have found neural evidence that
humans encode specific social knowledge structures employed in our
models (i.e., fine grained correlationmatrices)47,48 suggesting a central
role of item-level similarity structures in social cognition. The relative
simplicity of our models makes them adaptable to various multi-
dimensional representations across different learning domains. These
results are corroborated outside of the social domain by Roweis &

Saul49 who highlight human expertise in representing complex
abstract structures akin to the granularity structure introduced here.

In a generalmodelling frameworkwe argue that ourmodels relate
to differences on a continuum between model-free (MF) and model-
based (MB) RL50. The details captured by granularity reveal complex-
ities thatMF-RLdoes not capture:MF learns a single value for any given
stimulus in a given learning situation. Likewise, ourmodels with coarse
granularity learn a summary value for each of the Big-Five factors. In
their simpler form, we thus think of our models using coarse granu-
larity to bemore similar toMF-RL rather than to fullMB-RL (i.e., coarse
granularity functions as a look-up chart of traits). The more complex
models with fine granularity can be viewed asmore like MB-RL as they
incorporate a full representation of the traits and the similarities
between them. This split—akin to differences between MB-RL and MF-
RL—suggests that our models can distinguish between more costly
optimalmodels andmore efficient heuristicmodels, similar to models
on optimal versus heuristic decision-making51,52.

Studying social interactions in a well-controlled experimental
setting forces limitations on a study (i.e., in the current experiment
some limitations were necessary to establish the current modelling
paradigm). First, even though we used RW learning models to capture
participants’ behaviour, the task, in which participants received direct
and exact feedback, bears some resemblance to a supervised learning
problem. Supervised models have thus far not been used to explain
our task and could pose as interesting models for future research.

A related limitation is that our social learning task (including the
given estimates and the received feedback) was presented using exact
numbers. In many social situations, such estimates and feedback
would be given in the form of verbal descriptions (e.g., He is quite
generous, and I am very generous). Numerical feedback as used in our
task ismore common in school orwork settings aspart of performance
evaluations (e.g., grades, scorings, etc.).

Future studies should therefore investigate how people translate
numerical into verbal evaluations (and vice versa) in similar social
learning tasks. Furthermore, learning about others’ personality is
sometimesmore directly related to actions e.g., approaching someone
who seems friendly. Expanding the task to include actions based on
feedback about someone’s personality (e.g., a cooperative foraging
task) could therefore further heighten the external validity.

The total amount of trait items used is on the smaller side, e.g., for
Experiment 5 we used 50 items (10 items per factor). Expanding the
total number of items could offer amore precise look at learning about
personality traits. Specifically, it could offer amore rigorous look at the
continuum between the coarse and fine-grained extremes.

Future research should explore how people learn about the
reference points and granularity in the first place. Based on the sug-
gestions by Klein et al.28 that memory moves from a reliance on
exemplars tomore abstract representations, it would be interesting to
explore if the concept of granularity also evolves over time during
learning—concurrently exploring if humans use even more levels of
granularity between the current two extremes andhow these levels get
adjusted. Furthermore, if and how humans switch within reference
points and granularity within and between tasks are interesting ave-
nues for future research. Reference points could be explored with a
host of other groups (e.g., other out-groups, (racist) stereotypes, etc.),
especially since learning from others seems to be influenced by whe-
ther they belong to an in- or out-group27,53.

The literature in social neurosciences points towards parts of the
(medial) prefrontal cortex as one of the most important regions for
social cognition11,54,55. It would be interesting to explore if and how the
concepts that we introduce in these experiments are represented in
the brain and if the changes mentioned above can be tracked as
dynamic processes in the human prefrontal cortex56.

As mentioned previously, we expect that the learning models
presented here will also be applicable to different domains of learning
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such as other domains of social learning (e.g., learning for others8)—
and potentially to different types of non-social, abstract learning.

In summary, we tested how humans learn about the multi-
dimensional personality of others. We specifically focused on how
social knowledge structures shape this learning and introduced two
social knowledge structures that can be mathematically specified in
computational models. We found evidence that participants use
prior convictions akin to schemata to learn about others who
belong to different groups. Crucially, participants displayed a
representation of the multidimensional similarity structure of per-
sonality traits and were able to apply this on several levels of
abstraction (within constraints). The computational models intro-
duced in this study are robust, simple, and widely applicable to
multidimensional (social) learning situations.

Methods
General
We present five experiments. All experiments are similar to each other
and vary on a couple factors per experiment in order to test specific
components within our computational models. In particular, these
variations aim at distinguishing: Reference Points, Granularity and
overall robustness of the models.

Participants
All five experiments in this study were conducted in accord with the
Declaration of Helsinki and approved by the local research ethics
committee (Ethik–Kommission der Ärtzekammer Hamburg, Num-
ber: PV5746). All participants gave written informed consent using a
form approved by the ethics committee and were compensated the
regular hourly fee (€9,-) for behavioural studies. On average, one
experiment took around 30min. Participants for all experiments
were recruited through online advertisement. Experiments 1–3were
administered to independent participant samples. Experiments 4 &
5 were tested on the same sample of participants in the same testing
session. Participants’ details per experiment are summarised in
Table 2. Participants had to meet the following inclusion criteria: (1)
age between 18 and 40 years, (2) German native speakers, (3) normal
or corrected to normal vision, and (4) no history of neurological or
psychiatric disorders. In Experiments 1–3, participants could only
partake in one of the experiments; participation in one experiment
thus directly excluded them from partaking in any of the four other
experiments.

Preregistration
Experiments 4 & 5were preregistered on theOpen Science Framework
prior to data collection (https://osf.io/8r6gv). In this preregistration,
we specified our expected sample size, exclusion criteria, measured
variables and computationalmodels.Most of these considerations also
applied to the first three experiments, which we did not preregister.
We followed the analyses specified in the preregistration without
deviations. However, only the computational modelling approach was
preregistered and any additional analyses were therefore not
preregistered.

Task
All five experiments shared the same structure, but differed in their
content (i.e., words and profiles). The first experiment is described
below. Any differences between Experiment 1 and the following
experiments are detailed in the section differences between experi-
ments. The main task in the experiments was a social learning task
followed by (self-) rating tasks.

In experiment 1 we tested 35 participants (23 females, mean age
24.37, SD 3.66). Participants performed a social learning task about
different trait profiles, where a profile consisted of sparse information
about a person (name, age, time since starting their university studies
and time spent living by themselves) and self-ratings on a selection of
traits selected to resemble items found in the Big-Five (Supplementary
Tables 1–3). The information and self-ratings from these profiles were
selected from an independent previous study (Korn et al., 2012), with
fictitious and randomly assigned common names. Instructions for the
whole experimentwere given orally and presented on the screen at the
start of the experiment. Participants were given the opportunity to ask
questions after the instructions and could start the experiment
themselves through a button press. The learning task consisted of four
runs, i.e., one run per profile. Participants learned about a different
profile in each run (Fig. 1a). As described above, the person of the
profile in questionwas briefly introduced at the start of the run. Twoof
the profiles were given female names and two of the profiles were
given male names. Each experimental trial started with the presenta-
tion of a trait word (e.g., generous, arrogant), a blank space under-
neath, and the rating scale (1 = does not apply at all; 8 = does apply very
much). Participants had four seconds to estimate how they thought
the persons in question rated themselves on this trait by choosing the
appropriate number [1–8] on the keyboard. Directly after this estimate
participants received feedback (i.e., self-ratings from the person of the
profile) for a duration of two seconds, for a total of 60 trials. This
means that participants could learn about each person’s self-ratings
over time.

After the social learning task, participants were asked to give their
self-ratings on 80 traits, i.e., the full list of 40 positive and 40 negative
words used in previous studies (Korn et al., 2012; 2014). A subsection
of 30positive and30negative traitswas used in the learningpart of the
experiment. All experiments were presented using the MATLAB tool-
box Cogent.

Differences between experiments
Tables 1 & 2 summarise the differences between all five experiments.
The first experiment was used as a reference to subsequent experi-
ments. In Experiments 2–5, we manipulated key features of the first
experiment and tested whether these changes resulted in different fits
of the computational models. Supplementary Tables 1–3 list the
stimuli used.

Experiment 2: Constructed Profiles & Narrow Traits. The sample in
experiment 2 consisted of 42 participants (28 females,mean age 23.67,
SD 3.19). Experiment 2 consisted of artificial profiles of a narrower trait
space. That is, 60 trait words were selected pertaining to the two Big-

Table 2 | Overview of the participants for the five experiments

Experiment n Tested Age (mean) Age (SD) n Female n Final n Profiles removed n Sessions removed

1 (Original) 35 24.37 3.66 23 35 0 1

2 (Constructed Profiles) 42 23.67 3.19 28 42 0 0

3 (Two Factors) 59 25.37 4.95 30 59 0 2

4 (Fashion Models) 30 25.38 4.91 15 29 1 0

5 (IPIP items) 30 25.38 4.91 15 28 2 8

The same group of people participated in Experiments 4 & 5.
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Five factors agreeableness and conscientiousness (with 30 positive
traits for each of the two factors). Specifically, 15 trait words were
selected from the original list of 80 traits from the previous studies. A
set of 45 traitwordswere newly introduced, which resulted in a total of
125 trait words used overall. In Experiments 2–4, participants made
self-ratings on all of these 125 words.

The self-ratings of the profiles about which participants in
Experiment 2 learnedwere simulated. Specifically, we specified amean
value for each of the two factors, which could be 5 or 7 on the 8-point
scale.We specified four profiles with the four possible combinations of
ameanof 5 or 7 for the two factors (i.e., 5 & 5, 5& 7, 7& 5, and 7&7). For
each trait word,we individually added randomvariability (SD = 1) using
the standard random normal distribution (randn) in MATLAB. After
adding this random variation, ratings were rounded to their nearest
integer and capped to the anchor points [1–8]. All four profiles were
given names that matched the gender of the participant.

Experiment 3: real profiles & narrow traits. Experiment 3 had a
sample of 59 participants (30 females, mean age 25.37, SD 4.95). Pro-
files in Experiment 3 were veridical self-ratings belonging to two of the
Big-Five factors (agreeableness & conscientiousness). We selected
these profiles from self-ratings given by participants of Experiment 2.

Experiment 4: fashion models. For experiment 4 we tested 30 parti-
cipants, of which 1 was excluded formissing toomany trials. This left a
final sample of 29 participants (15 females, mean age 25.38, SD 4.91).
Profiles in Experiment 4 were selected from a pre-defined reference
group. That is, from a sample of 30 female fashion-models, who pro-
vided online self-ratings in a separate study conducted for a Bachelor’s
thesis (unpublished), from these 30 self-ratings we selected four pro-
files for the learning task. Information given to participants in the
learning task was: female first name (fictionalized), age, years of work
as a model, and time spent living by themselves.

At the start of the experiment, we asked participants for pre-
ratings to capture their viewof the average fashionmodel’s personality
on the used stimuli. After giving these pre-ratings, participants com-
pleted the standard learning task. They rated four fashion model
profiles and received trial-by-trial feedback about the fashion models’
own ratings. Both the pre-rating and learning task were performed on
the same 60 traits and five factors as in Experiment 1.

Experiment 5: IPIP items. The same group of participants as experi-
ment 4 were tested, however two participants were excluded for
missing too many trials. This left a final sample of 28 participants (15
females,mean age 25.38, SD 4.91). A different set of itemswas used for
Experiment 5 (Supplementary Table 3). Instead of the trait words used
in Experiments 1–4, we used 50 items from the German translation of
the International Personality Item Pool (IPIP), also known as Lexical
Big-Five factor markers22. These items were rated on a 5-point scale as
those in the original questionnaire (1 = does not apply at all; 5 = does
apply very much).

Information for selection of the profiles was taken from a large
online dataset with 50 self-report items on the IPIP from over 1 million
participants (Open Source Psychometrics Project; https://
openpsychometrics.org/). For our learning task, we selected five pro-
files with average ratings on 4 out of the 5 factors (mean score within
1 SD) and a divergent score on the remaining factor (mean score above
1 SD). That is, each profile is divergent on one out of five factors. After
the learning task, participants judged themselves on the same
50 items.

Data analysis
Missing data. The same exclusion criteria for missing data were
applied for all experiments. Within an experiment, a single run would
be removed if more than 20% of the answers were missing (due to

participants not answering within four seconds). Data from a partici-
pant was completely removed if more than 10% of all answers were
missing. This resulted in the exclusion of three complete data sets (two
data sets in Experiment 5 and 1 data set from Experiment 4) and nine
separate profiles over all experiments combined (see Table 2 for
details). These exclusion criteria are in line with our preregistration for
Experiments 4 & 5.

Statistical behavioural analysis. To test whether the PEs have a
downward trend over time (an indication of learning), we calculated
the average of the absolute PEs per profile per trial for all participants.
Profile data were then averaged into one vector (with length being the
number of trials) of the average absolute PEs over time per experi-
ment. To determine whether there was a significant decrease of PEs
over time, we calculated the Pearson correlation coefficient on these
absolute average PEs and the corresponding trial number. A negative
Pearson correlation indicates a decrease in the absolute PEs over the
trials. The same procedure was applied to data that was simulated
based on the winning (i.e., best fitting) model for that experiment.

Moreover, for each experiment separately, we calculated a GLM
that explained the accuracy per trial (i.e., the prediction error) with
three regressors. Each regressor was initially tested in a separate
regression and captured an integral part of our computationalmodels.
In brief, the regressors were the following:

Regressor 1: total number of previous trials seen for each item,
(this assesses the relationship between the decrease of the PEs and the
number of items seen previously and thus represents learning in the
standard Rescorla-Wagner model)

Regressor 2: total number of previous trials that are fromthe same
factor as the current item (this asses the relationship between the
decrease of PEs and the number of items encountered from a specific
factor and thus investigates the behaviour captured by the coarse
granularity models)

Regressor 3: the summed absolute correlations of the previous
items with the current item (this assesses the fine granularity models
where the information content of all the previous items is weighted by
their correlation to the current item).

In a second-level analysis, participants’ individual parameter
estimates were subjected to a one-sided one-sample t-test to test if the
slope was significantly different from zero in the negative direction
(indicating a decrease of the absolute PE over time).

Computational models
We created computational models that use standard Rescorla-Wagner
learning and expand these models with two sources of information:
Granularity and Reference Point. Through our computational models,
we explore to what degree participants use these concepts (Fig. 2a,
Supplementary Fig. 1). We test participant learning on individual pro-
files but do assume that participants use the same strategy (i.e.,model)
throughout the experiment.

Calculationof thePEs.Models 2–5make use of the standardRescorla-
Wagner learning model, this model makes use of the prediction error
(PE) to update the prediction (P) for the following trial. The prediction
error for all models is the feedback (F) on a certain trial (t) minus the
prediction (P) on that trial.

PEt = Ft � Pt ð1Þ

Granularity. Granularity refers to the level of detail with which parti-
cipants represent the others’ traits. This means that one can either
have a summary value per (Big-5) factor, or learn a separate value for
each trait per person (Fig. 2a, and Supplementary Fig. 1d, e). The for-
mer, Coarse Granularity, is mathematically defined by having a single
summary value for each factor which will be updated only when one
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learns about a trait that belongs to that factor. The latter, Fine Gran-
ularity, assumes one learns a separate value per trait but also updates
all other traits based on how similar (i.e., correlated) they are to this
current trait. In experiments 1–4, these similarity matrices were cal-
culated using Pearson’s correlation on self-ratings from two published
independent laboratory studies41,57 aswell as data fromprevious online
studies58. Specifically, we selected four participants from the 27 par-
ticipants in Korn et al. (2012)57 for the four profiles in Experiment 1. The
self-ratings of the remaining 23 participants as well as the self-ratings
from the 78 healthy control participants in Korn et al. (2014)41 were
used for the similarity matrix. These 101 participants who completed
laboratory studies gave ratings on the 80 traits of the original list.
Additionally, for the calculation of the similarity matrix we included
online ratings of 734 participants, who each gave self-ratings on 50
pseudorandom traits from the overall list of 125 traits. For Experiment
5, we calculated the correlation matrix from the (>1 million) sample
from the Open Source Psychometrics Project (https://
openpsychometrics.org/).

Reference points. Reference points refer to a-priori expectation of a
person’s personality. This means that a person has an idea of the trait
ratings from an average person who belongs to the same group as the
person who is being judged and uses these ratings next to regular
learning (Supplementary Fig. 1b, c) (e.g.,most people fromthis specific
group are generous I therefore should rate them higher on generous,
but I perceive them, on average, to have less diligence, so I should
score them lower on this trait). The referencepoint datawas calculated
by taking the mean value per trait of the same datasets that were used
to calculate the similarity matrices. In Experiment 4, we used the ste-
reotypical ratings given by participants before the learning task. To
test whether there was a difference between the self-ratings of the
independent study and the stereotypical ratings we calculated an
independent samples t-test on the trait averages.

Model 1: No learning. Model 1 assumes that participants perform a
linear transformation of the reference point (RP) population mean to
predict (P) others’ personalities. This model performs like a standard
linear regression where b0 represents the intercept and b1 the slope.

P =RP*b1 +b0 ð2Þ

Model 2: coarse granularity. Updates an average factor value (F,
factor) for the next trial estimate based on the prediction error
(PE) and the current estimate. That is, on a trial-by-trial basis the
model updates a value that represents the average value for this
factor. The speed of learning is determined by the free parameter α
(bounded [0 1]), with a second free parameter; starting value
(bounded [1 8]), determining the value at which each factor will be
initialized. That is, the starting value determines the first guess the
model makes when a new factor or profile is presented (i.e., the
value at Pð0,FÞ).

Pðt + 1,FÞ =Pðt,FÞ +α*PE ð3Þ

Model 3: coarse granularity & population RP. Model 3 expands
Model 2 by adding the reference point (RP) in form of a population
meanper trait. During each trial model 3 learns an average factor value
like model 2 but it adds information based on the Reference Points
(i.e., the average population rating on this trait). Information is inte-
grated using the weighting parameter γ (bounded [0 1]). This para-
meter determines how much participants rely on just the RW from
model 2 or the RP (0.5 indicating that both are used equally). Like
Model 2, Model 3 also uses the parameters learning rate (α) and
starting value for its initial estimate for a new factor or profile.

Parameters α, γ, and the starting value are free parameters.

Pðt + 1,FÞ = γ*RP+ 1� γð Þ*ðPðt,FÞ +α*PEÞ ð4Þ
Model 4: fine granularity. Model 4 employs fine-grained granularity
and updates all items (All) at once based on how correlated they are to
the current item (Supplementary Fig. 1e). This similarity matrix (SIM)
was calculated before the experiment based on separate samples from
previous studies41,57. Thus on a trial-by-trial basis Model 4 updates the
current trait based on the PE and the learning rate (i.e., it is perfectly
correlated with itself) all the other traits will get updated based on the
PE, the learning rate and their similarity to the current item (i.e., their
correlation), whichmeans that traits that are more similar get updated
more. Model 4 also makes use of the free parameter starting value.
Because this model updates all items for every step of learning the
starting value is not just initialized for the first value but rather all
items. This ensures that themodel can updates all items from theonset
of learning.

Pðt + 1,AllÞ =Pðt,AllÞ +α*PE*SIM ð5Þ
Model 5:finegranularity&populationRP. Like the coarse granularity
models, Model 5 expands the previousmodel (i.e., Model 4) by adding
the reference point (RP) in the form of the population mean. That is,
for every trial learning happens (as in model 4) but additional infor-
mation in the form of an average trait rating is added. The degree to
which this information (i.e., RP and Granularity) is integrated is
determined by γ. Similar toModel 4, Model 5 uses the starting value to
initialize all itemestimates at theonset of learning. Free parameters are
α, γ, and starting value.

Pðt + 1,AllÞ = γ*RP + 1� γð Þ*ðP t,Allð Þ +α*PE*SIMÞ ð6Þ
Model additions: stereotypical reference points. In the preregistra-
tion for Experiment 4, we added a variation of the reference point to
the models specified above. Next to the standard reference points, we
also tested models using the stereotypic view held by the participant
prior to learning. This stereotypic view in the reference point (STE) is
added for Models 1, 3 & 5.

Model 1� STE P =STE*b1 +b0 ð7Þ

Model3� STE Pðt + 1,FÞ = γ*STE + 1� γð Þ*ðPðt,FÞ +α*PEÞ ð8Þ

Model5� STE Pðt + 1,AllÞ = γ*STE + 1� γð Þ*ðP t,Allð Þ +α*PE*SIMÞ ð9Þ
Model additions: positive/negative learning rate. To explore if
participants learned differently from positive and negative feed-
back, we constructed additional models that use two parameters
for the learning rate. These two parameters thus have a separate
learning rate for positive and negative PEs. All models except for
model 1 [No Learning] were adapted in this manner (i.e., Models
2–5 all make use of the following two α’s that depend on the sign of
the PE in the current trial).

a=α� if PE <0

a=α + if PE ≥ 0

Model additions: self-ratings as reference points. Similar to the
stereotypical models in Experiment 4 we included additional models
that used participants’ self-ratings as RPs. To achieve this the models
that originally used the population RP (i.e., Model 1, Model 3, and
Model 5) were duplicated and adapted to use each participants’ self-
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ratings, resulting in 11 totalmodels for Experiment 4 and8 totalmodels
for the other Experiments.

Model 1� Self P =Self*b1 +b0 ð10Þ

Model 3� Self Pðt + 1,FÞ = γ*Self + 1� γð Þ*ðPðt,FÞ +α*PEÞ ð11Þ

Model 5� Self Pðt + 1,AllÞ = γ*Self + 1� γð Þ*ðP t,Allð Þ +α*PE*SIMÞ ð12Þ

Model fitting and comparison. For model fitting, the free parameters
are all initialized at the average between the maximum and minimum
bounds (i.e., 0.5 for bothα and γ). Thefirst prediction (P0) was fitted as
the free parameter: starting value.

Optimal model parameters were determined using linear least
squares estimation. In detail, optimization used a non-linear Nelder-
Mead simplex search algorithm (implemented in theMATLAB function
fminsearch) to minimize the sum of squared errors (SSE) of prediction
over all trials for each participant. Model evidence was then assessed
using the Bayesian information criterion (BIC) using the formula:

BIC =n*ln
SSE
n

� �
+ k*ln nð Þ ð13Þ

Here,n is the number of trials and k is the numberof freeparameters in
the model (BIC thus penalizes for an increase in model complexity).
Models were compared using both fixed- and random-effects analyses.
For fixed-effects analyses we calculated the log-group Bayes factor
(BF): all model BIC scores are summed across participants and then
subtracted from the value of the reference model (worst scoring
model) where the best performing model has the lowest score.
Furthermore, for random-effects analyses, we calculated the posterior
exceedanceprobability. Thismeasures the likelihood that anymodel is
more frequent in the comparison set than all other models, corrected
for the possibility that observed differences are due to chance. This
random-effects family wise comparison was performed using the
Bayesian Model Selection (BMS) procedure implemented in the
MATLAB toolbox SPM12 (http://www.fil.ion.ucl.ac.uk/spm/; spm_BMS,
ref. 59).

Best performing models (in the set). Normally, models are fit on the
answers participants give during the task, this helps us estimate which
of the strategies (i.e., models) participants used during learning. But in
order to understand the usefulness of the strategies we estimate the
best performing model (in the set). This is achieved by fitting the
models on the profile answers (i.e., the same way the participants
experienced the experiment) instead of the participant answers (see
Supplementary Fig. 7 for a more detailed description). Comparing
these best performing models with the ones that best fit the partici-
pants’ strategies we can determine whether participants’ strategies
were well fit to the task demands.

Confusionmatrix. To test whether data simulatedwith amodel would
also be best fit by thatmodel, we created confusionmatrices for every
experiment separately. For every confusion matrix we drew random
parameter values between [0.2 0.8] 200 times. These values were used
to simulate data for the profiles using every model. After the data was
simulated, noise was added from a standard normal distribution. Then
all models were fitted to the simulated data to find out the extent to
which simulated data from a particular model is best fitted by this
model opposed to all other models (Supplementary Fig. 3). Ideal
recovery is achieved when the confusion matrix results in the identity
matrix.

Parameter recovery. To test whether parameters could be recovered
consistently, we simulated data for all five experiments. For every
experiment separately we simulated data for the profiles by drawing
random parameter values (between [0 1]) from a random distribution
200 times. With these parameters data was simulated using every
model. Then noise (sampled from a normal distribution) was added.
After this, all models were fitted to this data and parameters were
recovered. We measured fit through correlations; where a higher
correlationmeans better fit.Winningmodels weremarked using green
squares in Supplementary Figs. 4–6. For Experiment 4, we omitted the
stereotype models as these are functionally the same as the standard
models when it comes to simulating data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The behavioural data that support the findings of this study are pub-
licly available on Github (https://github.com/dnhi-lab/PerLe) and on
Zenodo (https://doi.org/10.5281/zenodo.4697286).

Code availability
The code used for analysis is publicly available on Github (https://
github.com/dnhi-lab/PerLe) and on Zenodo (https://doi.org/10.5281/
zenodo.4697286).
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