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Background: Colorectal cancer (CRC) is the third-most prevalent cancer globally. The biological 
significance of telomeres in CRC carcinogenesis and progression is underscored by accumulating data. 
Nevertheless, not much is known about how telomere-related genes (TRGs) affect CRC prognosis. 
Therefore, the aim of this study was to investigate the role of TRGs in CRC prognosis.
Methods: We retrospectively obtained the expression profiles and clinical data of CRC patients from public 
databases. Utilizing least absolute shrinkage and selection operator (LASSO) regression analysis, we created 
a telomere-related risk model to predict survival outcomes, identifying ten telomere-related differentially 
expressed genes (TRDEGs). Based on TRDEGs, we stratified patients from The Cancer Genome Atlas 
(TCGA) into low- and high-risk subsets. Subsequently, we conducted comprehensive analyses, including 
survival assessment, immune cell infiltration, drug sensitivity, and prediction of molecular interactions using 
Kaplan-Meier curves, ESTIMATE, CIBERSORT, OncoPredict, and other approaches.
Results: The model showed exceptional predictive accuracy for survival. Significant differences in survival 
were observed between the two groups of participants grouped according to the model (P<0.001), and this 
difference was further confirmed in the external validation set (GSE39582) (P=0.004). Additionally, compared 
to the low-risk group, the high-risk group exhibited significantly advanced tumor node metastasis (TNM) 
stages, lower proportions of activated CD4+ T cells, effector memory CD4+ T cells, and memory B cells, but 
increased ratios of M2 macrophages and regulatory T cells (Tregs), elevated tumor immune dysfunction and 
exclusion (TIDE) scores, and diminished sensitivity to dabrafenib, lapatinib, camptothecin, docetaxel, and 
telomerase inhibitor IX, reflecting the signature’s capacity to distinguish clinical pathological characteristics, 
immune environment, and drug efficacy. Finally, we validated the expression of the ten TRDEGs (ACACB, 
TPX2, SRPX, PPARGC1A, CD36, MMP3, NAT2, MMP10, HIGD1A, and MMP1) through quantitative real-
time polymerase chain reaction (qRT-PCR) and found that compared to normal cells, the expression levels 
of ACACB, HIGD1A, NAT2, PPARGC1A, and TPX2 in CRC cells were elevated, whereas those of CD36, 
SRPX, MMP1, MMP3, and MMP10 were reduced.
Conclusions: Overall, we constructed a telomere-related biomarker capable of predicting prognosis and 
treatment response in CRC individuals, offering potential guidance for drug therapy selection and prognosis 
prediction.
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Introduction

Colorectal cancer (CRC) is the third most common 
malignancy, with 1,880,725 new cases and 915,880 new 
deaths reported in 2020, according to the International 
Agency for Research on Cancer (1). Early-stage CRC is 
associated with a 5-year survival rate of approximately 
90%, while advanced CRC confers a markedly lower 
survival rate of 10–15% (2,3). However, in its early stages, 
CRC is asymptomatic and difficult to detect. When 
diagnosed, most individuals are already at an advanced 
stage. Furthermore, there are wide variations in prognosis 
and treatment outcomes owing to the significant diversity 
of CRC. Therefore, the identification of novel prognostic 
markers to guide tailored therapies and predict outcomes 
is imperative.

Telomeres, distinctive DNA structures located at 
chromosome ends, consist of repetitive nucleotide 
sequences and shelterin proteins, safeguarding chromosome 
integrity against genomic erosion (4). The telomerase repeat 
amplification protocol (TRAP) (5), an efficient and sensitive 
method for detecting telomerase activity, has been pivotal in 
studies revealing that 85–90% of human malignant tumors 
express this activity. In contrast, benign tumors or normal 
tissues are predominately negative or sporadically positive, 

rendering telomerase a crucial marker for diagnosing and 
predicting the prognosis of malignant tumors. Numerous 
age-related illnesses, including cancer, are associated 
with shorter telomeres and decreased telomerase activity 
(6,7). An increasing number of studies have investigated 
the role of telomeres and telomerase in carcinogenesis. 
Notably, in prostate cancer, shorter telomeres correlate 
with higher genomic instability (8). The dynamics of 
telomere maintenance during hepatocellular carcinoma 
carcinogenesis vary, aligning with tumor progression and 
aggressiveness (9). Notably, patients with early-onset CRC 
(EOCRC) exhibit significantly shorter telomeres than 
healthy individuals, suggesting a link between telomere 
shortening and EOCRC susceptibility (10). Nevertheless, 
conflicting studies exist regarding the association of 
telomere length (TL) with CRC.

Significant progress has been made in understanding 
TL in CRC and its effect on CRC prognosis. Kroupa et al.  
conducted a retrospective study on 721 patients with 
sporadic CRC, finding variations in TL between tumors 
and adjacent mucosa, among different tumor sites, and that 
the TL ratio between tumor tissue and adjacent mucosa is 
associated with patient’s prognosis (11). Luu et al. performed 
a large cohort study of ethnic Chinese in Singapore, 
discovering that longer telomeres are associated with a 
higher risk of CRC, particularly rectal cancer (12). Previous 
research has reported on the relationship between telomere-
related genes (TRGs) and the prognosis of kidney cancer, 
pancreatic cancer, breast cancer, lung adenocarcinoma, oral 
squamous cell carcinoma, and hematological malignancies 
(13-18). However, no research has been conducted to 
examine the role of TRGs in the prognosis of CRC. 
Consequently, our objective was to develop a gene signature 
utilizing the least absolute shrinkage and selection operator 
(LASSO) method. This signature aimed to investigate 
the potential applications of TRGs in predicting survival 
outcomes, understanding immunological conditions, and 
assessing therapeutic responses in patients with CRC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-43/rc).
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Highlight box

Key findings
• This study constructed a risk model for prognosis prediction in 

colorectal cancer (CRC) based on ten telomere-related genes and 
developed a clinically relevant prognostic model by integrating risk 
scores and pathologic stage, illustrating excellent predictive ability.

What is known and what is new? 
• Telomere length is closely related to the prognosis of CRC.
• There are fewer research utilizing the telomere-related genes to 

predict the prognosis of CRC.

What is the implication, and what should change now? 
• The risk model developed in this study provides a foundation for 

comprehending the roles of telomere-related genes and showcasing 
their clinical significance in CRC.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-43/rc
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Methods

Data download

We downloaded the CRC dataset (TCGA-COADREAD) 
from The Cancer Genome Atlas (TCGA) using the 
TCGAbiolinks package (19). For analysis, we acquired 
sample  da ta  f rom 695  CRC cases ,  inc lud ing  51 
paracancerous normal samples (grouping: control) and 
644 CRC tumor samples (grouping: COADREAD). 
Relevant clinical information was sourced from the UCSC 
Xena database (20). Tumor mutation burden (TMB) and 
microsatellite instability (MSI) data were downloaded 
from the cBioPortal database (21). Furthermore, we 
examined copy number variation (CNV) and single 
nucleotide polymorphism (SNP) data for the patients. The 
Gene Expression Omnibus (GEO) database provided the 
GSE74602, GSE25070 (22), and GSE9438 (23) datasets. 
As an independent external validation cohort, we selected 
the COAD cohort GSE39582. Specifically, GSE74602 
comprised 30 CRC samples and 30 correspondingly 
matched adjacent non-tumor colon tissue samples. 
GSE25070 included 26 CRC samples and 26 adjacent non-
tumor colon tissue samples. GSE9348 comprised 70 tumor 
samples and 12 samples from healthy controls. The dataset 
probe names were annotated using the chip GPL platform 
files. GSE39582 consisted of 566 tumor samples and 19 
non-tumoral colorectal mucosa samples. All samples from 
the GSE74602, GSE25070, GSE9348, and GSE39582 
datasets were included in subsequent analyses. We obtained 
a total of 5,504 TRGs from the GeneCards database 
(https://www.genecards.org/) (24). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Screening of telomere-related differentially expressed genes 
(TRDEGs) and functional enrichment analysis

We employed the “normalizeBetweenArrays” function 
from the limma package (25) to standardize the TCGA and 
three GEO datasets. Subsequently, differential analysis was 
conducted using the limma package, wherein differentially 
expressed genes (DEGs) in each dataset were screened based 
on criteria |log(fold change)| >1 and P<0.01. The resulting 
set of common DEGs (CO-DEGs) was then intersected 
with TRGs to obtain TRDEGs. Furthermore, univariate 
Cox regression analysis was performed to filter TRDEGs at 
P<0.05, and the screened TRDEGs were subsequently used 
for further research.

Enrichment analysis for the TRDEGs was carried out 
using the R package “clusterProfile r” (26). The analysis 
encompassed Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (27). The 
screening criteria for entry into the analysis were set at 
P<0.05 and false discovery rate (FDR) (q.value) <0.05.

Calculating the telomere score (Tscore) for the TCGA-
COADREAD dataset

The relative abundance of each gene was measured through 
a single-sample gene set enrichment analysis (ssGSEA). 
Utilizing the expression profiles of TRDEGs, we estimated 
the Tscore for each sample within the TCGA dataset 
employing the R package “GSVA” (28). Subsequently, we 
categorized the COADREAD samples into two groups 
based on the median Tscores. Finally, the distribution 
of distinct clinical variables was illustrated using stacked 
histograms.

Constructing weighted gene co-expression network analysis 
(WGCNA)

WGCNA (29) was used to identify highly synergistic gene 
sets and candidate biomarker genes or therapeutic targets. 
We used the R package “WGCNA” (30) for WGCNA 
analysis. For this study, genes with expression variance in 
the top 40% among all genes in the TCGA cohort were 
selected as input. The minimum number of module genes 
was set to 60, the softpower was set to 6, the modules 
were merged, the height was set to 0.2, and the minimum 
distance was set to 0.2. The purpose was to assess the 
degree of connection between the various modules and 
Tscore groups. Based on the correlation values, the modules 
of interest were selected, revealing a strong association 
between each gene in the modules and telomeres.

Identification of subtypes in the TCGA-COADREAD 
dataset

According to the expression of TRDEGs identified 
through WGCNA, we employed the consensus clustering  
method (31) from the “ConsensusClusterPlus” package (32) 
to identify different subtypes in the TCGA-COADREAD 
dataset. During this process, we specified the number of 
clusters to range from 2 to 8, and repeated the procedure 50 
times to extract 80% of the total samples, with clusterAlg 
= “km” and distance = “euclidean”. A heat map was used 
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to demonstrate the variation in TRDEGs’ expression 
throughout the clusters. Subsequently, a predictive survival 
Kaplan-Meier curve was generated after combining clinical 
data to examine the association between subtypes and 
survival outcomes.

Construction and validation of TRDEG’s prognostic model

To obtain the prognostic model of TRDEGs, we applied the 
“glmnet” package (33) to conduct LASSO (34) regression 
analysis. The risk score was calculated using the following 
formula below:

( )
( )

ii

i

Risk score Coefficient hub gene

mRNA Expression hub gene

=

∗
∑

 [1]

The retained TRDEGs in the prognostic model were 
referred to as prognostic TRDEGs. Utilizing these 
prognostic TRDEGs, we computed risk scores for all 
patients in the TCGA cohort. Subsequently, patients were 
divided into low- and high-risk groups using median values. 
Next, we displayed the expression differences of prognostic 
TRDEGs in TCGA-COADREAD and validated them 
using GEO datasets. The correlation among prognostic 
TRDEGs was calculated, and the results were visualized 
using the “corrplot” package. The prognostic risk model 
was verified using an external validation cohort (GSE39582). 
Additionally, diagnostic receiver operating characteristic 
(ROC) curves (35) for the prognostic TRDEGs were 
presented in the TCGA dataset, assessing their diagnostic 
capabilities using the “pROC” package.

Gene set enrichment analysis (GSEA)

GSEA (36) was performed using the “clusterProfiler” 
package. The “c2.cp.all.v2022.1. Hs.symbols.gmt” gene 
set from the MSigDB database (37) served as the reference 
gene set. Screening criteria for significant enrichment 
included P<0.05 and FDR (q.value) <0.05.

Construction of a protein-protein interaction (PPI) 
network and a mRNA-miRNA, mRNA-transcription 
factors (TFs), and mRNA-RNA binding proteins (RBPs) 
interaction network

To investigate the relationship among prognostic TRDEGs, 
we constructed a PPI network using the STRING  
database (38), and Cytoscape (39) was employed for 

visualization. Subsequently, we utilized the miRDB (40) 
database (https://mirdb.org/) to predict miRNAs interacting 
with prognostic TRDEGs and visualized the mRNA-
miRNA interaction network in Cytoscape. In addition, 
we explored TFs that attached to prognostic TRDEGs 
using the CHIPBase (https://rna.sysu.edu.cn/chipbase/) 
and hTFtarget databases (41) (http://bioinfo.life.hust.
edu.cn/hTFtarget). To predict the RBP with prognostic 
TRDEGs, we utilized the ENCORI (42) database (https://
starbase.sysu.edu.cn/). Simultaneously, we predicted the 
protein structure of each predictive TRDEG within the 
PPI network using the AlphaFold website (43) (https://
alphafold.com/).

Immune score and immune infiltration analysis

To enhance our comprehension of the predictive 
significance of the risk score related to immunity and 
stromal cells, we utilized the “ESTIMATE” package (44).  
Additionally, correlation dot plots were generated to 
illustrate the relationship between immune scores and the 
risk scores of the TRDEG prognostic model. Moreover, 
we used ssGSEA and the CIBERSORT (45) algorithm to 
assess the association between prognostic TRDEGs and 
immune cell infiltration. Boxplots and stacked histograms 
were used to display variations in immune cell infiltration 
abundance between the low- and high-risk groups. The 
correlation between immune cells and prognostic TRDEGs 
was illustrated using correlation dot plots with the “ggplot2” 
package. 

Tumor immune dysfunction and exclusion (TIDE), TMB, 
MSI, and drug sensitivity between low- and high-risk 
groups

We examined differences in tumor immunotherapy 
responses between the two groups using TIDE, TMB, 
and MSI analysis results (46). The half-maximal inhibitory 
concentrations (IC50) of targeted medications, reflecting 
treatment sensitivity, were estimated based on the degree of 
gene expression using the R package “oncoPredict” (47).

Construction and validation of a clinical prognostic model

We conducted a univariate Cox regression analysis by 
combining clinical data with prognostic TRDEGs to assess 
their clinical significance. Factors with a significance level 
of P<0.1 were included in the multivariate Cox regression 

http://bioinfo.life.hust.edu.cn/hTFtarget
http://bioinfo.life.hust.edu.cn/hTFtarget
https://starbase.sysu.edu.cn/
https://starbase.sysu.edu.cn/
https://alphafold.com/
https://alphafold.com/
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analysis for constructing a clinical prognostic model. Risk 
scores for the clinical prognostic model were computed 
based on the expression of relevant variables. The results 
of the univariate Cox regression were presented using a 
forest plot. Subsequently, we generated a nomogram (48) 
using the “rms” package to show the results of multivariate 
Cox regression analysis. Additionally, we constructed 
a calibration curve (49) to assess the accuracy of the 
nomogram. Furthermore, we evaluated the performance of 
the clinical prognostic model using decision curve analysis 
(DCA) (50), visualized with the “ggDCA” package (51).

Validation of the telomere-related signature by relative 
quantitative real-time PCR (qRT-PCR)

A CRC cell line (SW620, human CRC cells) and a control 
cell line (NCM460, human colon mucosal epithelial cells) 
were used to assess the expression levels of genes that 
comprise the telomere-related signature. All cell lines 
were cultured in RPMI-1640 (Hyclone, Logan, UT, USA) 
supplemented with 10% fetal bovine serum (Hyclone, 
USA). Total RNA was extracted from the cells using the 
TRIZOL reagent (Invitrogen, Carlsbad, CA, USA), and 
reverse transcription was performed using the RevertAid 
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 
Waltham, MA, USA, K1622). qRT-PCR was performed 
using a SYBR Green Real-time PCR Kit (Thermo Fisher 
Scientific, F-415XL) on an ABI 7500 Real-Time PCR 
System (Thermo Fisher Scientific). The primer sequences 
are listed in Table S1. The relative expression was computed 
using the 2−ΔΔCt approach and β-actin was used as the 
internal control gene.

Protein expression analysis of the telomere-related 
signature

The immunohistochemical (IHC) data for CRC and 
colorectal tissues were acquired from the Human Protein 
Atlas (HPA) database (https://www.proteinatlas.org/) and 
analyzed using the “HPAanalyze” package (52).

Statistical analysis

Data processing and analysis were conducted using 
R software (version 4.1.2). For comparing two sets 
of continuous data, the independent Student’s t-test 
determined the statistical significance of normally 
distributed variables, while the Mann-Whitney U test 

assessed differences among non-normally distributed 
variables. Kaplan-Meier survival curves illustrated survival 
differences, with the log-rank test employed to assess 
the significance between the two groups. Correlation 
coefficients were calculated using Spearman’s analysis 
unless specified otherwise, with statistical significance set at 
P<0.05.

Results

The study design is illustrated in Figure 1.

Identification of TRDEGs

First, data normalization was performed from TCGA-
COADREAD, GSE74602, GSE25070, and GSE9348, 
and box plots were generated to compare the expression 
profiles before and after processing (Figure S1). The 
figure shows a consistent trend in the expression profiles 
of the four datasets following normalization. Subsequently, 
a differential analysis of all genes was conducted for 
TCGA-COADREAD (Figure 2A), GSE74602 (Figure 2B),  
GSE25070 (Figure 2C), and GSE9348 (Figure 2D), 
visualized as volcano maps. A total of 289 CO-DEGs 
were identified across the four datasets and represented 
in a Venn diagram (Figure 2E). The CO-DEGs were then 
intersected with TRGs to obtain 92 TRDEGs (Figure 2F). 
Finally, univariate Cox regression analysis was employed 
to screen TRDEGs, applying a screening criterion of 
P<0.05, resulting in a total of thirteen identified TRDEGs  
(Figure 2G). The thirteen identified TRDEGs were 
ACACB, ADH1B, CD36, CXCL1, FABP4, HIGD1A, 
MMP1, MMP10, MMP3, NAT2, PPARGC1A, SRPX, and 
TPX2.

Functional enrichment analysis of TRDEGs

To examine the potential biological processes (BPs) 
associated with the TRDEGs, we conducted GO and 
KEGG analyses on the identified set of thirteen TRDEGs. 
The analysis revealed significant enrichment in various 
BPs, including cellular component disassembly, energy 
homeostasis, response to oxidative stress, regulation of 
fatty acid (FA) oxidation, and digestion. Molecular function 
(MF) analysis highlighted the top five enriched activities 
as serine-type endopeptidase activity, endopeptidase 
activity, metalloendopeptidase activity, long-chain FA 
transporter activity, and monocarboxylic acid-binding. 

https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
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Figure 1 Study design. TCGA, The Cancer Genome Atlas; COADREAD, colorectal adenocarcinoma; TRGs, telomere-related genes; 
SNP, single nucleotide polymorphism; CNV, copy number variation; TRDEGs, telomere-related differentially expressed genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TScores, telomere scores; LASSO, least absolute shrinkage and selection 
operator; WGCNA, weighted gene co-expression network analysis; GSEA, gene set enrichment analysis; ssGSEA, single-sample gene set 
enrichment analysis; TIDE, tumor immune dysfunction and exclusion; TMB, tumor mutation burden; MSI, microsatellite instability; PPI, 
protein-protein interaction; TF, transcription factor; RBP, RNA-binding protein.
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Regarding KEGG, the main enriched pathways included 
the adipocytokine signaling pathway, the PPAR signaling 
pathway, the interleukin (IL)-17 signaling pathway, insulin 
resistance, and the AMPK signaling pathway. The results 
of the GO and KEGG enrichment analyses are displayed 
in histograms (Figure S2A). In addition, a circular network 
diagram was generated to visually represent the primary 
BP (Figure S2B), MF (Figure S2C), and KEGG pathways 
(Figure S2D) enriched with thirteen TRDEGs.

Mutation analysis of TRDEGs

We tabulated the mutation analysis results for thirteen 
TRDEGs and visualized them using the “maftools” 
package. There were seven main mutation types: missense 
mutations, nonsense mutations, frameshift deletion (DEL) 
mutations, frameshift insertion (INS) mutations, in-frame 

DEL, in-frame INS, and splice sites, of which missense 
mutations accounted for the majority (Figure 3A). In 
addition, the predominant variant types were SNPs, with a 
minority represented by INS and DEL. Notably, C > T was 
the most common single nucleotide variant, followed by C 
> A and T > C (Figure 3A). Among the thirteen TRDEGs, 
ACACB exhibited the highest SNP frequency, featuring six 
primary mutation types, with the missense mutation being 
the most prevalent. We displayed the mutation information 
using a waterfall plot (Figure 3B).

Subsequently, we analyzed the CNV for the thirteen 
TRDEGs. Following the acquisition and merging of CNV 
data, we subjected the combined dataset to GISTIC 2.0 
and visualized the results (Figure 3C,3D). Our analysis 
revealed a large number of amplifications and DEL among 
the thirteen TRDEGs, with TPX2 exhibiting the highest 
amplification, followed by FABP4, while NAT2 accounted 

https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf


Translational Cancer Research, Vol 13, No 7 July 2024 3501

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3495-3521 | https://dx.doi.org/10.21037/tcr-24-43

Figure 2 Identification of telomere-related differentially expressed genes. Differential analysis volcano maps among (A) TCGA-
COADREAD, (B) GSE74602, (C) GSE25070, (D) GSE9348. (E) Venn diagrams of differentially expressed genes among cancer control 
groups in the four datasets. (F) Venn diagram of CO-DEGs and TRGs. (G) Venn diagram of TRDEGs after the screening of univariate Cox 
regression analysis. TCGA, The Cancer Genome Atlas; COADREAD, colorectal adenocarcinoma; TRGs, telomere-related genes; CO-
DEGs, common differentially expressed genes; TRDEGs, telomere-related differentially expressed genes. 
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Construction of Tscore in the TCGA-COADREAD dataset

We applied the ssGSEA algorithm to the thirteen identified 
TRDEGs in TCGA, deriving the Tscore for each patient, 
and subsequently categorized them into high- and low-
scoring groups based on the median score. To identify 
the DEGs associated with the Tscore, we conducted a 
differential analysis using the “limma” package, comparing 
groups with high and low scores (Figure S3A). A visual 
representation of the expression patterns of the thirteen 
TRDEGs in the two groups was generated using the 
“pheatmap” package (Figure S3B).

Our study comprehensively analyzed clinical factors 
between the two groups, revealing no discernible differences 
(Figure S3C-S3F). Additionally, a Laplace correlation graph 
was generated to illustrate the correlation between the 
Tscore and TRDEGs (Figure S3G), highlighting strong 
correlations of MMP1, MMP10, and MMP3 with the 
Tscore.

WGCNA-identified co-expressed modules in the TCGA-
COADREAD dataset

The co-expression modules were screened via WGCNA 
for all genes within the TCGA dataset. During the 
WGCNA analysis, we initially selected genes with variance 
in the top 40% of all genes as the input genes and utilized 
the clustering tree to group genes into high- and low-
scoring categories. The screening criteria were set to 0.85 
to ascertain the optimal power threshold (Figure 4A), 
and the genes between the two groups were assigned to 
the MEpurple, MEpink, MEgreen, MEgreen-yellow, 
MEyellow, MEbrown, MEblack, MEturquoise, MEblue, 
MEred, MEgrey, and MEmagenta modules (Figure 4B,4C). 
The combined cut height of the modules was adjusted to 0.2. 
Subsequently, modules with a combined cut height below 
0.2 were identified, merged, and re-clustered (Figure 4B). 
The association between the genes and the resulting new 
modules is depicted (Figure 4C). Based on the expression 
patterns of the module genes and grouping information, we 
identified twelve modules (MEmagenta, MEred, MEpurple, 

https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-43-Supplementary.pdf
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Figure 3 Mutation analysis of TRDEGs. (A) SNP status of TRDEGs in the TCGA-COADREAD dataset. (B) Waterfall plot of the 
proportion of SNPs in TRDEGs. (C,D) CNV status of TRDEGs. DEL, deletion; INS, insertion; SNP, single nucleotide polymorphism; 
SNV, single nucleotide variant; TMB, tumor mutation burden; CNA, copy number alteration; TRDEGs, telomere-related differentially 
expressed genes; TCGA, The Cancer Genome Atlas; COADREAD, colorectal adenocarcinoma; CNV, copy number variation.
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MEblack, MEbrown, MEpink, MEturquoise, MEyellow, 
MEblue, MEgreen, MEgreen-yellow, and MEgrey) and 
determined the correlation between the control and 
COADREAD groups (Figure 4D).

We included genes from the eleven modules (excluding 
the MEgray module) with notable changes (P<0.05) for 
subsequent analysis. After excluding modules with no 
intersection with TRGs, we determined the intersection of the 
thirteen TRDEGs with the genes in the MEblue (Figure 4E), 

MEyellow (Figure 4F), MEpink (Figure 4G), and MEbrown 
modules (Figure 4H) and constructed a Venn diagram to 
identify the module genes. Ultimately, eight module genes 
(MMP1, MMP3, NAT2, MMP10, SRPX, PPARGC1A, 
HIGD1A, and CXCL1) were identified, as shown.

Subtype identification and prognosis analysis

Based on the expression levels of the eight TRDEGs 
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Figure 4 WGCNA identified co-expressed modules in the TCGA-COADREAD dataset. (A) Module screening threshold scale-free 
network. (B) Display of gene module aggregation results. (C) The corresponding relationship between genes and modules. (D) Correlation 
analysis between the clustering modules and different groups. (E-H) Venn diagrams of TRDEGs: (E) MEblue module, (F) MEyellow 
module, (G) MEpink module, (H) MEbrown module. COADREAD, colorectal adenocarcinoma; TRDEGs, telomere-related differentially 
expressed genes; WGCNA, weighted gene co-expression network analysis; TCGA, The Cancer Genome Atlas.
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identified by WGCNA, we conducted a consensus 
clustering method to delineate distinct subtypes, ultimately 
identifying two subtypes (Figure 5A). Cluster 1 comprised 
317 samples, while cluster 2 contained 327 samples.

Additionally, we present the consensus clustering 
cumulative distribution function (CDF) graph (Figure 5B)  
and the delta graph of the area under the CDF curve  
(Figure 5C) for varying cluster numbers. As shown in the 
figure, the TCGA-COADREAD dataset exhibited the most 
consistent clustering results when k=2 for unsupervised 
clustering. Principal component analysis was performed 
on samples from clusters 1 and 2, revealing significant 
differences between the two subtypes (Figure 5D). A heat 
map and a grouping comparison chart were generated 
to illustrate differences in the expression of the eight 
TRDEGs between the two subtypes (Figure 5E,5F). The 
findings indicated a notable disparity in the expression 
levels of seven TRDEGs (MMP1, MMP3, MMP10, SRPX, 
PPARGC1A, HIGD1A, and CXCL1) between the two 
subtypes, with PPARGC1A upregulated in cluster 1 and the 
remaining six upregulated in cluster 2.

Finally,  we combined the overall  survival  (OS) 
information to assess the disparity in survival rates between 
the two clusters, visualizing the data using a Kaplan-Meier 
curve (Figure 5G). The results demonstrated a significant 
difference in prognosis between the two subtypes (P=0.001).

Construction and validation of TRDEG’s prognostic model

To assess the prognostic significance of the thirteen 
TRDEGs, a prognostic model was developed using LASSO 
regression (Figure 6A). Based on the minimum partial 
likelihood bias, ten prognostic TRDEGs (ACACB, TPX2, 
SRPX , PPARGC1A , CD36 , MMP3 , NAT2 , MMP10 , 
HIGD1A, and MMP1) were retained as diagnostic markers 
for CRC. Additionally, the results of the LASSO regression 
were visualized using a variable trajectory map (Figure 6B). 
To validate the prognostic significance of the ten selected 
TRDEGs, a risk score algorithm was generated, categorizing 
samples into high- and low-risk groups based on the median 
and depicted in a risk-factor graph (Figure 6C).

( )
( )

( )
( ) ( )

( ) ( )

Risk score 0.193041902 0.194305398

0.026934249 0.294030267

0.236316955 0.041996492

0.165504255 0.039274203

0.150787603 0.091522228

ACACB TPX 2

SRPX PPARGC1A

CD36 MMP3

NAT 2 MMP10

HIGD1A MMP1

= ∗ + ∗ −

+ ∗ + ∗ −

+ ∗ + ∗ −

+ ∗ − + ∗ −

+ ∗ − + ∗ −

 [2]

Subsequently, a Kaplan-Meier curve was constructed 

based on patient survival information (OS) for the two risk 
groups, revealing a more statistically significant difference 
(P<0.001) in survival prediction than ssGSEA and WGCNA 
(Figure 6D). Subsequent analyses were carried out based 
on the LASSO results. The efficacy of this risk model in 
predicting prognosis was maintained in the validation cohort 
(Figure 6E). Additionally, differential analysis was conducted 
to compare the two groups (Figure 6F). A comparative 
analysis of the clinical characteristics highlighted that 
the high-risk group exhibited a more advanced tumor 
node metastasis (TNM) stage compared to the low-risk 
group (Figure S4A-S4D). Moreover, a correlation Laplace 
graph was generated between the risk score and TRDEGs  
(Figure S4E), revealing a significant association between the 
risk score and the expression levels of MMP1, MMP3, and 
MMP10.

Differential, correlation, and diagnostic analysis of 
prognostic TRDEGs

The expression differences of the ten prognostic TRDEGs 
were examined in TCGA and verified in GSE74602, 
GSE25070, and GSE9348 (Figure S5A-S5D). In addition, 
the expression trends of the ten prognostic TRDEGs 
in the four datasets exhibited consistency: ACACB, 
CD36, HIGD1A, NAT2, PPARGC1A, and SRPX were 
downregulated in the cancer group, whereas MMP1, 
MMP10, MMP3, and TPX2 were upregulated in the cancer 
group.

Correlations between the ten prognostic TRDEGs in 
TCGA (Figure S5E), GSE74602 (Figure S5F), GSE25070 
(Figure S5G), and GSE9348 (Figure S5H) were further 
analyzed. The results indicated that the correlation between 
prognostic TRDEGs in the four datasets was relatively 
consistent, with MMP3 and MMP1 showing the strongest 
correlation. Diagnostic ROC curves of the ten TRDEGs are 
also presented in the TCGA dataset, demonstrating excellent 
diagnostic performance for all patients (Figure S6A-S6J).

GSEA between high- and low-risk groups

GSEA was conducted to assess differences among subgroups 
identified by the prognostic TRDEGs model in terms 
of gene functions and pathways. Criteria for significant 
enrichment were set at P<0.05 and FDR <0.05. The results 
were visually represented using a mountain map (Figure 7A).  
The analysis demonstrated notable enrichment in genes 
associated with cytokines and inflammatory response  
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Figure 5 Construction of COADREAD related subtypes. (A) Consensus clustering results (k=2). (B) Consensus clustering CDF plot. (C) 
Delta plot of the area under the CDF curve for different numbers of clusters in the consensus clustering. (D) PCA between the two clusters. 
(E) Heat map of TRDEGs between two subtypes. (F) Grouping comparison chart of TRDEGs between two subtypes. (G) The results of 
the prognostic Kaplan-Meier curve of the two subtypes. ns, not statistically significant; *, P<0.05; ***, P<0.001. CDF, cumulative distribution 
function; COADREAD, colorectal adenocarcinoma; PCA, principal component analysis; TRDEGs, telomere-related differentially expressed 
genes.
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Figure 6 Construction and validation of TRDEGs prognostic model. (A) Ten prognostic TRDEGs were identified by the LASSO 
regression model. (B) Variable trajectory plot of thirteen TRDEGs. (C) Risk factor plot. (D) The Kaplan-Meier curve between the high- 
and low-risk groups in TCGA cohort. (E) The Kaplan-Meier curve between the high- and low-risk groups in GSE39582 (validation cohort). 
(F) Volcano plot of difference analysis between high- and low-risk groups. TCGA, The Cancer Genome Atlas; COADREAD, colorectal 
adenocarcinoma; TRDEGs, telomere-related differentially expressed genes; LASSO, least absolute shrinkage and selection operator.
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(Figure 7B), programmed cell death (Figure 7C), IL-23 
pathway (Figure 7D), IL-17 pathway (Figure 7E), extension 
of telomeres (Figure 7F), regulation of TP53 activity 
through phosphorylation (Figure 7G), and other pathways 
(Table S2 provides detailed information). 

Construction of the PPI, mRNA-miRNA, mRNA-TF, and 
mRNA-RBP interaction networks

To begin, the STRING database facilitated the construction 
of the PPI network for TRDEGs (Figure 8A). Subsequently, 
miRNA data were employed to predict interaction 
relationships between miRNAs and the ten prognostic 
TRDEGs, with interaction relationships screened based 
on “pancancerNum >10”. The resultant mRNA-miRNA 
interaction network was visualized using Cytoscape 
software (Figure 8B). Comprising seven mRNAs (CD36, 

HIGD1A, MMP1, MMP3, PPARGC1A, SRPX, and TPX2) 
and 33 miRNA molecules, the network formed 57 pairs 
of mRNA-miRNA interactions (Table S3). Furthermore, 
CHIPBase and the hTFtarget databases were used to 
identify TFs interacting with the ten prognostic TRDEGs 
recorded in both databases. This yielded 78 interaction 
relationships involving seven mRNAs (ACACB, HIGD1A, 
MMP1, MMP10, PPARGC1A, SRPX, and TPX2) and 58 
TFs, visualized using Cytoscape software (Figure 8C; details 
in Table S4). The ENCORI database was then employed 
to predict RBP interacting with prognostic TRDEGs, 
and Cytoscape was used for visualizing the mRNA-RBP 
interaction network (Figure 8D). This network comprised 
79 pairs of mRNA-RBP interactions involving six TRDEGs 
and 49 RBP molecules (Table S5).

The AlphaFold Protein Structure Database comprised 
approximately 350,000 protein structures predicted using 
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Figure 7 GSEA between high- and low-risk groups. (A) The six most important biological characteristics of GSEA enrichment analysis. 
Genes in TCGA-COADREAD dataset are significantly enriched in (B) cytokines and inflammatory response, (C) programmed cell death, (D) 
IL-23 pathway, (E) IL-17 pathway, (F) extension of telomeres, (G) regulation of TP53 activity through phosphorylation. NES, normalized 
enrichment score; FDR, false discovery rate; GSEA, gene set enrichment analysis; TCGA, The Cancer Genome Atlas; COADREAD, 
colorectal adenocarcinoma; IL, interleukin. 
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Figure 8 Construction of PPI, mRNA-miRNA, mRNA-TF and mRNA-RBP interaction network. (A) PPI network. (B) mRNA-miRNA, (C) 
mRNA-TF, (D) mRNA-RBP interaction network. The blue circles represent mRNAs; the green circles represent miRNAs, TFs and RBPs 
respectively. PPI, protein-protein interaction; TF, transcription factor; RBP, RNA-binding protein.
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the AlphaFold AI system, successfully predicting the 
structure of 98.5% of the human proteome. The AlphaFold 
website was utilized to analyze the protein structures of the 
prognostic TRDEGs (Figure S7).

Immune score, ssGSEA, and CIBERSORT analysis

The “estimate” package was employed to compute several 
immune and matrix scores. The results were visualized by 
violin plots (Figure 9) which revealed a significant disparity 
in stromal (Figure 9A) and ESTIMATE scores (Figure 9C)  
between the two groups, whereas the immune score 
(Figure 9B) exhibited no significant difference. In addition, 
correlation scatter diagrams depicting the relationship 
between immunity and risk scores were generated  
(Figure 9D-9F).

To investigate the variance in immune infiltration 
between the high- and low-risk groups, we assessed 
the abundances of 28 immune cell types using ssGSEA  
(Figure 10A). These results indicated significant differences 
in eleven immune cell types, including activated CD4 T 
cells, CD56dim natural killer cells, effector memory CD4+ 
T cells, immature dendritic cells, memory B cells, natural 
killer cells, neutrophils, plasmacytoid dendritic cells, T 
follicular helper cells, type 17 T helper cells, and type 2 
T helper cells. The Spearman statistical algorithm was 
then employed to calculate the correlation between the 
infiltration abundance of the eleven immune cell types 
(Figure 10B,10C). In the low-risk group, a significant 
positive association was observed across the majority of the 
eleven immune cells, with the strongest link found between 
natural killer cells and T follicular helper cells (Figure 10B).  

Figure 9 Immune score analysis. (A) Stromal score, (B) immune score, (C) ESTIMATE score violin diagrams between high- and low-risk 
groups. The scatter diagram showing the correlation between the risk score: (D) stromal score, (E) immune score, (F) ESTIMATE score. ns, 
not statistically significant; *, P<0.05; ***, P<0.001. The absolute value of the correlation coefficient (R) >0.8, strongly correlated; 0.5<R<0.8, 
moderately correlated; 0.3<R<0.5, weakly correlated; R<0.3, irrelevant. ESTIMATE, Estimation of STromal and Immune cells in MAlignant 
Tumour tissues using Expression data.
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Figure 10 ssGSEA immune infiltration analysis. (A) The group comparison chart of the ssGSEA immune infiltration results between the 
high- and low-risk groups in the TCGA-COADREAD dataset. Correlation analysis between immune cells in (B) low-risk group and (C) high-
risk group. Correlation dot plots of immune cells and prognostic TRDEGs in (D) low-risk group and (E) high-risk group. ns, not statistically 
significant; *, P<0.05; ***, P<0.001. MDSC, myeloid-derived suppressor cell; ssGSEA, single-sample gene-set enrichment analysis; TCGA, The 
Cancer Genome Atlas; COADREAD, colorectal adenocarcinoma; TRDEGs, telomere-related differentially expressed genes. 
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Similar results were obtained for the high-risk group  
(Figure 10C). Furthermore, we analyzed the association 
between the infiltration of eleven immune cells and the 
expression patterns of ten TRDEGs (Figure 10D,10E). 
In the low-risk group, a significant positive correlation 
between CD36, MMP1, MMP3, and immune cells was 
observed, with the strongest correlation between natural 
cells and MMP1 (Figure 10D). In the high-risk group, the 
number of significant positive and negative correlations 
between immune cells and genes was similar, with the 
correlation between effector memory CD4+ T cells and 
CD36 being the strongest (Figure 10E).

Additionally, the CIBERSORT algorithm was applied 
to conduct an analysis similar to ssGSEA (Figure 11A). The 
results demonstrated that twelve immune cell types showed 
a statistically significant difference (Figure 11B). In the low-
risk group, the correlation between neutrophils and MMP1 
was strongest (Figure 11C). In the high-risk group, the 
correlation between macrophages M2 and CD36 expression 
was the most robust (Figure 11D).

Immunotherapy response and drug sensitivity prediction

We evaluated the immunotherapy sensitivity of high- and 
low-risk groups using the TIDE algorithm (Figure 12A), 
revealing a considerable disparity in responsiveness to 
immunotherapy. Analysis of TMB and MSI indicated no 
statistically significant differences in TMB (Figure 12B) and 
MSI (Figure 12C). Correlation scatter plots were generated 
to show the relationship between TIDE (Figure 12D), 
TMB (Figure 12E), MSI (Figure 12F), and the risk score. 
As expected, the results were consistent with the group 
comparison plots.

To examine the correlation between drug sensitivity and 
risk score, we employed drug response-related datasets, 
specifically GDSC and CTRP. The findings indicated 
that the low-risk group exhibited heightened sensitivity 
to dabrafenib, lapatinib, camptothecin, docetaxel, and 
telomerase inhibitor IX compared to the high-risk group. 
Conversely, patients in the high-risk group demonstrated 
increased sensitivity to paclitaxel and regorafenib. However, 
the difference in drug sensitivity for 5-fluorouracil, 
irinotecan, and oxaliplatin between the two groups was not 
statistically significant (Figure 13).

Construction and validation of a clinical prognostic model

To assess the prognostic significance of the model, we 

integrated it with clinical variables for univariate Cox 
regression analysis (Figure 14A). Variables meeting the 
criterion of P<0.1 were included in the multivariate 
Cox regression analysis to develop a clinically relevant 
prognostic model (refer to Table 1 for clinical baseline 
data and Table 2 for Cox regression results). A nomogram 
analysis, based on the multivariate Cox regression results, 
was performed to determine the prognostic capability of 
the clinical prognostic model (Figure 14B). The results 
indicated that the T stage, N stage, M stage, and risk 
score contributed to the clinical prognostic models, with 
the T stage demonstrating the highest utility. In addition, 
prognostic calibration analyses for 1-year (Figure 14C), 
3-year (Figure 14D), and 5-year (Figure 14E) periods were 
conducted, illustrating excellent predictive ability of the 
clinical prognostic model. To assess the clinical efficacy, 
DCA was performed at 1 (Figure 14F), 3 (Figure 14G), and 
5 years (Figure 14H), respectively.

The mRNA and protein expression levels validate the 
telomere-related signature

The expression patterns of the ten genes comprising the 
risk model were validated through qRT-PCR, revealing 
statistically significant differences. In CRC cell lines, 
ACACB ,  HIGD1A ,  NAT2 ,  PPARGC1A ,  and TPX2 
exhibited elevated expression levels, while CD36, SRPX, 
MMP1, MMP3, and MMP10 displayed decreased levels 
(Figure 15A). Furthermore, the HPA database reported 
IHC images of seven proteins (Figure 15B).

Discussion

CRC is the third most prevalent cancer globally, 
characterized by high morbidity and mortality rates. 
TNM classification is a traditionally accurate prognostic 
tool but unavoidably has its limits. Advances in genomics 
and precision medicine have catalyzed the development 
of molecular signatures reliant on gene expression levels 
to forecast clinical outcomes. Using risk stratification in 
individuals with CRC enables the precise prediction of 
survival outcomes with a high degree of certainty (53). 
Although TNM staging remains the most reliable approach 
for assessing patient prognosis and directing treatment, 
improvements to the prognostic model are feasible through 
an evolving comprehension of the molecular mechanisms 
governing CRC onset and progression.

To the best of our knowledge, this is the first study to 
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Figure 11 CIBERSORT immune infiltration analysis. The CIBERSORT immune infiltration analysis results of 22 immune cells between 
the high- and low-risk groups of the TCGA-COADREAD dataset are displayed in (A) a stacked histogram, and (B) a group comparison 
chart. Correlation dot plots between immune cells and prognostic TRDEGs in the (C) low-risk group and (D) high-risk group. ns, not 
statistically significant; *, P<0.05; **, P<0.01; ***, P<0.001. NK, natural killer; TCGA, The Cancer Genome Atlas; COADREAD, colorectal 
adenocarcinoma; TRDEGs, telomere-related differentially expressed genes. 
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Figure 12 TIDE, TMB, MSI between high- and low-risk groups. The group comparison diagrams of the difference between the high- 
and low-risk groups of (A) TIDE, (B) TMB, (C) MSI. Correlation scatter plots between (D) TIDE, (E) TMB, (F) MSI and the risk score. 
***, P<0.001. The absolute value of the correlation coefficient (R) >0.8, strongly correlated; 0.5<R<0.8, moderately correlated; 0.3<R<0.5, 
weakly correlated; R<0.3, irrelevant. TIDE, tumor immune dysfunction and exclusion; TMB, tumor mutation burden; MSI, microsatellite 
instability.
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investigate telomere-related markers in patients with CRC. 
A prognostic model, leveraging TRGs, was formulated 
to predict outcomes for patients categorized into distinct 
risk groups. This model was employed to predict immune 
cell infiltration and drug sensitivity in CRC. Finally, this 
model was integrated with clinical features to construct 
a composite nomogram, exhibiting a high degree of 
prognostic prediction accuracy for CRC patients. DCA 
curves underscored the excellent clinical benefits for 
patients with CRC. 

Previous studies have demonstrated variations in tumor 
prognosis contingent upon immune status. Our findings 
revealed that the low-risk group exhibited a higher 
proportion of activated CD4+ T cells, effector memory 
CD4+ T cells, and memory B cells, alongside a lower 

proportion of macrophage M2 and regulatory T cells 
(Tregs) compared to the high-risk group. This discrepancy 
may elucidate the superior outcomes observed in the low-
risk group. Furthermore, patients classified in the high-
risk group exhibited higher TIDE scores, indicating an 
enhanced susceptibility to immune evasion. Overall, these 
findings suggest a potential contributory role of immune 
status in the prognostic variations between the high- and 
low-risk groups.

GO and KEGG enrichment analyses revealed prominent 
enrichment of TRDEGs in the regulation of FA oxidation, 
long-chain FA transporter activity, the adipocytokine 
signaling pathway, the PPAR signaling pathway, and the 
AMPK signaling pathway. Dysregulated lipid metabolism 
has been established as a significant metabolic aberration 
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Figure 13 Drugs’ sensitivity between high- and low-risk groups. Differential analysis of IC50 for drugs in CTRP (A-E) and GDSC (F-I).  
ns, not statistically significant; *, P<0.05; **, P<0.01; ***, P<0.001. IC50, half maximal inhibitory concentration; CTRP, The Cancer 
Therapeutics Response Portal; GDSC, Genomics of Drug Sensitivity in Cancer. 
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in cancer, as demonstrated by previous studies. The 
dynamic modulation of nutrient availability within the 
tumor microenvironment necessitates the utilization 
of lipid metabolism by cancer cells to acquire energy, 
biofilm constituents, and signaling molecules essential 
for their proliferation, survival, invasion, metastasis, and 
responses to both the tumor microenvironment and cancer  
treatment (54). Moreover, GSEA revealed a notable 
enrichment of TRDEGs in cytokines and inflammatory 
response, the IL-17 pathway, and the IL-23 pathway. A 
previous study confirmed the crucial role of inflammation 
in tumor progression, with the involvement of the IL-
23/IL-17 axis suggested in the pathogenesis of various 

inflammatory disorders, including inflammatory bowel 
disease, recognized as a precancerous lesion in CRC (55). 
In summary, these findings underscore the significant roles 
of lipid metabolism and chronic inflammation in CRC 
pathogenesis.

In this study, we examined the predictive accuracy of 
TRG signatures in estimating CRC prognosis and their 
potential impact on drug sensitivity. This was achieved 
by combining the expression profiles of TRGs with the 
LASSO analysis method, a proven effective approach to 
identifying potential biomarkers. Ultimately, a prognostic 
risk model consisting of 10 genes (ACACB, TPX2, SRPX, 
PPARGC1A, CD36, MMP3, NAT2, MMP10, HIGD1A, 
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Figure 14 Construction and validation of clinical prognostic model. (A) Forest plot of the univariate Cox regression analysis. (B) Nomogram 
of clinical prognostic model. (C) 1-year, (D) 3-year, (E) 5-year calibration curves for the nomogram analysis. (F) 1-year, (G) 3-year, (H) 5-year 
DCA plots of clinical prognostic model. CI, confidence interval; HR, hazard ratio; DCA, decision curve analysis.
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and MMP1) was constructed. TPX2, a pivotal mediator of 
microtubule biology during cell division and in postmitotic 
cells, contributes to the response to DNA damage (56). In 
CRC, TPX2 is upregulated and plays an oncogenic role in 
CRC pathogenesis (57), aligning with the findings from our 

bioinformatics analysis and PCR experiments. In estrogen 
receptor-positive breast cancer, TPX2 has been associated 
with poor distant metastasis-free survival and is involved in 
metastasis induction, as evidenced by the inhibitory effects 
of TPX2 knockdown on the invasive potential and growth 
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Table 1 Patient characteristics of TCGA-COADREAD datasets

Characteristics Overall, n (%)

Pathologic_M_stage (n=545)

M0 459 (84.2)

M1 86 (15.8)

Pathologic_N_stage (n=618)

N0 354 (57.3)

N1 150 (24.3)

N2 114 (18.4)

Pathologic_T_stage (n=619)

T1 20 (3.2)

T2 109 (17.6)

T3 422 (68.2)

T4 68 (11.0)

OS (n=622)

Dead 125 (20.1)

Alive 497 (79.9)

TCGA, The Cancer Genome Atlas; COADREAD, colorectal 
adenocarcinoma; OS, overall survival.

Table 2 Univariate and multivariate Cox regression analysis for clinical characteristics

Characteristics Total (N)
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

T 619

T1&T2 129 Reference Reference

T3 422 2.161 (1.119–4.174) 0.02 2.115 (0.894–5.004) 0.09

T4 68 6.866 (3.318–14.207) <0.001 4.835 (1.867–12.524) 0.001

N 618

N0 354 Reference Reference

N1 150 1.900 (1.204–2.997) 0.006 1.292 (0.753–2.217) 0.35

N2 114 4.079 (2.701–6.160) <0.001 2.425 (1.434–4.100) <0.001

M 545

M0 459 Reference Reference

M1 86 4.289 (2.872–6.404) <0.001 2.108 (1.305–3.404) 0.002

Risk score 622

Low 311 Reference Reference

High 311 1.750 (1.218–2.513) 0.002 1.656 (1.103–2.488) 0.02

HR, hazard ratio; CI, confidence interval.

of adenocarcinoma cells (58). 
SRPX is involved in a hypoxia-related prognostic model 

of endometrial cancer, and its expression was found to 
be reduced in tumor tissue compared to normal tissue, 
consistent with our CRC results (59). In addition, evidence 
supports the downregulation of this gene in various human 
tumor cells, classifying it as a tumor suppressor (60).  
However, it has also been reported to be significantly 
upregulated in cancer-associated fibroblasts from high-grade 
serous and clear-cell carcinoma samples in ovarian cancer 
(OC). Silencing SRPX in fibroblasts significantly suppresses 
the invasive capabilities of OC cells (61), suggesting that 
opinions on SRPX involvement in carcinogenesis might 
fluctuate depending on the tumor type. 

The PCR results confirmed the downregulation of 
CD36 expression in CRC. CD36 plays a critical role in 
lipid homeostasis, angiogenesis, tumor metastasis, and 
therapeutic resistance by enhancing lipid uptake and FA 
oxidation, rendering it a promising candidate for cancer 
therapy (62,63). Several drugs targeting CD36 have entered 
clinical trials; however, most have failed due to severe side 
effects and unsatisfactory performance. Further investigation 
is needed to comprehend the regulatory mechanisms and 
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Figure 15 The expression validation of the telomere-related signature. (A) qRT-PCR results of the telomere-related signature in CRC cell lines 
(SW620) and control cell lines (NCM460). **, P<0.01; ***, P<0.001. (B) The detection of seven proteins by IHC in the HPA database (https://
www.proteinatlas.org/) (scale bar =600 μm). The links to the individual normal and tumor tissues of each protein are provided for ACACB (https://
www.proteinatlas.org/ENSG00000076555-ACACB/tissue/colon#img; https://www.proteinatlas.org/ENSG00000076555-ACACB/pathology/
colorectal+cancer#img), CD36 (https://www.proteinatlas.org/ENSG00000135218-CD36/tissue/colon#img; https://www.proteinatlas.org/
ENSG00000135218-CD36/pathology/colorectal+cancer#img), HIGD1A (https://www.proteinatlas.org/ENSG00000181061-HIGD1A/tissue/
colon#img; https://www.proteinatlas.org/ENSG00000181061-HIGD1A/pathology/colorectal+cancer#img), MMP3 (https://www.proteinatlas.
org/ENSG00000149968-MMP3/tissue/colon#img; https://www.proteinatlas.org/ENSG00000149968-MMP3/pathology/colorectal+cancer#img), 
MMP10 (https://www.proteinatlas.org/ENSG00000166670-MMP10/tissue/colon#img; https://www.proteinatlas.org/ENSG00000166670-MMP10/
pathology/colorectal+cancer#img), NAT2 (https://www.proteinatlas.org/ENSG00000156006-NAT2/tissue/colon#img; https://www.proteinatlas.
org/ENSG00000156006-NAT2/pathology/colorectal+cancer#img), and TPX2 (https://www.proteinatlas.org/ENSG00000088325-TPX2/tissue/
colon#img; https://www.proteinatlas.org/ENSG00000088325-TPX2/pathology/colorectal+cancer#img), respectively. qRT-PCR, quantitative real-
time polymerase chain reaction; CRC, colorectal cancer; IHC, immunohistochemistry; HPA, the Human Protein Atlas.
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downstream signaling pathways of CD36 to facilitate future 
clinical applications (64). 

Hypoxia-induced gene domain family-1a (HIGD1A) is 
a 10.4 kDa protein attached to the mitochondrial inner 
membrane (65), belonging to the conserved hypoxia-
inducible gene domain family in eukaryotes (66). The 
relationship between HIGD1A and tumor growth is 
intricate and may depend on other pathways and the 
expression level of HIGD1A (67). While research on 
HIGD1A and CRC is limited, a multi-omics analysis of 
CRC identified three mitochondrial genes, including 
HIGD1A, that were significantly reduced in CRC and 
associated with poor outcomes in CRC patients, aligning 
with our study results (68). 

In this study, the transcription levels of CD36, SRPX, 
and TPX2 were consistent with the bioinformatics analysis, 
while other genes showed the opposite expression status. A 
common reason for this discrepancy is that PCR analyses 
and bioassays employ different methods and techniques. 
PCR, based on DNA replication, typically targets specific 
genes or sequences for analysis, whereas bioinformatics 
is a statistical and computational analytical method based 
on large-scale genomic data. The two methods have 
distinct limitations and assumptions in the measurement 
and interpretation of gene expression, potentially yielding 
inconsistent results. At the protein level, the HPA results 
were consistent with the bioinformatics analysis. The 
expression status of genes at the RNA and protein levels 
with conflicting results should be investigated further. 

Although this study could serve as a valuable clinical 
guide, several limitations require resolution. First, data 
from the TCGA and GEO databases were insufficient; 
therefore, additional information must be collected. Second, 
further in vivo and ex vivo studies are required to explore the 
protein expression and biological roles of TRGs in CRC. 
Third, considering that the transcriptomic profile served as 
the foundation for our findings, further investigations are 
required to explore the potential mechanisms, molecular 
interactions, and clinical applications of prognostic genes in 
CRC.

Conclusions

In summary, this study underscores the significance of 
TRDEGs in predicting CRC prognosis. The envisaged 
impact of this signature is to enhance the accuracy of 
patient survival predictions, complementing the well-
established TNM staging system. Furthermore, this study 

revealed the genetic alterations, immune cell infiltration, 
immunotherapy response, and medication sensitivity that 
underlie this signature. These findings establish a basis for 
understanding the functions of TRDEGs and demonstrate 
their clinical relevance in CRC.
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