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Ice Ic without stacking disorder by evacuating
hydrogen from hydrogen hydrate
Kazuki Komatsu 1*, Shinichi Machida2, Fumiya Noritake3,4, Takanori Hattori5, Asami Sano-Furukawa5,

Ryo Yamane1, Keishiro Yamashita1 & Hiroyuki Kagi1

Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking

sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed,

but ideal ice Ic without stacking-disorder has never been formed until recently. Here we

demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from

the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural

with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous

or nano-crystalline form under decompression, unlike the direct transformations occurring in

ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows

remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the

lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of

stacking-disorder on the physical properties of ice as a counter end-member of ice Ih.
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Water freezes below 0 °C at ambient pressure, ordinarily
to ice Ih with a hexagonal stacking sequence. However,
it is also known to produce “ice Ic” nominally with a

cubic stacking sequence under certain conditions1, and its exis-
tence in Earth’s atmosphere2–4, or in comets5,6 is debated. “Ice
Ic”, or called as cubic ice, was first identified in 1943 by König7,
who used electron microscopy to study the condensation of ice
from water vapor to a cold substrate. Subsequently, many dif-
ferent routes to “ice Ic” have been established, such as the dis-
sociation of gas hydrates, warming amorphous ices or annealing
high-pressure ices recovered at ambient pressure, freezing of μ- or
nano-confined water (see ref. 1). Despite the numerous studies on
“ice Ic”, its structure has not been fully verified, because the dif-
fraction patterns of “ice Ic” show signatures of stacking
disorder1,8,9, and ideal ice Ic without stacking disorder had not
been formed until very recently10. This is the reason why “ice Ic”
is double-quoted1, and it is recently proposed that the stacking-
disordered ice should not be termed as ice Ic, but as ice Isd8.

“Ice Ic” (ice Isd) is known as a metastable form of ice at
atmospheric pressure. But, recent computer simulations suggest
that even ice Isd could be the stable phase for crystallites up to
sizes of at least 100,000 molecules11. The stability of stacking-
disordered ices is extremely important because of the ubiquitous
nature of ice. Stacking-disordered ice can be characterized by the
degree of ice cubicity, χ, which is defined as the fraction of cubic
stacking1,8,9,12,13. Until very recently, the highest cubicity was
limited to ~80%8,14, but it has been reported that ideal ice Ic with
100% cubicity has been obtained by annealing ice XVII10.

Recently new ice polymorphs, ice XVI15 and ice XVII16,17 are
obtained by degassing gas molecules from neon and hydrogen
hydrates, respectively. From these findings, we hypothesized that
ideal ice Ic could be obtained by degassing hydrogen from
hydrogen hydrate, C2. Five different phases in the H2–H2O sys-
tem have been reported to date (see ref. 18): Among them, neu-
tron diffraction experiments have never been conducted for the
higher-pressure phases, C1 and C2, probably due to the technical
difficulty in loading hydrogen into a pressure vessel, or com-
pressing it to pressures in the giga-pascal range. To synthesize
ideal ice Ic, decompression under low-temperature conditions for
degassing is necessary, which is also not straight-forward using
conventional pressure-temperature controlling systems. We have
developed a Mito system19, and have overcome these technical
difficulties (see details in Methods).

Here we present the neutron and X-ray diffraction results
showing ice Ic without stacking disorder, obtained from degassing
hydrogen hydrate C2. We also report an unexpected amorphous-
like state in the transformation from C2 to ice Ic, and the thermal
stability of ice Ic.

Results
The route to obtain ice Ic. We started by using a mixture of D2O
and MgD2, which is an internal deuterium source, to synthesize
hydrogen hydrate, C2. After loading the mixture into a pressure-
temperature controlling system, MgD2 was decomposed by
heating at 403 K and at ca. 0 GPa for 1 h through a nominal
reaction of MgD2+ 3D2O→Mg(OD)2+ 2D2+D2O (at b in
Fig. 1, the observed neutron diffraction patterns are shown in
Supplementary Fig. 1). Then, the samples were cooled to room
temperature (at c in Fig. 1) and typically compressed up to
~3 GPa until a C2 phase was observed (at d in Fig. 1).

The neutron diffraction pattern for the C2 phase obtained at
3.3 GPa and 300 K (at d in Fig. 1) was analyzed by the Rietveld
method. We adopted a splitting site model for guest D atoms
located at the 48f site (x, 1/8, 1/8), and the host structure was
identical to ice Ic9 (Fd 3m, O at the 8b site (3/8, 3/8, 3/8), D at the

32e site (x, x, x)). The calculated diffraction pattern was in good
agreement with the observed one, as shown in Fig. 2a. The refined
structural parameters are listed in Supplementary Table 1.

The sample was then cooled from 300 K to 100 K at around
3 GPa (path d→ e). In the diffraction pattern taken at e in Fig. 1,
peaks from solid deuterium (phase I) appeared at around 200 K
(Supplementary Fig. 2), which is consistent with the known
melting curve of hydrogen20. This observation indicates that fluid
deuterium coexisted with C2 through the path from b to d.

The C2 phase persisted at pressures at least as low as 0.5 GPa
on decompression at 100 K (path e→ f). However, surprisingly,
the Bragg peaks of C2 mostly disappeared at 0.2 GPa (Fig. 3). This
phenomenon is totally unexpected, because the host structure of
gas hydrates retains its framework in the previous cases with ice
XVI15 and XVII16. The sample was further decompressed to
0 GPa and evacuated using a turbo-molecular-pump. The broad
peaks corresponding to ice Ic appeared at this stage. The peak
disappearance of C2 before the appearance of ice Ic was
reproducibly observed in at least two separate neutron runs and
one X-ray diffraction run for a hydrogenated sample (Supple-
mentary Fig. 3). In the neutron diffraction pattern at 0.2 GPa,
except for the Bragg peaks from Mg(OD)2, only a broad peak was
observed at around d= 3.75 Å, which was between the peak
positions of 111 of C2 and that of Ice Ic (Fig. 3). This fact implies
that this state does not have long-range periodicity like a normal
crystal, but has only local-ordering like an amorphous or nano-
crystal. Considering the observed d-spacing, this amorphous-like
form would be an intermediate transition state from C2 to ice Ic,
which forms while hydrogen molecules are partially degassed. It is
highly likely that this apparent amorphization is derived from the
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Fig. 1 Phase diagram of hydrogen hydrate and ice with experimental
paths in this study. Phase boundaries for hydrogen hydrates and ices are
drawn using thick blue lines and thin black lines, respectively. Experimental
p-T paths are shown as black arrows in alphabetical sequence from a to g.
The structural models for a high-pressure form of hydrogen hydrate, C2,
and ice Ic are schematically drawn with a newly found amorphous-like state
as an intermediate transitional state from C2 to ice Ic. Red, white, and light
blue balls in the structure model depict oxygen, hydrogen in water
molecules, and hydrogen in guest molecules, respectively. Note that
hydrogens in water molecules are disordered, so that two of four possible
sites surrounding one oxygen are actually occupied.
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lattice mismatch between C2 and ice Ic, originating from the
relatively small cage in the host framework of the ice Ic structure.

From the X-ray diffraction run, ice Ic, which may partially
include molecular hydrogen, even appeared at 0.1 GPa through
the transition from the C2 phase to the amorphous-like state, even
under pressure (Supplementary Fig. 3). This also represents a
difference from the previous cases of ice XVI and XVII; ice XVI is
formed under evacuation15, and hydrogen molecules can be
refilled into ice XVII at an order of 10 bar of pressure16. It is
worth noting that the partially degassed states are allowed in the
cases of both ice XVI and XVII, so that the guest molecules can be
continuously degassed from a fully occupied state to an empty
state. The observed phase-separation behavior even under
pressure in the ice H2-H2O system indicates that the partially
degassed C2 phase would be unstable compared to the fully
occupied or emptied phases, probably due to their lattice-
mismatch.

The Bragg peaks in the neutron diffraction pattern for ice Ic
obtained at 100 K were still broad, probably due to the small
crystallite size and/or the remaining guest hydrogen molecules.
The peaks of ice Ic sharpened with increasing temperature. This
sharpening is dependent not only on temperature but also on
time, which indicates that it is kinetic behavior.

Structure refinement for ice Ic. We conducted a separate run in
order to obtain a neutron diffraction pattern for the structure
refinement of the ice Ic. In this run, the neutron diffraction
pattern was obtained at 130 K, which is well below the tem-
perature at which the nucleation of ice Ih occurs21. We confirmed
that the peak width did not change in the temperature region
from 130 K to 180 K, such that the peak sharpening was almost
complete, even at 130 K. The obtained neutron diffraction pattern
was well fitted using the ice Ic structure model9, as shown in
Fig. 2b and Supplementary Table 1. We also conducted the
Rietveld analysis using C2 structure model, and found that the
occupancy of the D2 site is zero, within experimental error (occ
(D2)=−0.001(1)). This shows that the guest hydrogen molecules
are below the detectable limit at 130 K under evacuation. The
peak profile around 111 peak of ice Ic has neither the feature of
stacking disorder nor the peaks from ice Ih, as shown in the
diffraction pattern in the region at around d= 3.9 Å, where the
strongest 100 reflection of ice Ih is expected (see inset in Fig. 2b,
and more detailed discussion for the peak broadening for ice Ic is
described in Supplementary Note, Supplementary Table 2 and
Supplementary Fig. 4). This should be a clear indication of the
presence of ideal ice Ic without stacking disorder (χ= 100%)13, as
clear as the recent discovery of ideal ice Ic by annealing ice
XVII10.

Thermal stability of ice Ic. It is also noteworthy that the ice Ic
surprisingly persists up to at least 240 K until ice Ih started to
appear at 250 K (Fig. 3). The temperature of 240 K corresponds to
the upper limit of the reported metastable region of “ice Ic” (ice
Isd)1. However, in stacking-disordered ice, the cubic stacking
sequence starts to change into a hexagonal stacking sequence at a
much lower temperature, and the phase transition to ice Ih is
completed at 240 K. The notable stability of the ice Ic would be
derived from the lack of stacking disorder. The stacking-
disordered ice has more dislocations, which promote the phase
transformation from ice Isd to ice Ih by reducing the activation
energy required to change the stacking sequence22. This is also
supported by a recent mesoscopic-size calculation23. Note here
that the critical temperature of 240 K has been identified as the
temperature above which ice Ih without cubic stacking faults
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forms spontaneously, which is the reason for the anomalous self-
preservation regime of natural gas hydrates24.

The diffraction pattern observed at 250 K looks a mixture of
bulk ice Ic and Ih, rather than stacking-disordered ice with many
stacking faults, judging from “stackogram” reported in the
literatures8,13. At 250 K, crystal growth would be dominant,
rather than crystal nucleation. Therefore, once a crystallite
nucleates, it quickly grows before other crystallites nucleate,
resulting in the mixture of ice Ic and Ih, rather than stacking-
disordered ice. This observation also suggests a smaller number of
dislocations in the ice Ic observed in this study. On the contrary,
the remarkable stability of the ice Ic and the bulk mixture of ice Ic
and Ih at 250 K strongly support the conclusion that the obtained
ice is not stacking-disordered, and it can therefore be called ice Ic
without the need for quotation marks.

The discovery of ideal ice Ic will allow us to research the real
physical properties of ice Ic without stacking disorder. For
example, accurate heat capacity or vapor pressure measurements
from low temperature will provide the free energy of ice Ic, which
settle the long-standing argument for the thermodynamic
stability of ice Ic compared to ice Ih. The physical properties of
the ideal ice Ic are also important to understand how stacking
disorder plays a role in the physical properties of ice Isd. For
instance, since the thermal conductivity of ice Isd is significantly
smaller than ice Ih25, the difference of thermal conductivities
between ices Ih and Ic will emboss the effect of stacking disorder.
It is also interesting what will be happened when ice Ic is
compressed under low temperature; whichever ice Ic will be
transformed into HDA (High Density Amorphous ice26) or not?
In any case, it is worth conducting what we previously did for ice
Ih, to this ideal ice Ic as well.

Methods
Synthesis of MgD2. MgD2, used as the starting material in this study, was syn-
thesized from reagent-grade MgH2 as follows. MgH2 powder (Wako pure chemical
industries, Ltd.) was purchased and further ground in an agate motor to increase
the surface area, after which it was placed in a copper tube with a diameter of 4 mm
and a length of 40 mm. The tube was mechanically sealed and but not welded,
allowing the transfer of hydrogen gas. The copper tube was inserted into a 1/4”
Inconel tube and connected in parallel to a deuterium gas cylinder and a turbo-
molecular pump (TMP) with 1/16” stainless tubes and stop bulbs. The Inconel
tube, including the sample copper tube, was heated to 773 K for 1 h using a tube
furnace under evacuation using the TMP. Under these conditions, MgH2 com-
pletely decomposed to Mg and H2

27, and the degassed H2 was evacuated. Then, the
D2 gas was introduced up to 4 MPa, and the temperature was cycled at the rate of
1 K/min between 673 K and 773 K while keeping the pressure at 4 MPa, which
represents stable and unstable conditions for MgH2

27, and this temperature cycle
was repeated for 20 times. This activation process is necessary for the reaction
Mg+D2→MgD2. Finally, the p-T conditions were maintained at 673 K and 4
MPa for 3 days to complete the reaction. The recovered sample was analyzed by
powder X-ray diffraction (MiniFlex-II, Rigaku) and identified to be MgD2 with a
trace amount of MgO. Both MgD2 and MgO react with D2O and produce Mg
(OD)2, so this small amount of MgO does not affect the conclusion of this study.

Neutron diffraction and p-T control. Neutron powder diffraction experiments
were conducted at the beamline PLANET28 in the Material and Life Science
Experiment Facility (MLF) of J-PARC, Ibaraki, Japan. The incident beam consists
of 25 Hz pulsed spallation neutrons produced from a liquid Hg target via a
decoupled moderator and traveled through collimators, choppers and supermirror
guides to the sample positioned at 25.0 m from the moderator28. Approx. 20 mg of
MgD2, synthesized as described above, was filled into TiZr null scattering gaskets,
and D2O water (99.9%, Wako pure chemical industries, Ltd.) was dropped on the
MgD2 powder, resulting in the molar ratio of MgD2:D2O~1:3. The gaskets were
sandwiched between a pair of tungsten carbide anvils, and loaded by using a hybrid
Mito system, which is a modified version of an original pressure-temperature
variable Mito system19. The hybrid Mito system uses both flowing liquid nitrogen
and a 4 K cryostat (RDK-415D, Sumitomo Heavy Industries, Ltd.), which allows us
to control temperature rapidly, owing to the large latent heat of liquid nitrogen and
efficient thermal insulation by zirconia and GFRP seats. The hybrid Mito system
also allows us to achieve temperatures below 77 K, and reach a minimum tem-
perature of ~35 K, owing to the cryostat. Another remarkable feature of the hybrid
Mito system is that it affords pressure control, even at low temperature, as well as
the original Mito system, which is indispensable for this study. Flexible copper

cloths were attached on the support rings of the anvils, and the cloths were placed
in contact with the cold head of the cryostat for thermal conduction. The accessible
minimum temperature of the hybrid Mito system is ~35 K, which may be the
current technical limitation due to an unavoidable influx of heat from the sur-
rounding cell. The sample pressure was estimated from the observed lattice
parameter of Mg(OD)2 brucite using the equation of states29 and the observed unit
cell volume of brucite at 0 GPa, assuming the temperature derivative of the bulk
modulus of brucite, dK/dT, was ~0. Although this assumption may cause some
error in the pressure estimated at low temperature, we placed emphasis on avoiding
unwanted Bragg peaks from additional sources of pressure marker. Moreover, the
error would be too small to affect the conclusion. The sample position was aligned
by scanning to maximize the sample scattering intensity. The obtained intensities
from the sample in the cell was subtracted by the intensity of the empty cell, and
subsequently normalized by the attenuation corrected intensity of vanadium pellet
in the cell, which was also subtracted by the intensity of the empty cell30. The
Rietveld analyses were performed using the GSAS31 with EXPGUI32, and the
crystal structure was drawn with the VESTA program33. The GSAS TOF profile
function 331 is used as the profile function in the Rietveld analyses.

X-ray diffraction. Powder X-ray diffraction measurements using a H2O (Milli-Q)
and MgH2 (Wako pure chemical industries, Ltd.) mixture as starting materials
were performed at the beamline BL-18C in the Photon Factory (KEK, Tsukuba,
Japan). Samples were exposed to 0.6134 Å monochromatized synchrotron radia-
tion, and the diffracted scattering was detected by an imaging plate (IP). The
pressure was generated using CuBe alloy diamond-anvil cells and the temperature
was controlled using a 4 K GM cryostat (MiniStat, Iwatani Co.) equipped with a
temperature controller (Model 335, Lakeshore). Sample pressure was estimated
from the difference in the R1 line wavelengths of rubies inside and outside the
sample chamber34. The temperature was monitored using a Si-diode sensor
inserted in the cold head edge. We confirmed that the measured temperature was
almost the same as that of the diamond anvils after temperature stabilization. The
experimental p-T path was basically identical to the case of neutron diffraction, as
shown in Fig. 1, while the achieved pressure at path d was 4.1 GPa.

One conically shaped Boehler-Almax type diamond-anvil35 with a 0.6 mm culet
was placed in the direction of the detector with an opening angle of 2θ < 40°,
whereas a conventional anvil with a 0.8 mm culet was positioned in the direction of
the X-ray source. A CuBe plate with a hole of diameter 0.3 mm and an initial
thickness of 0.2 mm was used as a gasket. This gasket was not subjected to pre-
indentation. The load was applied by driving the piston by bellows using a He gas
cylinder. The bellows allow us to control pressure at a few kbar more precisely than
conventionally used membranes.

DFT calculations. Quantum Espresso36 was used for the DFT calculations37,38. We
used Perdew-Burke-Ernzerhof (so-called PBE) type nonempirical exchange-
correlation functions39 for this study. The pseudopotentials were derived using
projector augmented-wave approximation40. The dispersion effects were taken into
account using the exchange-hole dipole moment method (XDM), which calculates
coefficients for polynomial of DFT-D dispersion energy41 from the exchange-hole
dipole moment calculated from simulated electron wave function42,43. XDM
damping function parameters are taken from44. The enthalpies of four possible
configurations for the ordered form of ice Ic were calculated within a unit cell with
a kinetic energy cutoff of 70 Ry and a Brillouin zone k mesh of 8 × 8 × 8. The
cell parameters and atomic coordinates were optimized using BFGS quasi-
Newtonian methods at atmospheric pressure.

Data availability
The primary data that support the plots within this paper and other finding of this study
are available from the corresponding author on reasonable request. The neutron
crystallographic coordinates for structures reported in this study have been deposited at
the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers
1973757, 1973759. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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