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The order Boletales is a group of fungi with complex life styles, which include saprophytic and ectomy-
corrhizal mushroom-forming fungi. In the present study, the complete mitogenomes of two saprophytic
Boletales species, Coniophora olivacea, and C. puteana, were assembled and compared with mitogenomes
of ectomycorrhizal Boletales. Both mitogenomes comprised circular DNA molecules with sizes of
78,350 bp and 79,655 bp, respectively. Comparative mitogenomic analysis indicated that the two sapro-
phytic Boletales species contained more plasmid-derived (7 on average) and unknown functional genes
(12 on average) than the four ectomycorrhizal Boletales species previously reported. In addition, the core
protein coding genes, nad2 and rps3, were found to be subjected to positive selection pressure between
some Boletales species. Frequent intron gain/loss events were detected in Boletales and Basidiomycetes,
and several novel intron classes were found in two Coniophora species. A total of 33 introns were detected
in C. olivacea, and most were found to have undergone contraction in the C. olivacea mitogenome.
Mitochondrial genes of Coniophora species were found to have undergone large-scale gene rearrange-
ments, and the accumulation of intra-genomic repeats in the mitogenome was considered as one of
the main contributing factors. Based on combined mitochondrial gene sets, we obtained a well-
supported phylogenetic tree for 76 Basidiomycetes, demonstrating the utility of mitochondrial gene anal-
ysis for inferring Basidiomycetes phylogeny. The study served as the first report on the mitogenomes of
the family Coniophorineae, which will help to understand the origin and evolution patterns of Boletales
species with complex lifestyles.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The genus Coniophora, which belongs to Boletales, Basidiomy-
cota, is a group of brown-rot fungi [1]. The Coniophora species
can be found both in building materials and the natural environ-
ment in temperate and boreal regions. The Coniophora species is
characterized by producing brown-rot decay on dead wood of con-
ifers (softwood) in Boletales, which only attack cell wall carbohy-
drates and leave lignin undigested [2–4]. Boletales species have
diverse lifestyles, including saprophytic and ectomycorrhizal fun-
gal species [5]. It is predicted that the common ancestor of Bole-
tales appeared 84 million years ago (presumably a brown-rot
saprotroph), and then differentiated into saprophytic and ectomy-
corrhizal Boletales species [6,7]. Genomic sequencing showed that
Boletales species with different life styles had varied genomic char-
acteristics, such as genome size, gene content and plant cell wall-
degradeing enzyme coding genes (PCWDE) [2,5,6]. However, dif-
ferentiations of mitogenomes between Boletales species with dif-
ferent lifestyles have not been known. Previous studies found
that ectomycorrhizal Amanita species had more repetitive
sequences and fewer intergenic sequences than asymbiotic Aman-
ita species in their mitogenomes [8]. Up to now, the mitogenomes
of four ectomycorrhizal Boletales species have been reported,
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including Rhizopogon salebrosus, R. vinicolor [9], Paxillus involutus,
and P. rubicundulus [10]. However, the mitogenomic characteristics
of saprophytic Boletales species and variations between sapro-
phytic and ectomycorrhizal Boletales species have not been
revealed.

Variations or mutations in mitogenomes could significantly
affect the growth, development and metabolism of eukaryotes
[11–13]. In addition, the mitogenome has been widely used as an
effective tool to analyze the origin, classification and phylogeny
of species due to its rapid evolution rate, single parent inheritance
and several available molecular markers [14,15]. The phylum
Basidiomycota, the largest group of mushroom-forming fungi on
the earth, plays an important role in the natural circulation of for-
est ecosystems and people’s production and life [16,17]. The infor-
mation inferred from mitogenome analyses promoted better
understanding of the origin and population genetics of Basidiomy-
cota [18,19]. It has been reported that the mitogenomes of Basid-
iomycota vary greatly in size, genome structure, gene content,
gene arrangement, repeat sequence content and intron type [20–
23]. So far, there are less than 120 complete mitogenomes avail-
able in public database (https://www.ncbi.nlm.nih.gov/genome/
browse#!/overview/), far less than the number of Basidiomycete
nuclear genomes available. Boletales is an important group of
Basidiomycota, which contains more than 1300 described species
with diverse lifestyles. It is one of the model groups to study the
lifestyle and environmental adaptive evolution of Basidiomycota.
However, up to now, only four mitogenomes from the order Bole-
tales are available, and no saprophytic Boletales mitogenome has
been completely assembled.

In the present study, the mitogenomes of two saprophytic Bole-
tales species, including Coniophora olivacea, and C. puteana, were
assembled, annotated, and compared with other ectomycorrhizal
Boletales species. The aims of this study are: 1) to reveal the mito-
genome characterizations of two Boletales species with sapro-
phytic lifestyles; 2) to reveal the variations or conservations
between saprophytic and ectomycorrhizal Boletales species by
comparative mitogenomic analysis; 3) to reveal the intron dynam-
ics of cox1 genes in Boletales and other Basidiomycota mitogen-
omes; 4) to understand the phylogenetic position and origin of
Boletales in the phylum Basidiomycota based on mitochondrial
genes. This study served as the first report on mitogenomes of
saprophytic Boletales species, which will promote the understand-
ing of the origin, evolution and genetics of the order Boletales.
2. Materials and methods

2.1. Assembly and annotation of Coniophora mitogenomes

We downloaded the raw sequencing data of C. olivacea and C.
puteana from the Sequence Read Archive (SRA) database (acc.
SRR4171236 and SRR3927427) [2,5]. A series of quality control
steps were conducted to generate clean reads from the raw
sequencing data, which included filtering low-quality sequences
by AdapterRemoval v 2 [24] and removing adapter reads by
ngsShoRT [25]. We filtered out adaptors and reads with N bases
exceeding 10% in the raw reads. And then we discarded reads that
contained more than 50% of the low-quality bases (phred quality
score � 5). The SPAdes 3.9.0 software was used to assemble mito-
genomes with default parameters [26]. There were 2 (with an aver-
age size of 38.30 kb) and 3 contigs (with an average size of
26.32 kb) obtained in the SPAdes assembly of C. olivacea and C.
puteana mitogenomes, respecitively. Then, we filled gaps between
these contigs by the MITObim V1.9 [27], using the mitogenome of
R. salebrosus [9] as the reference. In addition, NOVO Plasty [28] was
also used to verify the assembly . The obtained complete
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mitogenomes of C. olivacea and C. puteana were annotated accord-
ing to our previously described methods [22,29]. Briefly, the
protein-coding genes (PCGs), rRNA genes, tRNA genes, and introns
in the two Coniophora mitogenomes were initially annotated using
MFannot [30] and MITOS [31], both based on the genetic code 4.
Then PCGs were modified or predicted using the NCBI Open Read-
ing Frame Finder [32], and further annotated by BLASTP searches
(e-value less than 10-10) against the NCBI non-redundant protein
sequence database [33]. We detected the intron–exon borders of
PCGs by the exonerate v2.2 software [34] using closely related spe-
cies as the reference. We also predicted tRNA genes in the two
Coniophora mitogenomes using tRNAscan-SE v1.3.1 [35]. The sec-
ondary structures of tRNAs were detected using MITOS with
default parameters [31]. rRNA genes were also modified using
mitogenomes from the order Boletales as references [9,10]. Graph-
ical maps of the two Coniophora mitogenomes were drawn using
OGDraw v1.2 [36].

2.2. Sequence analysis of Coniophora mitogenomes

Base compositions of the two Coniophora mitogenomes and
other Boletales mitogenomes were calculated using the DNASTAR
Lasergene v7.1 (http://www.dnastar.com/). Strand asymmetries
of the 6 Boletales mitogenomes were assessed based on the follow-
ing formulas: AT skew = [A - T] / [A + T], and GC skew = [G - C] /
[G + C] [37]. The pairwise genetic distances between each pair of
the 15 core PCGs (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1,
nad2, nad3, nad4, nad4L, nad5, nad6, and rps3) in the 6 Boletales
mitogenomes were calculated using MEGA v6.06 [38] based on
the Kimura-2-parameter (K2P) substitution model. The DnaSP
v6.10.01 software [39] was used to calculate synonymous (Ks)
and nonsynonymous substitution rates (Ka) for core PCGs in the
6 Boletales mitogenomes. Gene collinearity analysis of 6 Boletales
species was conducted by using Mauve v2.4.0 [40].

2.3. Repetitive element analysis

BLASTN searches [41] of the two Coniophora mitogenomes
against themselves were conducted to identify if there were inter-
spersed repeats or intra-genomic duplications of large fragments
throughout the two mitogenomes, using an E-value of <10�10 as
the threshold. We detected tandem repeats (<10 bp in length) in
the two mitogenomes using the Tandem Repeats Finder [42]. To
detect if there were any gene fragments that natural transferred
between nuclear and mitochondrial genomes of the two Conio-
phora species, we performed BlastN searches of the two Coniophora
mitogenomes against their nuclear genomes (NCBI:
AEIT00000000.1; JGI: Project: 1063673).

2.4. Intron analysis

Introns in cox1 genes of 76 published Basidiomycota mitogen-
omes were classified into different position classes (Pcls) according
to the method described by Férandon et al. [43]. The cox1 genes of
76 Basidiomycota mitogenomes were first aligned with the cox1
gene of the medical fungus Ganoderma calidophilum [18] by Clustal
W [44], which we used as the reference. Each Pcl was constituted
by introns inserted at the same position of corresponding cox1
gene and namely by the insert sites (nt) in the reference gene.
The same Pcl from different species was considered as orthologous
intron and usually has a high sequence similarity.

2.5. Phylogenetic analysis

In order to investigate the phylogenetic positions of the two
Coniophora species and other Boletales species in the phylum
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Basidiomycota, we constructed a phylogenetic tree of 77 species
based on the combined mitochondrial gene set (15 core PCGs + 2
rRNA genes) [29]. We used Annulohypoxylon stygium from the phy-
lum Ascomycota as an outgroup [45]. Individual mitochondrial
genes were first aligned using the MAFFT v7.037 [46], and then
concatenated into a combined mitochondrial gene set using
SequenceMatrix v1.7.8 [47]. Partition homogeneity test was used
to detect potential phylogenetic conflicts between different mito-
chondrial genes. Best-fit models of phylogeny and partitioning
schemes for the gene set were determined using PartitionFinder
v2.1.1 [48]. We conducted the phylogenetic analysis using both
bayesian inference (BI) and maximum likelihood (ML) methods
[49]. MrBayes v3.2.6 [50] was used to perform the BI analysis,
and RAxML v 8.0.0 [51] was used for the ML analysis.

2.6. Data availability

The complete mitogenomes of C. olivacea and C. puteana were
deposited in the GenBank database under the accession number
MT375015 and MT375016, respectively.

3. Results

3.1. Features and PCGs of Coniophora mitogenomes

Both C. olivacea and C. puteana mitogenomes were circularly
assembled, with the total sizes of 78,350 bp and 79,655 bp, respec-
tively (Fig. 1). The GC contents of C. olivacea and C. puteana mito-
genomes were 27.32% and 27.61%, respectively, with an average
GC content of 27.47% (Table S1). Both the two species contained
negative AT skews and positive GC skews. A whole set of core PCGs
was detected in the C. olivacea and C. puteana mitogenomes,
respectively, which included atp6, atp8, atp9, cob, cox1, cox2, cox3,
nad1, nad2, nad3, nad4, nad4L, nad5, nad6 and rps3. In addition, fif-
teen and twenty-three free-standing PCGs (non-intron encoding
ORFs) were detected in C. olivacea and C. puteana mitogenomes,
respectively. The two Coniophora mitogenomes both contained 7
Fig. 1. Circular maps of the two Coniophora mitogenomes. Genes are represented by diffe
the direct strand, while colored blocks within the ring indicates that the genes are locat
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plasmid-derived genes (genes encoding DNA polymerases). Addi-
tionally, the C. olivacea and C. puteana mitogenomes contained 8
and 16 PCGs with unknown functions, respectively. There were
33 and 13 introns detected in the C. olivacea and C. puteana mito-
genomes, respectively, which harboured 10 and 12 intron encoding
ORFs, respectively. Intron encoding ORFs in the two Coniophora
mitogenomes mainly encoded GIY-YIG and LAGLIDADG endonu-
cleases (Table S2). In the mitogenome of C. olivacea, ORFs in introns
mainly encoded LAGLIDADG endonucleases, which were four times
as many as GIY-YIG endonucleases. However, most of intron
encoding ORFs in the C. puteana mitogenome encoded GIY-YIG
endonucleases.
3.2. rRNA genes and tRNA genes

Two rRNA genes were detected in the two Coniophora mito-
genomes, including the large subunit ribosomal RNA gene (rnl)
and small subunit ribosomal RNA (rns) (Table S2). There were
10, 2, and 1 introns detected in rnl gene of C. olivacea, rnl and
rns genes of C. puteana, respectively. The average sizes of rnl
and rns genes in the two Coniophora mitogenomes were 3,150
and 1,629 bp, respectively. The C. olivacea mitogenome con-
tained longer rnl and shorter rns genes than the C. puteana
mitogenome.

Twenty-nine and twenty-seven tRNA genes were detected in
the mitogenomes of C. olivacea and C. puteana, respectively, which
encoded 20 standard amino acids (Fig. 2). The C. puteana mitogen-
ome contained two additional trnS and trnH genes compared with
the C. puteana mitogenome. All tRNAs in the two mitogenomes
were folded into classical cloverleaf structures, with individual
tRNA gene varied between 70 and 95 bp. The trnL gene in the C. oli-
vacea mitogenome contained a large extra arm (25 bp), which
resulted in the trnL gene the largest tRNA gene among all tRNAs
in the two Coniophora mitogenomes. Of the 27 tRNAs shared in
the two Coniophora mitogenomes, 13 contained sites that varied
between the two mitogenomes. A total of 46 variable sites were
detected in the 27 tRNA genes between the two species, of which
rent colored blocks. Colored blocks outside each ring indicate that the genes are on
ed on the reverse strand.
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22 occurred on the extra arm, suggesting that the extra arm was
highly variable in the two Coniophora mitogenomes.

3.3. Repetitive elements in Coniophora mitogenomes

By BlastN searches of the two Coniophora mitogenomes against
themselves, we identified 32 and 27 intra-genomic duplications in
the C. olivacea and C. puteanamitogenomes, respectively (Table S3).
The length of these duplications in the two Coniophora mitogen-
omes ranged from 35 bp to 851 bp, with pair-wise nucleotide sim-
ilarities ranging from 71.29% to 100%. The largest repeats were
observed in the intergenic region between trnM and orf813, as well
as in the protein coding region of orf767 in the mitogenome of C.
puteana. The largest repeats in the C. olivacea mitogenome were
found located in the protein coding regions of orf891 and orf516,
with each repeating sequence 493 bp long. Repeat sequences
accounted for 7.06% and 10.07% of the C. olivacea and C. puteana
mitogenomes, repectively. Using Tandem repeat finder, we identi-
fied 6 and 15 tandem repeats in the C. olivacea and C. puteanamito-
genomes, repectively (Table S4). The longest tandem repeat
sequence was found located in the intergenic region between
Fig. 2. Putative secondary structures of tRNA genes in the two Coniophora mitogenomes.
while tRNA genes with blue color represent the unique tRNAs in Coniophora olivacea. Resi
are shown in red. All genes are shown in order of occurrence in the mitogenome of C. oli
legend, the reader is referred to the web version of this article.)
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orf339 and trnH from the C. olivacea mitogenome, with a length
of 74 bp. Most of tandem repeats in the two Coniophora mitogen-
omes contained 2 copies. Tandem repeated sequences accounted
for 0.40% and 0.80% of the C. olivacea and C. puteana mitogenomes,
repectively.

To detect if there was any gene fragment that naturally trans-
ferred between the mitochondrial and nuclear genomes of the
two Coniophora species, we BlastN searches of the two newly
sequenced mitogenomes with their published nuclear genomes.
A total of 4 and 31 repetitive fragments were identified between
mitochondrial and nuclear genomes of C. olivacea and C. puteana,
respectively (Table S5). These repetitive fragments ranged from
31 bp to 141 bp in length, with pair-wise nucleotide similarities
ranging from 90.20% to 100%. The largest repeat fragment was
found located in the intergenic region between trnM and
orf813 in the C. puteana mitogenome. A total of 193 bp and
1,973 bp aligned fragments were detected in the C. olivacea
and C. puteana mitogenomes, respectively, indicating natural
gene transfer events between mitochondrial and nuclear gen-
omes may have occurred during the evolution process of Conio-
phora species.
tRNA genes with green color represent tRNAs shared by the two Coniophora species,
dues conserved across the two mitogenomes are shown in green, while variable sites
vacea, starting from trnM. (For interpretation of the references to color in this figure



Fig. 3. Mitochondrial gene arrangement analyses of 76 Basidiomycota species. All genes are shown in order of occurrence in the mitochondrial genome, starting from cox1.
Fifteen core protein coding genes and two rRNA genes were included in the gene arrangement analysis. The phylogenetic positions of 76 Basidiomycota species were
established using the Bayesian inference (BI) method andMaximum Likelihood (ML) method based on concatenated mitochondrial genes. Species and NCBI accession number
used for gene arrangement analysis in the present study are listed in Supplementary Table S6.
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3.4. Mitochondrial gene arrangement in Boletales species

In this study, the arrangements of 15 core PCGs and 2 rRNA
genes in 76 Basidiomycota species were compared (Fig. 3). We
found that the gene arrangement of Basidiomycetes varied greatly
at the order level, and any fungus from different orders contained
inconsistent gene arrangement. In the case of Boletales, it was
found that there were three Boletales species with the same gene
arrangement, including R. vinicolor, P. involutus and P. rubicundulus,
which may represent the gene order of the common ancestor of
Boletales. Compared with the putative gene arrangement of Bole-
tales ancestor, the other three Boletales species underwent large-
scale gene rearrangements, even between species from the same
genus, such as Coniophora, and Rhizopogon. In C. olivacea and R.
salebrosus, we observed gene position exchange within species
compared with gene orders of other Boletales species. The results
showed that the arrangement of mitochondrial genes in the two
Coniophora species is highly variable.

The complete mitogenomes of 6 Boletales species were ana-
lyzed by collinearity analysis, and 18 homologous regions were
detected in the 6 Boletales species (Fig. 4). Coniophora olivacea
was found had lost homologous regions P, Q and R, while C.
puteana lacked homologous regions R. Homologous regions D, E,
I, and J were unique homologous regions in Coniophora species,
which have never been detected in the other Boletales species.
These unique homologous regions were related to orf416, orf400
and orf302 encoding proteins with unknown functions and orf113
and orf516 encoding DNA polymerases. Collinearity analysis
showed that Rhizopogon species and Paxillus species had a high
degree of collinearity within and between genera, while Conio-
phora species showed large-scale gene rearrangements, indicating
Fig. 4. Gene collinearity analysis of 6 Boletales species using Mauve v2.4.0. Color blocks o
schematic diagram of Coniophora olivacea’s mitogenome is shown at the top of the pictu
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variability of gene arrangement and gene content in Coniophora
species.

3.5. Genetic distance, and evolutionary rates of core PCGs

The rps3 gene was found had the largest K2P genetic distance
between the 6 Boletales species (overall mean 0.41), which indicted
this gene had the fastest mutation rate among the 15 core PCGs in
Boletales (Fig. 5). The cox3 and nad6 genes also showed great gene
differentiations between the 6 Boletales species, with an overall
mean K2P distance of 0.26 and 0.21, respectively. The atp8 and
atp9 genes had the lowest mean K2P genetic distance between
the 6 Boletales species, indicating that the two genes were highly
conservative. We found that there was a close genetic distance
between species within the same genera, while the K2P genetic dis-
tances between species from different genera varied greatly.

The rps3 gene was detected had the highest mean non-
synonymous substitution rate (Ka) among the 15 core PCGs
detected (average value 0.41), followed by the nad3 gene (average
value 0.08) (Fig. 6). While the atp9 gene had the lowest mean Ka
value among the 15 core PCGs from the 6 Boletales species (aver-
age value 0.03). The cox1 gene was found exhibited the highest
mean synonymous substitution rate (Ks) (average value 0.80),
while nad2 exhibited the lowest mean Ks value among the 15 PCGs
detected (average value 0.27). The Ka/Ks values for 13 of the 15
core PCGs ranged from 0 to 0.37 (Ka/Ks < 1), indicating that these
genes had been subjected to purifying selection in the process of
evolution. However, the Ka/Ks values of the nad2 and rps3 genes
were observed more than 1 between some species, including
between C. olivacea and C. puteana, between R. vinicolor, P. involu-
tus, as well as between R. vinicolor and P. rubicundulus, indicating
f the same color represent homologous regions between different mitogenomes. The
re.



Fig. 5. Pairwise genetic distances between each pair of the 15 core PCGs in the 6 Boletales mitogenomes based on the Kimura-2-parameter model. Species and NCBI accession
number used for genetic distance analysis in the present study are listed in Supplementary Table S6.

P. Wu, Z. Bao, W. Tu et al. Computational and Structural Biotechnology Journal 19 (2021) 401–414
that the two genes may be under pressure of positive selection in
some Boletales species.
3.6. Intron dynamics of cox1 gene in Basidiomycota species

Introns (coding introns or noncoding introns) could be classified
into different Pcls according to their insertion sites in the protein
coding region of host gene. Introns belonging to the same Pcls were
considered to be homologous and showed high sequence similari-
ties. In the present study, we analyzed the intron dynamics of 76
Basidiomycota mitogenomes, which accounted for 2/3 of Basid-
iomycota mitogenomes available in the NCBI database. A total of
1058 introns were detected in the 76 Basidiomycota species, with
each species containing 0 to 46 introns. Introns were unevenly dis-
tributed in core PCGs and rRNA genes of Basidiomycota species. It
was found that the cox1 gene was the largest host gene of introns
in Basidiomycota, and about 45.46% of introns were located in it.

We further studied the dynamic changes of introns in cox1
genes of Basidiomycota. The cox1 gene of medical fungus G. cali-
dophilum [18] was used as the reference to determine correspond-
ing insertion sites of introns in Basidiomycota species. A total of 45
Pcls were detected in cox1 genes of 76 Basidiomycota species
(Fig. 7). Agaricus bisporus [52] was found containing the largest
number of Pcls, while cox1 genes of species, such as Coprinopsis
cinerea [53], Lyophyllum decastes [54], and Schizophyllum commune
[55] did not contain any introns. Pcls present in more than 1/5 of
Basidiomycota species were considered as common Pcls in Basid-
iomycota, while introns detected in less than 1/5 of Basidiomycota
species were considered to be rare introns. In this study, 12 Pcls
were detected widely distributed in Basidiomycota species, of
which P383 was the most common, which distributed in 40 of
the 76 Basidiomycota species, followed by the P706, which could
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be detected in 35 Basidiomycota species. Pcls, including P166,
P193, and P218, could only be detected in one of 76 Basidiomycota
species. The 6 Boletales species were found containing 19 Pcls, 9 of
which were common introns in Basidiomycota, including P209,
P383, P612, etc. The class and quantity of introns in different Bole-
tales species varied greatly, which indicated that the loss/gain of
introns occurred in the evolution of Boletales. The two newly
sequenced Boletales species contained a Pcl (P867), which was
not found in other Boletales but in distant species, such as Laeti-
porus sulphureus [29] and Ustilago maydis, indicating potential
intron transfer events. In addition, the two Coniophora species also
contained several novel introns in Basidiomycota, including P875,
P1110 and P1296, and none of these unique introns has been
detected in Boletales and Basidiomycota.
3.7. Comparative mitogenomic analysis and phylogenetic analysis

Comparative mitogenomic analysis showed that the two Conio-
phora mitogenomes were the largest among the 6 Boletales mito-
genomes tested, indicating that the Coniophora mitogenomes
experienced mitogenome expansions in the evolutionary process
(Table S1). The GC content of the two Coniophora mitogenomes
(average 27.47%) was higher than the GC contents of other Bole-
tales species (21.42%). All the 6 Boletales species contained nega-
tive AT skews and positive GC skews. Comparative analysis of
gene content indicated that the two Coniophora species contained
the most number of non-intron encoding PCGs among the 6 Bole-
tales species, which was mainly due to the expansion of plasmid-
derived genes (genes encoding DNA polymerases) and unknown
functional genes in the two saprophytic Boletales species. C. oli-
vacea was found containing the most introns (33) in Boletales spe-
cies. However, only 30.30% introns in C. olivacea contained intron



Fig. 6. Genetic analysis of 15 core protein coding genes conserved in the 6 Boletales mitogenomes. Ka, nonsynonymous substitution site; Ks, synonymous substitution site.
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encoding ORFs, while 92.31% introns in C. puteana contained intron
encoding ORFs. The results indicated that a large number of introns
in C. olivacea lost their homing ORFs. The two Coniophora species
408
also contained the most number of tRNA genes among the 6 Bole-
tales reported. We found that the intra-genomic repeats accumu-
lated in the two saprophytic Boletales species (the genus



Fig. 7. Position class (Pcl) information of cox1 gene in the 76 Basidiomycota species. Introns in cox1 genes of 76 published Basidiomycota mitogenomes were classified into
different position classes (Pcls) using the cox1 gene of medical fungus Ganoderma calidophilum as the reference. Each Pcl was constituted by introns inserted at the same
position of corresponding cox1 gene and named according to its insertion site in the aligned corresponding reference sequence (nt). The Pcls present in more than 1/5 of
Basidiomycota species were considered as common Pcls in Basidiomycota, while introns detected in less than 1/5 of Basidiomycota species were considered to be rare introns.
The phylogenetic positions of 76 Basidiomycota species were established using the Bayesian inference (BI) method and Maximum Likelihood (ML) method based on
concatenated mitochondrial genes. Species information is shown in Supplementary Table S6.
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Coniophora) relative to the four ectomycorrhizal Boletales species
we tested, and the two saprophytic Boletales species also con-
tained higher protein coding regions due to accumulation of
plasmid-derived genes and non-conserved genes.

We obtained identical tree topologies using both Bayesian
inference (BI) and Maximum likelihood (ML) methods based on
the combined mitochondrial gene set (15 core PCGs + 2 rRNA
genes) (Fig. 8). All major clades within the trees were well sup-
ported (BPP � 0.97; BS � 98). Based on the phylogenetic analyses,
the 76 Basidiomycota species could be divided into 14 major clades,
corresponding to the orders Pucciniales, Agaricales, Boletales, Rus-
sulales, Polyporales, Hymenochaetales, Cantharellales, Tremellales,
Trichosporonales, Microbotryales, Sporidiobolales, Microstro-
matales, Ustilaginales, and Tilletiales (Table S6). The 6 Boletales
species could be divided into two groups, wherein the first com-
prised two species form the Coniophora genus, and the second
group comprised four species within the Paxillus genus and Rhizo-
pogon genus. The results indicated that Coniophora differentiated
from Boletales in the early stage .

4. Discussion

4.1. Gene content variation in Boletales mitogenomes

In the present study, we found the core PCGs [56,57] underwent
non synonymous and synonymous mutations in Boletales, and dif-
ferent core PCGs showed differentiated mutation rate. The results
were consistent with previous studies [58,59]. The rps3 gene was
found differentiated greatly in Boletales species. In addition, two
core PCGs, including nad2 and rps3, were observed subjected to
strong pressure of positive selection between some Boletales spe-
cies (Ka/Ks > 1). Different Boletales species have varied life styles,
different host plant preferences and diverse habitat environments
[5,60]. The positive selection pressure on nad2 and rps3 genes may
result from differentiations of life styles and environmental
adaptations.

In addition to these core PCGs, non-conserved PCGs were fre-
quently detected in mitogenomes of Basidiomycota, including
intron encoding ORFs, plasmid-derived genes and ORFs with
unknown functions. We found that there were more plasmid-
derived genes and non-conserved ORFs in the two saprophytic
Boletales species than in the four ectomycorrhizal Boletales spe-
cies. Plasmid-derived genes were thought to be obtained from
mitochondrial plasmids [61], which were considered as self-
replicating genetic elements. Mitochondrial plasmids were com-
monly observed in the mitogenomes of plants and fungi and were
believed to have a separate evolutionary history from their hosts
[62,63]. In some Basidiomycota species, mitochondrial plasmids
were free-living [64,65], while in other species, they were inte-
grated into the mitogenome of Basidiomycota [63,66]. The impact
of its dynamic changes on the evolution and function of mitogen-
ome is still unknown. In addition, more non-conserved ORFs were
detected in the two Coniophora mitogenome than the other ecto-
mycorrhizal Boletales species, and their functions need to be fur-
ther revealed to promote a comprehensive understanding of
mitochondrial functions and evolution in saprophytic Boletales
species. Compared with the four ectomycorrhizal Boletales species,
the saprophytic Boletales species contained more tRNA genes. In
addition, we found that the tRNA of Coniophora species underwent
base mutation. Previous studies have found that mutations in
tRNAs could affect protein synthesis and metabolism of eukaryotes
[67,68]. The effect of tRNA mutation on the growth and develop-
ment of Coniophora species needs to be further investigated. In
general, the variations of gene contents, including intron encoding
ORFs, plasmid-derived gene, non-conserved PCGs and tRNA genes,
led to variable Coniophora mitogenomes.
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4.2. Introns dynamics in Boletales and Basidiomycota mitogenomes

Introns are considered to be one of the main factors leading to
the size variations of mitogenomes in fungi [52,69,70]. Compared
with the mitochondrial introns of plants, most of which belongs
to the group II, while most fungal introns are found belonging to
the group I [71]. In the present study, 1058 introns were detected
in 76 Basidiomycota species, with an average of 14 introns in each
Basidiomycota species. These introns were unevenly distributed in
species and genes of the phylum Basidiomycota, and the cox1 gene
was the largest host gene of Basidiomycete introns. The classes of
Basidiomycete introns in cox1 genes were diverse, and a total of 45
Pcls were detected in cox1 genes of Basidiomycota species. We
found that the type and number of introns in cox1 gene of the 6
Boletales species varied greatly, which indicated that intron loss/-
gain may have occurred in the evolution of Boletales. Some intron
types were found widely distributed in Boletales species, and they
may be obtained from the common ancestor of Boletales. In addi-
tion, several Pcls could only be detected in one of the 6 Boletales
species, and homologous introns were detected in distant species,
indicating potential intron transfer events [52]. Interestingly, we
found several novel Pcls in two saprophytic Boletales species,
which were not detected in other Boletales species and Basidiomy-
cota species. The origin and evolution of these novel Pcls need to be
further investigated, which will help us to understand the evolu-
tion of the order Boletales. In addition, we found that the C. olivacea
with the most introns among the 6 Boletales species lost most of
the intron encoding ORFs, and the P. rubicundulus species lost all
of the intron encoding ORFs, indicating that the introns of Boletales
are undergoing contraction.
4.3. Mitochondrial gene rearrangements in Boletales species

The rearrangement of mitochondrial genes is one of the impor-
tant references to reflect the evolutionary status of eukaryotes
[22,72,73]. In the past, the arrangement of mitochondrial genes
in animals was considered to be conservative. However, with
more and more animal mitogenomes having been obtained, gene
rearrangements have been frequently observed in animals, and
several models have been proposed to reveal the rearrangement
of animal mitogenome [74,75]. Compared with the arrangement
of animal mitogenomes, the arrangement of fungal mitogenome
is highly variable. However, no model has been proposed to
reveal the mechanism of mitogenome rearrangement in fungi.
In this study, we found that three ectomycorrhizal Boletales spe-
cies, including R. vinicolor [9], P. involutus, and P. rubicundulus, had
identical gene arrangement, which may represent the gene
arrangement of the common ancestor of the 6 Boletales species.
Compared with the mitochondrial gene arrangement of the pre-
sumed ancestor of the 6 Boletales, large-scale gene rearrange-
ments were observed in the two saprophytic Boletales species
(Coniophora) and one ectomycorrhizal Boletales species (R. sale-
brosus), including gene position exchanges, possible gene migra-
tions and gene insertions. Previous studies have shown that the
accumulation of repetitive sequences may lead to the recombina-
tion of fungal mitogenome, and thus contributing to the rear-
rangement of fungal mitogenome [71]. In the present study, we
observed a large amount of repeat sequences in two saprophytic
Boletales species, which may be one of the main factors
contributing to large-scale gene rearrangements in the two
Coniophora species. However, in R. salebrosus mitogenome [9],
no intra-genomic duplications has been detected, but gene
rearrangements have been detected, indicating that there may
be other driving mechanisms for mitogenome rearrangement of
Rhizopogon species, which needs further study.



Fig. 8. Molecular phylogeny of 76 Basidiomycota species based on Bayesian inference (BI) and Maximum likelihood (ML) analysis of 15 protein coding genes and two rRNA
genes. Support values are Bayesian posterior probabilities (before slash) and bootstrap (BS) values (after slash). The asterisk indicates that the BPP value is 1 and the BS value
is 100 of the branch. Species and NCBI accession numbers for mitogenomes used in the phylogenetic analysis are provided in Supplementary Table S6.
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4.4. Phylogeny of Basidiomycota based on mitochondrial genes

The phylum Basidiomycota is the largest group of mushroom-
forming fungi on the earth, which plays an important role in the
natural cycle, ecological protection and medical or industrial appli-
cation [17,62,76]. Understanding the origin and evolution of Basid-
iomycetes contributes to the understanding and utilization of
Basidiomycetes in human life. However, it is very difficult to clas-
sify Basidiomycetes only by morphology even in today’s rapid
development of microscopic observation equipment, becausemany
Basidiomycetes have variable and overlapping morphological char-
acteristics [54]. Therefore, the introduction of molecular markers
can greatly promote the understanding of the inheritance, origin
and evolution of Basidiomycetes [77]. Up to now, rRNA internal
transcribed spacer (ITS) sequence has been widely used in the phy-
logeny of Basidiomycetes and other fungi [78]. Nuclear genome has
also become an important option in the phylogeny of Basid-
iomycetes, because it can provide enough evolutionary information
[79,80]. Compared with ITS sequence and nuclear genomes, mito-
genome provide adequate genetic information and is easy to obtain,
thus becoming an important tool to understand the origin, classifi-
cation and evolution of Basidiomycetes [20,81–83]. However, com-
pared with the available nuclear genome of Basidiomycetes, the
number of complete mitogenome of Basidiomycetes is far from
enough (https://www.ncbi.nlm.nih.gov/genome/browse#!/over-
view/), which limits the large-scale application of this important
molecular marker in phylogeny of Basidiomycetes. In this study,
2/3 of the complete mitogenomes of Basidiomycetes available in
NCBI were included in the phylogeny study. Based on ML and BI
methods, we obtained well-supported phylogenetic tree for 76
Basidiomycota species, which showed that mitochondrial gene
was a powerful tool to analyze the phylogenetic relationships of
Basidiomycetes. In addition, based on the phylogenetic tree, we
found that the Coniophora species differentiated from the order
Boletales in the early stage. More mitogenomes of Boletales species
need to be obtained to understand the origin and evolution patterns
of Boletales species with complex lifestyles.
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