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ABSTRACT

Deep transcriptome sequencing (RNA-Seq) has
become a vital tool for studying the state of cells
in the context of varying environments, genotypes
and other factors. RNA-Seq profiling data enable
identification of novel isoforms, quantification of
known isoforms and detection of changes in tran-
scriptional or RNA-processing activity. Existing
approaches to detect differential isoform abun-
dance between samples either require a complete
isoform annotation or fall short in providing statis-
tically robust and calibrated significance estimates.
Here, we propose a suite of statistical tests to
address these open needs: a parametric test that
uses known isoform annotations to detect
changes in relative isoform abundance and a non-
parametric test that detects differential read cover-
ages and can be applied when isoform annotations
are not available. Both methods account for the
discrete nature of read counts and the inherent bio-
logical variability. We demonstrate that these tests
compare favorably to previous methods, both in
terms of accuracy and statistical calibrations.
We use these techniques to analyze RNA-Seq
libraries from Arabidopsis thaliana and Drosophila
melanogaster. The identified differential RNA pro-
cessing events were consistent with RT-qPCR
measurements and previous studies. The proposed
toolkit is available from http://bioweb.me/rdiff and
enables in-depth analyses of transcriptomes, with
or without available isoform annotation.

INTRODUCTION

Deep RNA sequencing has enabled profiling the transcrip-
tional landscape of the cell at unprecedented resolution
[e.g. (1,2)]. Technological advances have dramatically
increased the read coverage and the dynamic range of
RNA-Seq, facilitating a wide range of analyses to
answer pertinent questions. One of the most fundamental
analyses is comparative transcriptome analysis of samples
that have been exposed to different environmental condi-
tions or have variable genetic background. The develop-
ment of computational tools to carry out such pairwise
comparisons is a field of active research and the subject
of this work.

For single isoform genes, the true mRNA isoform abun-
dance is tightly coupled to the number of reads that map
to exonic regions of the corresponding gene (2). A widely
used model to explain the number of mapping reads as a
function of the unknown abundance is the binomial model
and its Poisson limit. Several early methods have directly
used such idealized statistics to test for differential expres-
sion between samples from the raw read count informa-
tion [e.g. (3,4)]. More recent extensions (5-8) generalize
the basic Poisson model to a more flexible class of distri-
butions, such as negative binomial (NB) models. In
contrast to Poisson-based tests, these models account for
so-called overdispersion, i.e. the empirical variability of
counts because of biological or technical factors.

The large majority of genes of higher eukaryotes have
multiple annotated isoforms that are the result of alterna-
tive usage of transcription starts, splice sites, RNA editing
sites or polyadenylation sites. Defining gene expression in
the case of multiple isoforms becomes conceptually diffi-
cult and testing for differential gene expression can easily
be confounded by differential RNA processing events,
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such as alternative splicing. In particular, the number of
observed RNA-Seq reads may significantly change, even if
the total number of RNA molecules remains constant.
This may occur, for instance, if a significant part of the
RNA molecule is excised during splicing. An alternative is
to test for differential expression of an isoform in multiple
samples. However, if one of the samples is subject to a
significant increase of transcriptional activity of a gene,
under this test, all alternative isoforms would be
detected as differentially expressed.

In this work, we are interested in an alternative formu-
lation. We seek to identify significant differences in
relative isoform expression. Importantly, these relative
abundances are insensitive to overall gene expression
changes, but they reflect changes because of differential
RNA processing. See Figure 1 for an illustration.

Recently, several algorithms for inferring the abun-
dance of a given set of isoforms based on the observed
read coverages have been proposed (9-13). These
approaches solve the problem of deconvolving the
observed read coverage and implicitly or explicitly assign-
ing reads to individual isoforms. The difficulty of assign-
ing reads to isoforms comes from the fact that these are
often near-identical and a read from an overlapping
region cannot be assigned to a specific isoform without
additional information. Perhaps the most advanced
approaches are those carrying out full Bayesian inference,
such as MISO (13) or BitSeq (14), propagating and
accounting for uncertainty and covariation of expression
estimates from multiple overlapping isoforms. In general,
for all of these methods, the estimated abundances typic-
ally correlate well but far from perfectly with other
experimental data, such as qPCR and NanoString meas-
urements of RNA isoform abundances, in particular when
many isoforms are present (A. Mortazavi, personal
communication).
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Figure 1. On the top, two transcripts are shown together with the read
density one would observe if they were present isolated from each
other. On the bottom, the read densities for two mixtures of the tran-
scripts are shown. The mixture for the conditions A (light gray) and B
(dark gray) is different, which is reflected by the difference of the read
densities.

A natural and appealing strategy is to combine methods
to estimate isoform abundance for different RNA-Seq
experiments with a statistical test for differential expres-
sion of isoforms. However, the solution to the quantifica-
tion problem may not be unique [see, for instance,
discussions in Lacroix et al. and Hiller et al. (15,16)].
This problem can be partially alleviated by estimating con-
fidence intervals for the abundance estimates, either by
evaluating the Fisher information matrix (9) or by con-
ducting full Bayesian inference (13,14), but the estimation
of this correlation structure is technically challenging and
depends on a number of assumptions that may not always
be satisfied in practical settings. Most sophisticated
approaches, such as characterizing the non-unique solu-
tions using Markov Chain Monte Carlo methods (13,14),
circumvent some of these weaknesses, at the price of con-
siderable computational cost. Further, if one is only inter-
ested in which genes or isoforms are differentially
expressed, first quantifying and then testing for differential
expression might be an unnecessary detour, solving a
harder task than actually required.

In this work, we seek alternative strategies for detecting
differential abundances of RNA isoforms in pairs of bio-
logical samples. We focus on the case where the sum of the
abundances of all isoforms either remains constant or as
such 1is irrelevant, and the abundances of the isoforms
between two conditions vary (Figure 1). This setting is
particularly interesting for analyzing RNA-Seq experi-
ments with the aim to gain a deeper understanding of
RNA modifying processes (such as alternative splicing
or polyadenylation).

The devised approaches are simple and implemented as
a single step, avoiding the need to quantify isoform abun-
dances first. Importantly, they operate on the level of
isoforms and are not restricted to differences on the
level of the overall expression of a given gene. First, we
propose a test called rDiff.parametric, extending estab-
lished Poisson and NB-based tests for detecting differen-
tial expression of genes to testing for differential isoform
abundance. The idea is to identify genomic regions based
on the given isoform annotation that are not shared
among all isoforms and detect differences in the read
coverage in these informative regions (compare regions
marked in light green in Figure 2a). We show how this
principle can be used to build efficient statistical tests to
identify regions with alternative isoform expression.
Second, we propose rDiff.nonparametric, an approach
that can detect differential isoform abundance without
depending on any knowledge of the underlying isoform
structure. To avoid the need to quantify within known
regions, the approach directly assesses differences of the
read mapping distribution at a predefined genomic locus.
This test is especially useful for the large number of newly
sequenced genomes where the gene structure is often only
determined by homology to already annotated species.
The parametric variant, rDiff.parametric, shares many
ideas and concepts with recent work, such as DEXSeq
(17). However, DEXSeq is aimed at modeling the exon-
specific abundance rather than transcripts and does not
extend to settings without transcript annotation.
Conceptually, the non-parametric testing approach has
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Figure 2. (a) The alternative regions used by rDiff.parametric. Alternative regions are defined as regions in the genome that are not contained in all
transcripts of a gene but at least one, according to the gene structure. In a second step, all regions are merged, which are in the same subgroups of
transcripts, to obtain the so-called alternative regions. (b) Test statistic used by rDiff.nonparametric. Shown are the two read densities in the two
conditions A and B and their difference in gray and the underlying gene structure in light green.

previously been described in Stegle et al. (18), and
related ideas have later been proposed in (19). There the
authors followed a similar idea but concentrated on
counts on splice junctions in a constructed splicing
graph. Importantly, their approach does not consider a
variance model as used in rDiff and DEXSeq (17) [as
well as in DESeq (7) and edgeR (20)].

We perform a detailed simulation study to comprehen-
sively compare rDiff.nonparametric and rDiff.parametric
with existing methodology and to elucidate the strengths
and limitations of the algorithms. Moreover, we illustrate
the algorithms’ practical use in a realistic setting of three
RNA-Seq libraries from Arabidopsis thaliana and four
libraries from Drosophila melanogaster. We find that the
detection of alternative events is reliable and in concord-
ance with results from RT-qPCR (reverse transcription—
quantitative polymerase chain reaction), even when the
gene structure is not used.

MATERIALS AND METHODS

We start by introducing the statistical read model and
present a practical scheme to estimate biological variabil-
ity on splicing data. Building on this description, we intro-
duce a first statistical test that exploits complete
information on the gene annotation. Finally, we provide
a non-parametric variant that can be used when the
isoform annotation is incomplete or missing.

Read statistics

When doing inference from read counts it is important to
account for the fact that reads are generated by a
random sequencing procedure. Thus, read counts
should not be treated as fixed values but instead as
draws from a suitable distribution to capture random
fluctuation.

Previous work on differential testing of whole-gene ex-
pression established the duality of types of noise variation
that are dominant in specific regimes (6-8,20). First, read
data are subject to shot noise because of the nature of
sequencing data from random sampling. This noise is
dominant for low read counts. Second, overdispersion
because of biological variation increases the expected

noise level as empirically observed between biological rep-
licates. The first type of variance is well described by a
linear relationship between mean and variances, whereas
the second type is characterized by a quadratic compo-
nent. Contrary to the shot noise, the effect of overdisper-
sion is strongest for high counts. The variance caused by
different barcodes or the use of different mappers for the
samples also has a quadratic component and can for sim-
plicity be considered as part of the biological variance.
Here, we follow largely the approaches proposed previ-
ously (7,20) and build on NB distributions to model the
read counts. A major difference to these approaches is that
we do not model the counts for gene expression but for
smaller regions that are indicative of a change in relative
isoform abundance. Throughout, we assume that the
variance of the distribution for a given read count is a
function of the expression abundance. This empirical
variance function estimates the variance to be expected
for different expression levels. For a detailed discussion
of our statistical model we refer to Supplemental
Section S1.

Variance estimation

The estimation of biological variance is an integral
building block to differentiate true differences from fluc-
tuations caused by biological or technical variation. Let in
the following G be the set of genes and R be a biological
sample that consists of a set of replicates r € R. For all
genes g € G and replicates r € R, we assume to have an
estimate of the gene expressmn Ny and read counts ¢ ; for
each region j € J,, where J, is the set of reglons in gene g.
We estimated the blologlcal variance by using replicate
data, to get the means and variances of tuples of
normalized read counts in the replicates. To detect
changes in the relative transcript abundances and not

changes in absolute abundance, we computed a
normalizing constant
L IRIN
g = -
2N
reR

The normalization makes counts comparable across the
replicates when having variability in gene expression
(which may have different total numbers of reads).
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We then computed normalized counts Eg J = S’i’. For
each region j € J, in gene g, we then estimated thé mean
of the normahzed counts
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as well as their empirical variance:
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Finally, we performed a local regression on the set of
points (u 02%) [similar to the procedure proposed previ-
ously (7) to olatam a functional mapping fz between the
empirical mean to the expected variance. This was done
using the Locfit (21) package.

gx] |R|

Working without replicates.

If replicate data are not available, conservative estimates
of the variance function can be obtained from between-
sample fits. Following (7), one can consider the two
samples 4 and B as replicates to fit the variance
function. If there are no differential sites, this approxima-
tion is fully legitimate, whereas in the presence of true
differences, one can expect an overestimation of the
variance fits, leading to a conservative approximation.
Alternatively, one can use an estimated variance
function from a similar sample as the ones under
investigation.

Statistical testing with known gene structure

Defining alternative regions

Given a known and complete gene annotation, differential
isoform abundance can be detected by differential com-
parison of a set of restricted exonic regions, denoted al-
ternative regions in the following (Figure 2a). These
regions are defined as isoform-specific loci, i.e. those pos-
itions where reads map that can only stem from a non-
empty strict subset of all isoforms. Relative changes of the
abundance between isoforms can in principle be only
observed at those positions; hence, the remainder of
exonic loci can be left aside.

To avoid explicitly solving the deconvolution problem
of multiple overlapping isoforms, we grouped the alterna-
tive regions into areas that are absent or present in the
same isoforms. The resulting grouped regions are the
regions on which we tested for differences in relative abun-
dance between isoform with respect to the total gene
expression.

Testing for changes
Statistical testing is carried out in each alternative region
of a gene g. As the testing is performed for one gene at a
time, we omit the index g for simplicity of notation. Our
null hypothesis H, is that there is no differential
expression in a particular region. Formally, this
corresponds to the read in 1ntens1ty ,u relative to the
gene expression being the same in a reg1on j for samples
={A4y,...,A,} and B=1{By,...,B,}, where u is the
number of replicates in sample A and v the number of

replicates in sample B. Under this hypothesis, the
number of counts /,L we expect to observe in sample A
in reg1on j can be calculated by the normalized mean
expression ¢; for both samples, i.e. by averaging the

normalized reads in all samples:
c

1 J
=T TB, 2y o

re{AUB}

where r runs over the replicates from either sample 4 and
B, N is the gene expression in replicate r and ¢; is the

number of reads mapping to region j in replicate r.
Using the normalized expression, we then calculated the
average number of counts MJA we expect to see under the
|A| L34 N'. The calculations for
p; were analogous. The distribution under the null
hypothesis ~ was  computed as  follows.  Let

A4 _ 1 . B _ |1 .

G = [ eads| and P =[] be the
rounded up average number of observed reads in a
region j. We assumed that the observed counts are

drawn from an NB distribution CA ~NB<;L/ Ja(f ))

and Cf~NB(uj B, )) where f, is the variance

function estimated for sample 4 and analogous for f3.
For brevity denote by p(k,l) = NB(k,f4(k)) - NB(Lf5(]),
the joint probability of observing k reads in sample A4
and [ reads in sample B. Denote furthermore the total
read counts in region j as C; = CA+CB Then the P-

value p; of the observed counts CA and C? under the
null hypothesis H is given by:
Zkﬂ:c/ Ip(k, H=p(C4, c;f)P(k, 0

A B
: ’ \Hy) =
n(ct,ctim,) ST

where /1 1s an indicator function that is 1 if T'is true and 0
otherwise. Finally, we combined the P-values across
regions into a genewise P-value of relative transcript
abundance variability using a conservative Bonferroni
correction (22):

null hypothesis as ,u]
B

2

pe = el min p,(C/, Py ). 3)
jEJg y y

We refer to this method as rDiff.parametric. Alternatively,
the information as to which specific testing region is
differentially expressed can be used directly, which is
similar as the approach taken previously (17).

Testing with unknown gene structure

In many cases, the gene annotation is not available; hence,
alternative regions cannot be defined a priori. We propose
an alternative strategy to test changes in the read density
at the whole-genomic locus. Our approach builds on the
non-parametric Maximum Mean Discrepancy (MMD)
test (23,24).

This flexible two-sample test for high-dimensional
vectors is well suited for our setting, as it poses few
assumptions on the distribution of the reads. The basic
idea of this test applied to our setting is to represent the



reads 4, and B, that map to gene g in samples 4 and B in
the space R, where ly is the length of g. This is done by
representing each read i in sample r as a vector x} of length
l,. The entry of x} at the jth dimension is 1 if the read
covers the jth position of the gene and 0 otherwise. In this
space, the mean for the sample r is given by:

1 K,
/L(V) = EZI’:I x[:

where K" is the number of reads in the sample r. The
difference D = ||u(A,) — n(B,)|l, between the two read
densities 4, and B, is then computed and used as the
test statistic (see Figure 3 for an illustration). To determine
the significance of the distance D, this value is compared
with an empirical null distribution, estimated from 7'
differences D, te {l,...,T} between two random
samples from the joint read distribution 4, U B,.

The basic MMD strategy described earlier in the text
was extended in two different ways: (i) we accounted for
biological variance by sampling such that the variance of
the random samples was in concordance with the
empirically fitted biological variance model.

This extension of the original bootstrapping procedure
leads to an appropriate variance of the null distribution as
illustrated in Figure 3, thereby avoiding an oversensitivity
on highly expressed genes. The P-value was estimated by
the number of times the observed difference D is larger
than D;: p, = szszl Ip<p,. For a detailed description, see
Supplementary Section S2.1. (i) We increased the power
by preferentially focusing on regions in the gene that could
potentially reflect a differentially processing. We observed
empirically that one can increase the power of the MMD
test, when only considering genomic positions that have a
lower than maximal read coverage in one of the samples.
This observation can be explained by the fact that the
regions with large relative coverage are unlikely to be
differentially covered between samples (as this would

r € {Ag, Bg},
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conditions
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Figure 3. Illustration of variance of the read density difference (see
gray area in Figure 2b) between random samples from the null
distribution. The distribution difference between two biological
samples is shown as a dashed black curve, the one between two
random samples when not correcting for biological variance in dark
gray dashed and when correcting for biological variance in light gray
dashed. The resulting P-value for rDiff.nonparametric corresponds to
the gray area of surface, which is the fraction of random samples that
have a bigger difference than the difference observed between the two
conditions. For highly expressed genes, when not correcting for
biological variance, the density difference between random samples
converges to zero, thus leading to an unrealistically small P-value.
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require them to be not fully covered in at least one
sample and thus cannot have a maximal coverage).
Exploiting this characteristic, we perform several tests
on the subsets of the positions where the coverage is
below different thresholds. More specifically, we applied
the MMD test on the 10% of the positions that have the
lowest positive coverage to obtain a P-value pyo.
Subsequently, we repeated the procedure for 20% and
so forth until we had 10 P-values pg,...,p100. These
P-values were combined, Bonferroni corrected and
reported as the result of rDiff.nonparametric.

Data sets used for evaluation

We considered a data set from A. thaliana to apply and
compare the proposed methods.

For this study, A. thaliana Wt seedlings were grown in
darkness and exposed to light for 0, 1 or 6 h. Furthermore,
we used crylcry2 seedlings (25,26) grown under the same
conditions as the 0h Wt seedlings.

The mRNA libraries were prepared using the Illumina
mRNA-Seq 8-sample Prep kit. We sequenced 80 bp reads
on the Illumina GAIIx platform using a single-end flow
cell, resulting in ~3.9 x 10" reads per lane on average. In
each library, a variable fraction between 86.3 and 87.4%
of reads could be uniquely aligned to the genome using
Palmapper (27), resulting in an average coverage of the
transcriptome of ~51-fold per lane. For ~24% of the
reads, the best alignment obtained was a spliced
alignment, i.e. it spanned an exon—exon border. Full
details on the experimental design and implementation
can be found in Supplementary Section S5.

Simulation approach

In addition to empirical data, we also created two artificial
data sets to have data sets with exact ground truth
expression levels. We focused on the 5875 mRNA
coding genes in the A. thaliana TAIR10 reference
annotation that have at least two splice variants. Both
artificial data sets consisted of samples for two different
conditions with two simulated biological replicates each.
To simulate a realistic extent of biological variance, we
estimated the gene expression variance on experimental
data described before. In a first simulated setting, we
used the two samples grown with 0h light exposition to
estimate the biological variance and an additional sample
from the seedlings 1 h to get realistic gene expressions for
the simulated conditions. The true simulated isoform
abundances were drawn from a uniform distribution,
and the absolute gene expression abundance was drawn
from the expressions measurements. For half of the genes,
we simulated a differential relative isoform expression.
Furthermore, we simulated a biological variance in both
samples by drawing isoform abundances such that the
resulting variance of the reads matched the estimated
biological variance.

To assess the effect and relevance of biological variance,
we repeated the same simulation procedure with increased
biological variability. In this second simulated data set,
we considered the variation between the samples at Oh
and 1h to simulate the biological variance. Full details
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of the read simulation can be found in Supplementary
Section S3.

False discovery rate estimation

As a measure of the genome wide significance of the
findings, we used the false discovery rate (FDR). The
FDR was calculated as described previously (28).

RESULTS
Evaluation on synthetic data

Benchmark data and alternative methods

For objective comparison of alternative methods, we
considered two realistic simulated data sets (see ‘Materials
and Methods’). We used the proposed models either
explicitly using the gene annotation (rDiff.parametric) or
not using the annotation (rDiff.nonparametric). For
comparative purposes, we also considered two state-of-
the-art methods that explicitly quantify transcript
isoforms to test for differences, MISO (13) and cuffDiff
(29). To assess the impact of modeling biological
variance, we also applied the simplified variant of the
parametric test, called rDiff. poisson, which is based on
the Poisson distribution instead of the NB distribution. A
detailed description of how the competing methods were
applied is found in Supplementary Section S4.

Ranking of differentially expressed genes

First, we evaluated the ranking of differentially expressed
genes produced by alternative methods. To quantify their
respective performances, we used the receiver operating
characteristics (ROC), depicting the true-positive rate
(TPR) of predictions for different false-positive rates
(FPR). For biological applications, the most confident
predictions with a moderate FPR are most relevant;
thus, we restrict the interval of considered FPR to at
most 0.2. The ROC curves for each method evaluated
on the synthetic data set are shown in Figure 4, and a
tabular summary of the area under the ROC curve is
given in Table 1. rDiff.parametric consistently
outperformed cuffDiff and MISO with the differences
being most striking for most confident calls, where
rDiff.parametric achieved a substantially higher TPR.
The Poisson-based parametric model (rDiff.poisson) was
slightly, but consistently, outperformed by its NB
counterpart. rDiff.nonparametric performed as well as
MISO and cuffDiff, which is surprising, given the fact
that our approach does not use the gene annotation and
is conceptually much simpler. This finding highlights the
applicability and practical use of the simple one-step
methods, both in settings where the genome annotation
is available but also if it is incomplete or missing.

To investigate the robustness of the different methods
with respect to biological variability, we considered a
second synthetic data set with larger biological variation
(Supplementary Figure S2a). Although the previously
observed trends still hold, the differences between the
respective methods were more pronounced. The
performance of MISO, rDiff.poisson (which does not
model biological variance) and cuffDiff decreased

dramatically, in particular for low FPR. rDiff.parametric
and rDiff.nonparametric both consider biological
variability for computing significance levels and perform
best, in particular for the most confident cases. This
emphasizes the relevance of modeling biological
variability.

Calibration of test statistics

It is important that the tests deliver meaningful
significance levels and false discovery estimates.
Therefore, we tested the statistical calibration of the
calling confidences provided by the different methods by
comparing the estimated FDRs with the empirical FDRs
(empFDR). The latter is known because we simulated the
data. The empirical FDR was calculated as the fraction of
false positives in the number of genes having P-values
below a certain threshold. Figure 4b shows the calibration
curves for all methods on the first synthetic data set.
rDiff.parametric was the most conservative approach,
and the empirical FDR was about three times smaller
than the estimated FDR (at 0.2). rDiff.nonparametric
was less conservative (empirical FDR ~1.3 times smaller
than estimated FDR) and overall achieved an acceptable
level of calibration. cuffDiff and rDiff.Poisson, however,
seemed to be overoptimistic by calling a large number of
false positives for small FDRs: the most confident
predictions were false. This behavior is likely caused by
the lack of control for biological variance. MISO could
not be considered in this evaluation, as the method does
not yield P-values. Another interesting observation is that
the number of genes that are reported is different as shown
in Figure 4c. One can see that for a small FDR cut-off,
cuffDiff and rDiff.poisson report many more genes than
rDiff.nonparametric and rDiff.parametric.

Differential RNA processing in A. thaliana

Data and set-up

To illustrate how rDiff can be applied in a typical
experimental setting, we investigated a data set from
A. thaliana. We obtained RNA-Seq data from seedlings,
grown in darkness before light exposure (0 h; two samples,
Wt and crylcry2), as well as 1 and 6 h after light exposure.
We estimated the variance function between two Oh
samples and used the same parameters for the methods
as before.

Detected events

Both methods, rDiff.parametric and rDiff.nonparametric,
identified the largest number of differential genes when
comparing the sample O h with the sample 6 h (Table 2).
The non-parametric model found a substantially larger
number of events, retrieving between 2.7 and 5.4 times
as many significant events (at FDR 0.1). The overlaps
between the findings retrieved were surprisingly low.
This suggests that the non-parametric model provides an
orthogonal view of events that cannot be explained when
restricting to the annotation. Visual inspection suggested
that the great majority of the exclusive hits retrieved by
rDiff.nonparametric were plausible (see Figure 6 for
representative examples).
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Figure 4. Comparison of rDiff with MISO and CuffDiff. (a) ROC curve for rDiff, MISO and CuffDiff. (b) Comparison of the empirical false
discovery rate (empFDR) and the FDR based on P-values provided by the methods, for rDiff and CuffDiff. This was not possible for MISO, as it
did not provide P-values. (¢) Number of detected genes as a function of the FDR cut-off.

Table 1. Area under the ROC curve in the interval (0,0.2)
(auROC20) for rDiff, cuffDiff and MISO

Table 2. Overlap between methods for 1h versus 1h/ Oh versus 6h/
1h versus 6h for genes with an FDR < 0.1

Method auROC20 auROC20
for small for large
biol. variance biol. variance

rDiff.nonparametric 0.077 0.073

rDiff.parametric 0.101 0.093

rDiff.poisson 0.099 0.082

cuffDiff 0.085 0.055

MISO 0.089 0.061

The comparison is shown on the two artificial data sets with a small
and large biological variance (see ‘Materials and Methods’ section).

These results suggest that the predictions by
rDiff.nonparametric can indeed be used to obtain an
unbiased view with respect to alternative splicing,
without annotation bias. Overall, we found that ~60%
of the detected genes had only one transcript annotated.
Furthermore, we performed a classification of the events
found by rDiff.nonparametric by the type of region where
the biggest change was observed. The exact technical
details of this annotation step are described in
Supplementary Section S5.6. The result of the
classification of the changes between Oh and 1h can be
found in Figure 7 and Supplementary Table S1. In
particular, changes in the 3-UTR, 5-UTR and introns
were overrepresented (see Figure 6 for examples). As the
libraries were prepared in parallel using the same reagents,
we are confident that the observed coverage differences
reflect the changes of the transcripts structure.

RT-qPCR validation
To have an objective comparison on real data, we
measured relative isoform levels using RT-qPCR for five
genes in the three samples. This validation allowed us to
verify whether the isoforms predicted to be differentially
expressed have indeed a varying abundance. The protocol
is described in Supplementary Section S5.4.

As a measure of correspondence between the P-value
and the fold-change we used Spearman’s correlation
between the negative log-P-value and the log-fold-change.

Method rDiff.parametric rDiff.nonparametric
rDiff.parametric 39/80/54
Diff.nonparametric 18/29/16 213/219/138

The events written in bold are the number of events predicted by the
corresponding method.
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Figure 5. Plot of the —log(P-value) against the log(fold-change)
measured by RT-qPCR. The P-values for rDiff.nonparametric are
shown in light gray, for rDiff.parametric in dark gray and for
CuffDiff in black. Spearman’s correlation coefficient p for the two
methods is given in the legend.

We chose this correlation measure, as it is invariant under
monotone transformation. We removed one outlier that
led to an overly optimistic correlation for all methods.
We have found a good correlation of 0.84 for
rDiff.parametric, 0.68 for cuffDiff and 0.66 for
rDiff.nonparametric (Figure 5). These correlations are
well in line with the results on the artificial data set and
support that the proposed methods retrieve accurate
results.
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time points Oh and 1h according to the gene structure, in genes
detected by rDiff.nonparametric with an FDR smaller than 10%. The
width of the boxes is the average length of those regions, and the area
equals the total number of detected differential cases.

Differential RNA processing in D. melanogaster

We also analyzed a D. melanogaster data set presented and
thoroughly analyzed previously (30). It consists of two
samples, one from wild-type and the other from Pasilla
knockdown mutant flies, each containing two paired-end
libraries and one single-end library. The authors derived
multiple read counts for different types of alternative
splicing events (exon skipping, intron retention and so
forth) and used Fisher’s exact test (corrected P <0.05) to
find significant differences in the contingency tables for the
two libraries [methodology conceptually similar to a
previous study (31)]. Differential splicing in 323 genes
was found to be significantly different, of which 16 were
experimentally validated.

We applied rDiff.parametric and rDiff.nonparametric
(FDR 0.1) after aligning the reads from the paired-
end libraries using TopHat (32) (more details in
Supplementary Section S6). To have a small variance in
the samples, we chose to exclude the single-end libraries
from our analysis. Overall, rDiff.parametric and

rDiff.nonparametric found 71 and 278 genes with
differential relative isoform expression, respectively.
Although it is reassuring that the numbers are somewhat
similar, the degree calibration of the methods, including
the one from Brooks et al. (30), will significantly influence
the number of detected events. We, therefore, con-
centrated on the top 323 genes [the number of significant
events found in Brooks ef al. (30)]. We find that of the 16
cases that were experimentally validated previously (30),
rDiff.parametric found 12 and rDiff.nonparametric found
11 genes. For three of the remaining genes, the read
coverage was too low to detect significant changes for
both of our methods because of the strict alignment
settings used and using only the paired-end libraries.
Nonetheless, the fact that rDiff.nonparametric found a
large fraction of the cases is noteworthy, as it does not
make use of the gene annotation.

DISCUSSION AND CONCLUSIONS

Our results on the artificial data and the study on
A. thaliana and on D. melanogaster show that the
proposed one-step methods outperform alternative
approaches and are generally applicable. We believe that
one reason that the methods perform better in practice
is due to fewer assumptions made compared with
other methods. In particular, quantification of
alternative isoforms is a challenging task, and the
predictions are often unstable and suffer from multiple
possible solutions. As a consequence, the achieved FDRs
are typically higher, in particular for highly confident
cases. On the contrary, the proposed methods are
simple, robust and can operate in complex settings while
yielding statistically better calibrated estimates than other
methods.

Notably, this high level of accuracy extends to the cases
where genome annotations are missing. In these settings,
existing quantification-based methods cannot be applied
at all; hence, for the first time, we provide a workable and
sufficiently accurate approach to deal with these instances.
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In particular, the non-parametric version of rDiff
will facilitate early quantitative characterizations of
transcriptomes of newly sequenced species. This finding
also highlights the value of non-parametric methods that
extend beyond classical uni-variate tests, such as
Kolmogorov—Smirnov or the Mann—Whitney U test.
rDiff.nonparametric is implemented in a flexible manner
and can be used to incorporate additional features to
assess the differential behavior, such as splice site or
paired-end information.

We would like to note that the proposed rDiff.
nonparametric method was designed to test for differential
relative isoform expression. However, the method solves a
more general problem ubiquitous in deep sequencing data
analysis. It detects differential read coverages or other
read-dependent properties that are the result of biological
circumstances that one has set out to understand. For
instance, the method may also be applicable for analysis
of data from RNA structure probing (33,34), ChIP-seq for
differential chromatin binding in different samples
(G. Schweikert, personal communication) and whole-
genome sequencing for testing of highly polymor-
phic regions (D. Weigel, personal communication).
However, accounting for confounding factors in those
analyses is topic of ongoing research.

In summary, we have proposed two complementary
statistical tests to detect differential isoform abundances
from RNA-Seq. We have shown that the methods perform
better than other quantification-based methods and yield
reliable predictions of differential relative isoform
expression. These tools can be used in a wide range of
settings, using existing gene model annotations or solely
the observed read data. The NB-based rDiff.parametric
test performs considerably better than the rDiff.Poisson
test, as it takes the biological variance into account. The
rDiff.nonparametric test is based on permutations, and
taking biological variance into account is technically less
straightforward. We developed the method of limited re-
sampling to match the sampling variance to the biological
variance. The resulting algorithm rDiff.nonparametric is
significantly more robust against biological variability.
Our experiments underline that biological replicates are
an essential prerequisite to accurately estimate significance
levels. Therefore, we advocate measurement of at least two
biological replicates to estimate the variance function.
Additionally, we recommend using the same sequencing
method, as well as the same mapping method, to reduce
systematic biases, which could lead to many false
positives.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figure 1 and
Supplementary Methods.
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