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Abstract Practically all studies of gene expression in humans to date have been performed in a 
relatively small number of adult tissues. Gene regulation is highly dynamic and context- dependent. 
In order to better understand the connection between gene regulation and complex phenotypes, 
including disease, we need to be able to study gene expression in more cell types, tissues, and 
states that are relevant to human phenotypes. In particular, we need to characterize gene expression 
in early development cell types, as mutations that affect developmental processes may be of partic-
ular relevance to complex traits. To address this challenge, we propose to use embryoid bodies 
(EBs), which are organoids that contain a multitude of cell types in dynamic states. EBs provide a 
system in which one can study dynamic regulatory processes at an unprecedentedly high resolution. 
To explore the utility of EBs, we systematically explored cellular and gene expression heterogeneity 
in EBs from multiple individuals. We characterized the various cell types that arise from EBs, the 
extent to which they recapitulate gene expression in vivo, and the relative contribution of technical 
and biological factors to variability in gene expression, cell composition, and differentiation effi-
ciency. Our results highlight the utility of EBs as a new model system for mapping dynamic inter- 
individual regulatory differences in a large variety of cell types.

Editor's evaluation
The authors generated embryoid bodies (EBs) from induced pluripotent stem cells (iPSCs) using a 
strong mixed- pool study design and performed scRNA- seq profiling. From this data, they identify 
dozens of cell types and infer differentiation trajectories that align well with known developmental 
gene expression dynamics. This system is likely to be a good platform for larger eQTL studies that 
interrogate new cell states.

Introduction
Genome- wide association studies (GWAS) have identified thousands of genetic variants associated 
with human traits and diseases, many of which are located in noncoding regions of the genome and 
are putatively regulatory in function (Albert and Kruglyak, 2015). To understand regulatory and func-
tional effects of trait- associated variants, it is necessary to perform molecular assays in the relevant cell 
types at the relevant stages of development, and potentially to also model different environmental 
exposures (Umans et al., 2020).
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However, most efforts to identify genetic variants that regulate gene expression (expression quan-
titative trait loci, or eQTLs) have relied on adult tissue samples collected at a single time point. While 
such efforts have mapped millions of static, steady- state eQTLs across dozens of tissues and cell types 
(GTEx Consortium, 2020), most disease- associated variants were not found to also be classified as 
eQTLs (Yao et al., 2020; Aguet et al., 2017).

It is possible that dynamic and variable regulatory genetic effects, including those that are specific 
to a given cell type, time point, or environment, may underlie the mechanisms for many unexplained 
phenotypic associations. For example, recent efforts to characterize gene regulatory dynamics in 
human induced pluripotent stem cells (iPSCs) and their derived cell types have identified dynamic 
eQTLs that are associated with disease risk, supporting the intuitive notion that changes in gene 
regulation during development may play a role in shaping human adult phenotypes, including disease 
(Strober et al., 2019; Cuomo et al., 2020). Still, iPSCs are limited in their potential for identifying 
dynamic regulatory effects. The number of cell types that can be obtained from iPSCs using directed 
differentiation protocols is quite modest, and time- course experiments, although useful for studying 
gene regulation at discrete points along a continuum, are inefficient, expensive, and laborious to 
perform.

With these challenges in mind, we wanted to develop and characterize a new in vitro model for 
studying gene regulation – a model capable of measuring gene expression continuously along the 
developmental trajectories towards multiple cell types, and to be able to do so in multiple individuals. 
To do this, we used iPSCs to form embryoid bodies (EBs), which are three- dimensional aggregates of 
spontaneously and asynchronously differentiating cells. EB formation has been used to verify stem cell 
pluripotency for decades; yet, until recently, the complexity of EB cellular composition has precluded 
their use in genomic studies. With single- cell RNA- sequencing (scRNA- seq), it is now possible to char-
acterize the numerous spatially and developmentally distinct cell types within EBs, including transient 

eLife digest One major goal of human genetics is to understand how changes in the way genes 
are regulated affect human traits, including disease susceptibility. To date, most studies of gene regu-
lation have been performed in adult tissues, such as liver or kidney tissue, that were collected at a 
single time point. Yet, gene regulation is highly dynamic and context- dependent, meaning that it is 
important to gather data from a greater variety of cell types at different stages of their development. 
Additionally, observing which genes switch on and off in response to external treatments can shed 
light on how genetic variation can drive errors in gene regulation and cause diseases.

Stem cells can produce more cells like themselves or differentiate – acquire the characteristics – of 
many cell types. These cells have been used in the laboratory to research gene regulation. Unfortu-
nately, these studies often fail to capture the complex spatial and temporal dynamics of stem cell 
differentiation; in particular, these studies are unable to observe gene regulation in the transient cell 
types that appear early in embryonic development. To overcome these limitations, scientists devel-
oped systems such as embryoid bodies: three- dimensional aggregates of stem cells that, when grown 
under certain conditions, spontaneously develop into a variety of cell types.

Rhodes, Barr et al. wanted to assess the utility of embryoid bodies as a model to study how genes 
are dynamically regulated in different cell types, by different individuals who have distinct genetic 
makeups. To do this, they grew embryoid bodies made from human stem cells from different indi-
viduals to examine which genes switched on and off as the stem cells that formed the embryoid 
bodies differentiated into different types of cells. The results showed that it was possible to grow 
embryoid bodies derived from genetically distinct individuals that consistently produce diverse cell 
types, similar to those found during human fetal development.

Rhodes, Barr et al.’s findings suggest that embryoid bodies are a useful model to study gene 
regulation across individuals with different genetic backgrounds. This could accelerate research into 
how genetics are associated with disease by capturing gene regulatory dynamics at an unprecedent-
edly high spatial and temporal resolution. Additionally, embryoid bodies could be used to explore 
how exposure to different environmental factors during early development affect disease- related 
outcomes in adulthood in different individuals.

https://doi.org/10.7554/eLife.71361
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cell types that would otherwise be inaccessible. Indeed, recent scRNA- seq studies of human EB differ-
entiation have revealed the diversity of cell types composing these structures and the transcriptional 
dynamics governing early fate decisions (Han et al., 2018; Guo et al., 2019).

To date, however, the only studies that have sequenced EB cells have relied on a small sample of 
cells from a single individual, leaving a gap in our understanding of technical, biological, and inter- 
individual variation present in this system (Han et al., 2018; Guo et al., 2019). Understanding the 
sources of variation that affect cell composition and scRNA- seq data from EBs is crucial for evaluating 
the utility of EBs as a novel system for population- level studies of gene regulation. To this end, we 
used a batch- controlled study design to generate and sequence EBs from multiple individuals using 
multiple replicates. This allowed us to measure the degree of technical and biological variability in 
cell identity and gene expression levels associated with repeated independent EB differentiations. 
We evaluated the consistency in cell type composition across replicates and individuals, character-
ized the structure of variation in gene expression across the entire data set, and finally, captured 
patterns of dynamic gene expression along distinct developmental trajectories. Our results indicate 
that scRNA- seq of differentiating EBs has the potential to be a powerful model system for the study 
of inter- individual variation in gene regulation across an array of functionally and temporally diverse 
cell types.

Results
We have performed a pilot study to establish and characterize the EB system. Toward the ultimate 
goal of performing dynamic eQTL studies using EBs, we designed a study that allowed us to effec-
tively estimate different sources of variation in single- cell data from EBs. In this pilot study, we focused 
on consistency of the non- directed differentiation process, and the proportion of gene expression 
variability that can be explained by technical or biological factors.

Study Design, data collection, and preprocessing
To characterize sources of variation in gene expression in human EBs, we initially differentiated 
EBs from three human iPSC lines (18511, 18858, and 19160) in three replicates (see Materials and 
methods). We performed the experiment in three batches, where each batch includes one replicate 
from each of the three individuals. EBs differentiate quickly, with cell types representing endoderm, 
mesoderm, and ectoderm present after 8 days (Han et al., 2018). In this study, we maintained EBs 
for 3 weeks after formation, allowing cells to continue to differentiate and mature. After 21 days, 
we collected scRNA- seq data, targeting equal numbers of cells from each individual in each repli-
cate. After filtering and quality control (Materials and methods), we retained high- quality data from a 
sample of 42,488 cells (an average of 4721 cells per individual/replicate). For these cells, we obtained 
a median of 16,712 UMI counts per cell, which allowed us to measure the expression of a median 
of 4274 genes per cell (Figure 1—figure supplement 1). We integrated data from all cells using 
Harmony, which anchors the data sets by cell type (Korsunsky et al., 2019).

After these initial collections, we found that one individual, 18858, had lower differentiation effi-
ciency than the other two lines (Figure 1G, see Differentiation efficiency across individuals). Too assess 
the robustness of differentiation efficiency and cell type composition among a larger sample of indi-
viduals from our YRI iPSC panel, we differentiated EBs in one replicate from each of five additional 
randomly chosen lines (18856, 18912, 19140, 19159, and 19210). After filtering and quality control, 
we retained an average of 5243 cells per individual in this new set of data, a median of 5983 UMI 
counts per cell, and a median of 2775 genes per cell (Figure 1—figure supplement 4). Throughout 
the text, when we use data from the five lines that were subsequently collected using only a single 
replicate (18856, 18912, 19140, 19150, and 19210), we refer to them as the ‘additional lines’. The 
initial replicated data collected from individuals 18511, 18858, and 19160 are used in all analyses 
throughout this study, while the additional lines are used only to demonstrate consistency of cell type 
composition across individuals.

Cell type composition
To validate our expectation that EBs should contain cells from each germ layer, we first character-
ized the expression of early developmental marker genes. We found cells expressing markers for 

https://doi.org/10.7554/eLife.71361


 Research article      Genetics and Genomics

Rhodes, Barr, et al. eLife 2022;10:e71361. DOI: https://doi.org/10.7554/eLife.71361  4 of 24

endoderm (SOX17, FOXA2), mesoderm (HAND1), and ectoderm (PAX6), in addition to cells still 
expressing pluripotency markers (POU5F1, MYC, NANOG). We visualized the data with uniform mani-
fold approximation and projection (UMAP) and observed that cells expressing each of these germ 
layer markers occupied distinct groups in UMAP space (Figure 1A–D; Becht et al., 2018). Moreover, 
we found that every replicate in our experiment, regardless of the individual, includes cells from all 
three germ layers (Figure 1E and G).

H

A B C D

E F

G

Figure 1. Characterization of EB cell type composition using marker gene expression and clustering. (A–F) Visualization of EB cells with UMAP. (A) Cells 
from lines 18511, 18858, and 19160 colored by expression of pluripotent marker gene POU5F1, (B) Cells from lines 18511, 18858, and 19160 colored by 
expression of endoderm marker gene SOX17, (C) Cells from lines 18511, 18858, and 19160 colored by expression of mesoderm marker gene HAND1, 
(D) Cells from lines 18511, 18858, and 19160 colored by expression of early ectoderm marker gene PAX6. In A- D cells are colored by normalized counts. 
(E) Cells from lines 18511, 18858, and 19160 colored by Seurat cluster assignment at clustering resolution 0.1. (F) Cells from lines 18511, 18858, and 
19160 colored by Seurat cluster assignment at clustering resolution 1. (G) Proportions of cells from replicates of lines 18511, 18858, and 19160 assigned 
to Seurat clusters at clustering resolution 0.1. (H) Proportions of cells from additional lines assigned to broad cell types present in EBs.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quality metrics after filtering.

Figure supplement 2. Seurat clusters identified at clustering resolution 0.5 (Left) and 0.8 (Right).

Figure supplement 3. UMAP visualization of cells from individual 18858 only.

Figure supplement 4. Cell type composition of additional YRI lines.

https://doi.org/10.7554/eLife.71361
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We next sought to further explore the heterogeneous cell types present in these EBs. In studies 
of scRNA- seq data from tissues and samples with well- characterized cell type composition, clustering 
is often applied to demarcate populations of pure cell types within heterogeneous samples. In these 
studies, clustering resolution, which determines the number of clusters identified by the algorithm, is 
typically chosen to recapitulate the expected number of known cell types. The identified clusters can 
be annotated based on the expression of known marker genes.

In our case, however, we had no a priori knowledge of the exact number or types of cells that 
would result from the spontaneous differentiation of the EBs. Hence, we used three complementary 
approaches to annotate cells, capturing various perspectives on what might define a cell type in this 
data set. First, we identified cell types by clustering cells and annotating the cell types based on the 
genes that are highly expressed in each cluster. Second, we annotated cell types by considering the 
correlation of gene expression in our data with a reference data set of known primary cell types. For 
our third approach, we used a different perspective, and applied topic modeling to consider a less 
discrete definition of cell type.

For the first approach, we used a standard clustering analysis, the Louvain algorithm in Seurat, to 
identify groups of cells with similar transcriptomes (Blondel et al., 2008). To avoid making assump-
tions about the true number of cell types present, we repeated this analysis across different clustering 
resolutions (resolution 0.1, 0.5, 0.8, and 1). As expected, the number of clusters we identified varied 
greatly depending on the resolution (Figure 1E–F, Figure 1—figure supplement 2). We performed 
each subsequent analysis using clusters defined at multiple resolutions, to ensure that our qualitative 
conclusions are robust with respect to the number of clusters identified.

Table 1. Classification of Seurat cluster identity (clustering resolution 0.1) based on differential 
expression of marker genes.

Cluster (Res. 0.1) # cells in cluster
Top 10 marker genes 
by adj. P

Top 10 marker genes 
by logFC Annotation

0 17,693

TERF1, PHC1, 
SEPHS1, UGP2, 
DPPA4, TBC1D23, 
JARID2, USO1, 
ZNF398, LRRC47

DPPA5, DPPA3, 
GDF3, NANOG, 
FGF4, POU5F1, CBR3, 
PRDM14, DPPA2, 
TRIML2 Pluripotent Cells

1 14,383

TPBG, FGFBP3, FZD3, 
LIX1, SDK2, BTBD17, 
DACH1, PLAGL1, 
DEK, ZNF219

FEZF2, EMX2, LHX2, 
SOX3, PAX6, WNT7, 
BARX, SOX1, ZIC1, 
SIX3 Early Ectoderm

2 3086

TNNI1, COL6A3, 
COL5A1, RGS4, 
ACTA2, TMEM88, 
DOK4, SLC40A1, 
HAND2, COL3A1

RGS13, LUM, TECRL, 
DCN, HAND1, PITX1, 
COL3A1, SLN, IGF2, 
FIBIN Mesoderm

3 2673

NR2F1, CNP, S100B, 
EDNRA, FGFBP3, 
ATP1A2, DNAJC1, 
ZEB2, PHACTR3, 
METRN

MPZ, PRSS56, ROPN1, 
SOX10, S100B, SCRG1, 
NPR3, MOXD1, 
TFAP2B, PHACTR3 Neural Crest

4 2368

S100A16, LGALS3, 
GATA3, CST3, KRT19, 
FN1, EPSTI1, DYNLT3, 
HDHD3, PKP2

APOA2, CST1, APOA1, 
APOC3, FGB, RBP4, 
S100A14, TTR, FGA, 
APOB Endoderm

5 1990

TAGLN3, RTN1, 
NHLH1, STMN2, 
ELAVL2, FNDC5, 
PCBP4, ELAVL4, DCX, 
MLLT11

NEUROD1, NHLH1, 
STMN2, NEUROD4, 
TBR1, STMN4, 
NEUROG1, SST, 
ELAVL3, SLC17A6 Neurons

6 295

EGFL7, GNG11, 
RAMP2, IGFBP4, 
PPM1F, RASGRP3, 
RCSD1, MAP4K2, 
PLVAP, DOCK6

PLVAP, CD34, CD93, 
CDH5, DIPK2B, 
PECAM1, EMCN, 
CRHBP, ESAM, ECSCR Endothelial Cells

https://doi.org/10.7554/eLife.71361
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For each clustering resolution, we calculated pseudobulk gene expression levels using cells from 
the same cluster, individual, and replicate. To identify marker genes expressed in each cluster, we 
used Limma and voom to perform differential expression analysis (Materials and methods) using 
the pseudobulk estimates. For example, considering the gene expression data of the seven clusters 
identified at resolution 0.1, we found that the most significantly upregulated genes in each cluster 
included known marker genes for pluripotent cells (cluster 0), early ectoderm (cluster 1), mesoderm 
(cluster 2), neural crest (cluster 3), endoderm (cluster 4), neurons (cluster 5), and endothelial cells 
(cluster 6) (Figure 1E, Table 1). Using this approach provides a confident set of broad cell type cate-
gories present in these data. At higher resolutions, DE analysis between clusters enabled annotation 
of some more specific cell types; for example, at clustering resolution 1, cluster 19 is characterized by 
higher expression of hepatocyte marker genes FGB, TTR, and AFP. More generally, however, confi-
dent cell type classification of Seurat clusters at higher resolution based on DE alone proved difficult 
(Supplementary files 4- 7).

To pursue the second approach, we annotated cells by comparing our gene expression data to 
available reference sets of scRNA- seq data from primary fetal tissues, human embryonic stem cells 
(hESCs), and hESC- derived EBs (Cao et al., 2020; Han et al., 2020). To do this, we first integrated 
our data set with the reference data sets and visualized cells with UMAP (Figure 2A, Figure 2—figure 
supplement 1, Materials and Methods). We observed that reference hESCs cluster closely with plurip-
otent EB cells. We also observed that the hESC- derived EBs and our iPSC- derived EBs tend to occupy 
the same areas in UMAP space, implying high overall similarity in cell type composition despite differing 
protocols for EB differentiation (and despite the fact that the experiments were performed in different 
labs). EB cells also show overlap with many primary fetal cell types (Figure 2B–C, Figure 2—figure 
supplement 2). For example, EB cells annotated as neural crest based on our gene expression anal-
ysis, overlap with primary fetal cell types derived from neural crest, such as Schwann cells and enteric 
nervous system (ENS) glia (Figure 2B). EB cells annotated as neurons based on our gene expression 
analysis overlap with fetal neuronal subtypes, including inhibitory neurons, excitatory neurons, granule 
neurons, ENS neurons, and others. EB cells also show overlap with populations of cells that are rare 
in the fetal data set, including AFP_ALBpositive cells (hepatic cells), thymic epithelial cells, and lens 
fibre cells (Figure 2C).

Encouraged by these observations, we expanded the annotation of our EB cells (which up to this 
point were based on the expression of known marker genes) by using the known annotations of the 
reference primary fetal cell type data set. Specifically, we transferred cell annotations to EB cells based 
on the nearest reference cells in harmony- corrected PCA space (Figure 2D). Using this approach, 
we found EB cells representing 66 of the 77 primary cell types present in the reference fetal data 
set (Supplementary file 1). The most common annotation was hESC (80% of EB cells); this can be 
partially attributed to the high proportion of pluripotent cells in our EB data set, but also to the fact 
that the reference fetal data set does not include many early developmental cell types. Indeed, many 
cells annotated as hESC here are likely to represent immature, differentiating cells which are no longer 
pluripotent but whose transcriptional profiles more closely match hESCs than the more highly differ-
entiated fetal cell types present in the reference data set. In this sense, EB data sets may capture tran-
sient developmental cell types that are difficult or impossible to study even in fetal primary samples. 
Outside the hESCs, many fetal cell types are only represented by small populations of EB cells. For 
example, only one EB cell is annotated as a thymocyte, and only one cell is annotated as a myeloid 
cell. These observations indicate that, in the future, we can benefit from a deeper sampling of EB 
single cells in order to properly explore their true cell type composition. Overall, annotation based on 
the reference set revealed the presence of dozens of diverse cell types in EBs.

Differentiation efficiency across individuals
To assess the differentiation efficiency of each individual in each replicate, we calculated the propor-
tion of cells assigned to each cluster as resolution 0.1 (Figure 1G). While EBs from two of the indi-
viduals in our study differentiated efficiently across all replicates, we observed that 89% of cells from 
individual 18858 were assigned to cluster 0, the cluster annotated as pluripotent cells based on differ-
ential expression of marker genes (Table 1, Supplementary file 3). The EBs from this line do differ-
entiate, producing high quality cells assigned to clusters representing each germ layer (Figure 1G, 
Figure 1—figure supplement 3), but these EB have overall markedly lower differentiation efficiency 

https://doi.org/10.7554/eLife.71361
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Figure 2. Reference Integration and cell type annotation with lines 18511, 18858, and 19160. (A) UMAP visualization of EB cells from this study and 
cells from reference data sets of fetal cell types, Day 20 EBs, and hESCs after integration. Cells are colored by data set. (B) UMAP visualization of EB 
cells from this study and cells from the fetal reference after integration. Cells are colored by Seurat cluster identity at clustering resolution 0.1, with 
gray points representing cells from the fetal reference set. (C) UMAP visualization of EB cells from this study and data from the fetal reference after 
integration. Cells are colored by cell types present in the fetal reference data set, with gray points representing EB cells. (D) UMAP visualization of EB 
cells from this data set with annotations transferred from the fetal and hESC reference sets.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. UMAP visualization of EB cells from lines 18511, 18858, and 19160 and cells from each reference set after integration of 
separated data set.

Figure supplement 2. UMAP visualization of EB cells from lines 18511, 18858, and 19160 and fetal reference cells after integration.

Figure supplement 3. Differential expression of known marker genes in reference annotated EB cell types in cells from lines 18511, 18858, and 19160.

https://doi.org/10.7554/eLife.71361
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than EBs from individuals 18511 and 19160. To determine whether individual 18858 is an outlier, 
and more generally estimate how often EB differentiation is less efficient, we differentiated an addi-
tional five human iPSC lines from individuals 18856, 18912, 19140, 19159, and 19210 (Materials and 
methods). We were reassured to find that EBs from additional lines differentiated efficiently, with cell 
type composition similar to 18511 and 19160 (Figure 1H). These results suggest that poor differenti-
ation efficiency is expected to be rare among the YRI iPSC panel. We further explored the robustness 
of cell type composition by integrating the additional lines with the fetal and hESC reference data sets 
using the same methodology as was used for the original lines (Figure 3, Figure 3—figure supple-
ment 1, Figure  3—figure supplement 2). We find that annotations assigned to cells from these 
additional lines represented 66/77 fetal cell types; this set of annotations included several cell types 
that were missing in the original three lines, but also excludes several that were seen in the original 
three lines (Supplementary file 2). Again, we observed that most EB cells from the additional lines 
are annotated as hESC (82% of cells), although many no longer express pluripotency markers and do 
express markers of various germ layers as we previously observed. Together, these results support our 
conclusions that EBs contain many diverse cell types, many of which likely capture earlier stages of 
development than are captured in fetal data.

Topic modeling of the single-cell gene expression data
Both of the approaches we described above (clustering, and comparison to a reference data set) 
assume that ‘cell types’ are discrete categories. Accordingly, each cell has a single true identity, and 
cell type categories are assumed to be homogeneous and static. This definition of a cell type is intu-
itive and makes it practical to consider results from single- cell analysis in the context of the wealth 
of knowledge previously gained from bulk assays. However, partitioning cells into discrete groups is 
unlikely to capture the full degree of heterogeneity in gene expression of single cells. A particular 
cluster or cell ‘type’ may collapse multiple cell states, obscuring functionally distinct subgroups such 
as cells in different stages of the cell cycle. This problem becomes more apparent in data sets that 
include differentiating cells, which are expected to show varying degrees of similarity to a terminal cell 
type. In an alternate paradigm, cell type can be viewed as continuous, with the expression profile of 
each cell representing grades of membership to multiple categories (Dey et al., 2017). One method 
used to capture cell identity in this paradigm is topic modeling, which learns major patterns in gene 
expression within the data set, or topics, and models each cell as a combination of these topics. We 
applied topic modeling using fastTopics at a range of topic resolutions, identifying 6, 10, 15, 25, and 
30 topics in our data. Some topics correspond closely to Seurat clusters, loaded on cells of a given 
cluster but not on others. For example, in the k = 6 topic analysis, topic 1 is loaded exclusively on 
cells assigned to Seurat cluster 4 (cluster resolution 0.1) which we previously annotated as endoderm 
(Figures 4A–D and 1E, Table 1). Compared to other topics, topic 1 shows an increase in expression 
of FN1 and AFP, which are known markers of hepatocytes (Figure 4E, Table 2). Seurat clustering at 
higher resolution (resolution 1) results in further categorical division of this large endoderm group of 
cells into definitive endoderm and hepatocytes (Figure 1F). Topic modeling revealed that these cells 
actually exhibit variable grades of membership in topic 1 (in k = 6 topic model); this gradient captures 
a temporal continuum of differentiation.

Certain topics are shared across cells assigned to different Seurat clusters (Figure 4A, Figure 4—
figure supplement 3). For example, topic 6 from the k = 6 topic analysis is loaded across all Seurat 
clusters; compared to all other topics, topic 6 shows increased expression of many ribosomal genes, 
housekeeping genes (GAPDH), and genes coding for proteins involved in cellular metabolism (LDHA) 
(Figure 4—figure supplements 1–3). This indicates that topic six captures patterns of gene expres-
sion associated with cellular processes and functions that are not specific to a particular cell type. This 
again highlights an advantage of topic modeling, enabling us to explore variation in the representa-
tion of gene expression profiles associated with processes shared across many cell types, simultane-
ously with identifying cell- type- specific patterns.

Biological and technical sources of variation
Once we functionally annotated EB cells using the three approaches discussed above, we sought to 
understand the consistency in cell type composition across individuals and between replicates. Here, 
‘replicate’ corresponds to a batch of EB differentiations in which each cell line was differentiated, 

https://doi.org/10.7554/eLife.71361
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Figure 3. Reference Integration and cell type annotation with additional lines. (A) UMAP visualization of EB cells from this study and cells from reference 
data sets of fetal cell types, Day 20 EBs, and hESCs after integration. Cells are colored by data set. (B) UMAP visualization of EB cells from this study 
and cells from the fetal reference after integration. Cells are colored by broad cell type category assigned using clustering and marker gene expression, 
with gray points representing cells from the fetal reference set. (C) UMAP visualization of EB cells from this study and data from the fetal reference after 
integration. Cells are colored by cell types present in the fetal reference data set, with gray points representing EB cells. (D) UMAP visualization of EB 
cells from this data set with annotations transferred from the fetal and hESC reference sets.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. UMAP visualization of EB cells from lines five additional YRI lines and cells from each reference set after integration of separated 
data set.

Figure supplement 2. UMAP visualization of EB cells from five additional YRI lines and fetal reference cells after integration.

https://doi.org/10.7554/eLife.71361
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dissociated, and collected in tandem; ‘replicate’ therefore captures technical variation related to 
differentiation batch, dissociation batch, and single- cell collection batch. We began by calculating the 
proportion of cells that were assigned to each Seurat cluster at resolution 0.1 for each replicate. We 
then performed hierarchical clustering of the samples based on the proportion of cells in each Seurat 
cluster (Figure 5—figure supplement 1). Using this approach, replicate- individual samples cluster 
first by individual, indicating that cell type composition is distinct between individuals and is consis-
tent between replicates of each individual. We repeated this analysis at a range of cluster resolutions 
and determined that this finding is robust with respect to the number of clusters (Figure 5—figure 
supplement 1).

We also repeated this analysis using topic loadings as a measure of cell type composition. We 
calculated the loading of each topic on each individual- replicate group and performed hierarchical 
clustering (Figure 5—figure supplement 2). Again, we found that at varying values of k, samples 
generally cluster by individual, but using the higher resolution topic- based approach, we also observed 
substantial variation between replicates (Figure 5—figure supplement 2). Individual 18858 always 
clusters away from the other two lines, due to the consistent and distinct distribution of cell types 
caused by low differentiation efficiency.

B

A

C D E

Figure 4. Topic modeling of EB cells. (A) Structure plot showing the results of topic modeling at k = 6. Plot includes a random subset of 5,000 EB cells 
divided by Seurat cluster at resolution 0.1. (B) UMAP projection of cells colored by loading of topic 1. (C) Box plot showing the loading of topic 1 from 
the k = 6 topic analysis on each Seurat cluster at clustering resolution 0.1. (D) Box plot showing the loading of topic 1 from the k = 6 topic analysis on 
each Seurat cluster at clustering resolution 1. (E) Volcano plot showing genes differentially expressed between topic 1 and all other topics from the k = 6 
topic analysis. Points are colored by the average count on the logarithmic scale.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. UMAP visualization of k = 6 topic loadings.

Figure supplement 2. Volcano plot showing genes differentially expressed in each topic from the k = 6 topic analysis.

Figure supplement 3. Topic loadings on Seurat clusters across clustering resolutions.

https://doi.org/10.7554/eLife.71361
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We further characterized determinants of variation in our system by considering factors that 
contribute to variation in gene expression levels. Hierarchical clustering of pseudobulk expression 
estimates of cells from the same Seurat cluster (res. 0.1), replicate, and individual shows that, as might 
be expected, samples tend to cluster first by cell type (Seurat cluster), then by individual and repli-
cate (Figure 5A). We performed variance partitioning using pseudobulk expression levels to estimate 
the relative contribution of cell type, individual, and replicate to overall patterns of gene expression 
variation (Figure 5B; Hoffman and Schadt, 2016). We found that replicate and individual explained 
approximately equal proportions of the variance (each explains a median value of ~5% of variance). 
Cell type identity explained the largest proportion of variation at all clustering resolutions tested 
(variance explained median value ~60% at clustering resolution 0.1), although this figure is likely exag-
gerated since cell type identity is determined by clustering, which will inherently maximize variation 
between cell types. Depending on clustering resolution, a median value of approximately 20–30% of 
variance is explained by residuals, which can be attributed to noise or other technical variation not 
specifically modeled (Figure  5—figure supplement 3). We then partitioned the variance in gene 
expression at single cell resolution (instead of using pseudobulk estimates) and found that replicate 
explains more variation on average than individuals, with cell type identity continuing to explain more 
variance than either (Figure 5C). At single- cell resolution, residuals explain a median value of 93% of 
the variation, which is expected due to the high degree of variance (both biological and technical) in 
gene expression profiles among individual cells.

To determine whether biological and technical factors contributed differently to variation between 
cell types, we also partitioned the variance due to replicate and individual in each Seurat cluster sepa-
rately (Figure 5—figure supplements 4–5). The results are not uniform across clusters. At clustering 
resolution 0.1, individual contributes more to variation, on average, in clusters 0, 1, 4, and 5, while 
replicate contributes more to variation in clusters 2, 3, and 6. Notably, clusters 2, 3, and 6 include only 
a few cells from individual 18858 (Supplementary file 3). Studies that incorporate a larger number of 
cells will increase representation of rare cell types, which will increase power to study patterns of gene 
regulation. In every cluster, variation due to replicate dominates the variation of certain genes but not 
others. This complex structure indicates that, unlike most other eQTL studies – where adding indi-
viduals is always preferable to adding technical replicates – future studies of EBs need to implement 
study designs with multiple replicates to appropriately account for this variation.

Because individual variation contributes to overall patterns of variation in gene expression, EBs 
have the potential to be a powerful model to understand inter- individual variation in gene regulation 
across cell types and to map dynamic eQTLs. We performed a power analysis to better understand 
the relationship between power, sample size, and the total number of individual cells analyzed, or the 
experiment size (Figure 6). Assuming a simple linear regression to map eQTLs and a conservative 

Table 2. Top 15 driver genes of each topic from the k = 6 topic model based on Z- score.

Topic Top 15 driver genes

k1

S100A10, FTL, FN1, APOC1, CST3, APOE, SERPINE2, 
KRT19, CKB, S100A11, LGALS3, TMSB10, S100A16, AFP, 
PTGR1

k2

MT- CO2, MT- CO3, MT- CO1, MT- CYB, PRDX1, MT- ND4, MT- 
ATP6, GSTP1, MT- ND1, RPL8, APOE, RPSA, RPL12, PFN1, 
HMGA1

k3

PTMA, NCL, RPL23, SET, HSP90AB1, TPL27A, MT- ND4, 
L1TD1, SERBP1, TERF1, HSPD1, CENPF, DPPA4, MT- ATP6, 
UGP2

k4

S100A10, KRT19, S100A11, VIM, MDK, TMSB10, KRT8, 
SPARC, COL1A1, FN1, COL1A2, COL6A2, KRT18, TPM1, 
ANXA2

k5

TUBA1A, VIM, MARCKSL1, MARCKS, TUBA1B, MAP1B, ID3, 
CRABP1, PTMS, TMSB10, H1FX, STMN1, CENPV, CRABP2, 
NUCKS1

k6
RPS27, VIM, LDHA, GAPDH, IGFBP2, TUBA1A, APOA1, 
RPL13, TMSB10, S100A10, RPL6, RPL30, RPL9, RPS19, RPL37

https://doi.org/10.7554/eLife.71361
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Figure 5. Exploration of the biological and technical variation in gene expression across EB cells. (A) Heatmap showing hierarchical clustering of cells 
based on normalized gene expression. This analysis uses only genes expressed in at least 20% of cells in at least one cluster (at clustering resolution 0.1) 
and does not include ribosomal genes. (B) Violin plot showing the percent of variance in gene expression explained by cluster (resolution 0.1), replicate, 
and individual in this data set after partitioning variance in pseudobulk samples. (C) Violin plot showing the percent of variance in gene expression 
explained by cluster (resolution 0.1), replicate, and individual in this data set after partitioning variance at single- cell resolution.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Hierarchical clustering of samples’ individual- replicate groups by the proportions of cells from each group assigned to each 
Seurat cluster across clustering resolutions.

Figure supplement 2. Hierarchical clustering of samples’ individual- replicate groups by the loading of each topic with k = 6, k = 10, k = 15, k = 25, and 
k = 30 topics.

Figure supplement 3. Variance explained by biological and technical factors at higher clustering resolutions.

Figure supplement 4. Variance partitioning by Seurat cluster using pseudobulk samples.

Figure supplement 5. Median percent of variance explained by replicate and individual in each cluster using pseudobulk samples.

https://doi.org/10.7554/eLife.71361
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Bonferroni correction for multiple testing (FWER = 0.05, Materials and methods), we estimated that 
an experiment consisting of 58 individuals with 3000 cells collected per individual, collected across 
three replicates (experiment size of 174,000 cells total), would provide 93% power to detect eQTLs 
with a standardized effect size of 0.6. These assumptions represent an experimentally tractable study 
design, and a conservative estimate of standard and dynamic eQTL effect sizes, suggesting this could 
be a powerful system for QTL studies across diverse human cell types.

Figure 6. Power to detect eQTLs. Power is a function of effect size, sample size, experiment size, and significance level. Power curves are computed for 
a range of sample sizes and experiment sizes (cells per individual). The horizontal red line represents a power to detect eQTLs of 0.80.

Figure 7. Trajectory inference and identification of dynamic gene modules. (A–C) PAGA graphs highlighting the neuronal lineage (A), the hepatic 
lineage (B), and the endothelial lineage (C). Nodes are defined by Seurat clusters at resolution 1. (D–F) Heatmaps showing the frequency with which 
individual- replicate groups were assigned to the same cluster after running split- GPM 10 times in the neuronal, hepatic, and endothelial lineages.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Trajectory inference with PAGA.

Figure supplement 2. Marker gene expression in Seurat clusters aids tracing of developmental lineages.

Figure supplement 3. Cluster assignment by Split- GPM and gene set enrichment in the neuronal lineage.

Figure supplement 4. Cluster assignment by Split- GPM and gene set enrichment in the hepatic lineage.

Figure supplement 5. Cluster assignment by Split- GPM and gene set enrichment in the endothelial lineage.

https://doi.org/10.7554/eLife.71361
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Dynamic patterns of gene expression
Arguably, the most attractive property of single- cell data from the EB system is the ability to study 
dynamic gene regulatory patterns throughout differentiation. In order to explore dynamic patterns of 
gene expression, we inferred developmental trajectories using PAGA (Wolf et al., 2019). The PAGA 
graph shows edges that represent likely connections between cell clusters (clustering resolution 1) 
and we were able to trace developmental trajectories through these paths (Figure 7A–C, Figure 7—
figure supplement 1A- C). Since the EBs still include undifferentiated pluripotent cells, we were able 
to define rooted trajectories to each germ layer beginning at the known starting point. Trajecto-
ries toward endoderm and mesoderm proceed through cluster 22, which expresses primitive streak 
marker MIXL1, showing recapitulation of developmental trajectories defined during gastrulation 
(Figure 1F, Figure 7—figure supplement 1, Figure 7—figure supplement 2). Hepatocytes (cluster 
19), an endoderm- derived cell type, branch off of the endoderm cluster (cluster 10) (Figure  7B, 
Figure 7—figure supplement 2). Endothelial cells (cluster 24), which are derived from mesoderm, 
branch off from the mesoderm cluster (cluster 4) (Figure 7C, Figure 7—figure supplement 2), and 
neurons (clusters 12, 15), an ectoderm- derived cell type, branch off from the early ectoderm clusters 
(clusters 2, 3, 8, 9, 13, 14, 17, 20, 21, 26, and 27) (Figures 7A and 1F, Table 1, Figure 7—figure 
supplement 2).

We then assigned pseudo- time values to each cell using the diffusion pseudo- time method with 
pluripotent cells (cluster 1) defined as the root (Haghverdi et al., 2016; Figure 7—figure supplement 
1D, Figure 1F). We manually traced high confidence trajectories through the data representing the 
progression from pluripotent cells to hepatocytes (clusters 0, 1, 5, 6, 7, 10, 11, 16, 18, 19, 25, and 22) 
(Figure 7B), pluripotent cells to endothelial cells (clusters 0, 1, 4, 5, 6, 7, 11, 16, 18, 22, 24, and 25) 
(Figure 7C), and pluripotent cells to neurons (clusters 0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 
17, 18, 20, 21, 26, and 27) (Figure 7A). For groups of clusters with a higher degree of connectivity 
(e.g. clusters expressing pluripotent markers and clusters expressing early ectoderm markers), all 
clusters within the region with high connectivity were included in the trajectory to avoid choosing 
an arbitrary path through these clusters. Next, we applied split- GPM, an unsupervised probabilistic 
model, to infer dynamic patterns of gene expression within a particular developmental trajectory, 
while simultaneously performing clustering of genes and samples. Split- GPM is built for use with time 
course, bulk RNA- seq data; therefore, we calculated pseudobulk expression values for individual- 
replicate groups within decile bins of pseudo- time. We were able to identify gene modules with 
distinct dynamic patterns of expression along the trajectories to neurons, hepatocytes, and endothe-
lial cells (Figure 7—figure supplements 3–5).

Gene set enrichment analysis of these modules shows expected dynamic patterns (Figure  7—
figure supplements 3–5). For example, we found that gene modules that increase expression 
through pseudo- time along the differentiation trajectory to hepatocytes, which are the predominant 
cell type of the liver and are responsible for the production of bile, are enriched for the hallmark bile 
acid metabolism and fatty acid metabolism gene sets. In the trajectory leading to endothelial cells, 
which are derived from mesoderm, we found that a gene module with high expression at interme-
diate pseudo- time values is enriched for hallmark genes expressed during the epithelial- mesenchymal 
transition, which is essential for mesoderm formation (Evseenko et al., 2010). In all three trajectories, 
gene modules characterized with higher expression at low pseudo- time values show enrichment for 
gene sets related to the cell cycle; this is expected because pluripotent cells at the lowest pseudo- 
time values tend to grow and divide faster than more differentiated and more mature cell types, which 
often exit the cell cycle (Buttitta and Edgar, 2007).

To determine the consistency in dynamic patterns of gene expression between replicates and indi-
viduals, we ran split- GPM ten times on cells from the neuron, hepatocyte, and endothelial cell lineages 
and observed how often each pair of individual- replicate samples clustered together (Figure 7D–F). 
In the neuronal and endothelial lineages, all three replicates of 18511 always clustered together 
and often cluster with replicates of 19160, indicating that these two lines share similar expression 
dynamics in these trajectories (Figure 7D and F). Replicates of 18858 often clustered together and 
rarely clustered with the other individuals, suggesting that not only did 18858 have poor differen-
tiation efficiency, but cells that did differentiate show a distinct pattern of expression dynamics. In 
the hepatocyte lineage, we observed stronger replicate- specific differences (Figure 7E). Replicates 
of individual 19160 still tended to cluster together and to cluster with replicates 1 and 2 of 18511. 

https://doi.org/10.7554/eLife.71361
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Replicate 3 of 18511 rarely clustered with the other replicates of that individual, indicating that there 
were replicate- specific effects on dynamic gene expression.

Discussion
This work represents a thorough exploration of heterogeneity in single cell data obtained from human 
EBs towards the goal of establishing this system as a tool to enable studies of variation in human gene 
regulation across a range of spatially and temporally diverse cell types. We used iPSC- derived EBs 
because this in vitro model system circumvents the logistical challenges and ethical barriers associated 
with studies of primary human developmental tissues. This system has key advantages over studies 
of primary tissues; for example, we are able to control cellular environment in vitro and intentionally 
design experiments with respect to biological factors including age, sex, and ancestry. Further, we 
can generate EBs comprised of the same set of diverse cell types from large samples of individuals, 
enabling high- powered comparisons of cell- type- specific gene expression.

In subsequent studies, we plan to leverage EBs to identify QTLs and dynamic QTLs across diverse 
terminal and differentiating cell types. This, of course, raises an ostensibly critical question: to what 
extent do the cell types derived from EBs faithfully model immature, developing cells in vivo? There 
is no doubt that the in vitro EB differentiated cells are not a perfect model of primary cell types. The 
question is whether EB cells are sufficiently representative of primary cell types to be informative. To 
address this question, we performed several analyses, which suggest that the EB model can be useful. 
Specifically, we found that EB cells express known cell- type- specific marker genes, including markers 
of known developmental stages. EB cells also cluster with more than 60 diverse primary cell types 
from a reference panel of fetal tissues and hESCs, including rare fetal cell types. Lastly, we identified 
gene modules with dynamic expression patterns that match broad expectations of developmental 
biology. Together, these results provide evidence that EBs are a suitable model of both terminal and 
developmental cell types.

Moreover, EBs may be a useful model for understanding the genetic underpinnings of human traits 
and diseases regardless of the degree to which they faithfully model human development. EB- de-
rived cells represent a wealth of previously unstudied cell states and dynamic processes. Hypotheti-
cally, QTLs identified in these cell types still represent biologically meaningful differences in genetic 
control of gene regulation, whether they manifest in human development or in adult tissues upon a 
particular environmental exposure. To provide an anecdotal example of this reasoning, we considered 
previously collected data from an in vitro differentiation experiment. We took a closer look at the 28 
middle- dynamic eQTLs Strober et al. identified during the differentiation of iPSCs to cardiomyocytes 
(Strober et al., 2019). Middle- dynamic eQTLs have their strongest genetic effects at intermediate 
stages of the differentiation time course, and most of them (25/28) were identified exclusively at these 
intermediate stages of differentiation. Accordingly, these eQTLs are active in early in vitro differenti-
ating cells whose fidelity to primary developing cell types has not been ascertained. These 28 dynamic 
eQTLs were entirely novel and had not been identified as cis eQTLs in any tissue in the GTEx data set. 
Strober et al. reported that one of these middle- dynamic eQTLs was also found to overlap a GWAS 
variant associated with body mass index and red blood cell count. This finding highlights that dynamic 
eQTLs acting in early cell types in in vitro differentiations may affect long- term disease risk in adults.

To further explore the utility of dynamic eQTLs identified in in vitro differentiations, we used GTEx 
data to ask whether the middle- dynamic eQTLs are associated with inter- individual variation in trans 
gene expression or cell composition, either of which could indicate lasting downstream effects in adult 
tissue from transient dynamic cis eQTLs. Trans eQTL associations are more tissue- specific than cis 
eQTLs, but trans eQTLs are much harder to identify because of their small effect sizes and the require-
ment to test the association of every locus with every gene. Here, we identified a middle dynamic 
eQTL SNP (rs6700162) from Strober et al. that, in GTEx data, is associated with fibroblast cell type 
proportions in HLV (heart left ventricle; p < 0.0009) and with cardiac muscle cell proportions in HLV (p 
< 0.003). This SNP was also found to have a trans eQTL p- value of 1 × 10–5 in coronary artery. Without 
the prior knowledge provided by dynamic eQTL data from the in vitro differentiated cardiomyocytes, 
it would have been impossible to identify these associations using adult primary tissues because the 
burden of multiple testing within the entire GTEx data set is considered is prohibitively large. This 
example implies that developing EB cells could be used to understand how transient effects on gene 
expression are propagated into functional, long- lasting consequences downstream.

https://doi.org/10.7554/eLife.71361
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In summary, human EBs have the potential to be a powerful system for the identification of dynamic 
eQTLs. In this pilot study, we performed foundational analyses to better understand how to appro-
priately conceptualize heterogeneity in this kind of data and how to best design large- scale studies 
of EBs. We explored cell type composition of EBs in three paradigms; first, with discrete cell types 
identified with a traditional clustering algorithm, then with more continuous cell “types” identified 
with topic modeling, and finally exploring dynamic changes in gene expression along trajectories 
using pseudotime. Cell types defined by discrete clustering are often easier to interpret because they 
can be contextualized with marker genes and reference data sets defined with bulk sequencing. We 
conclude, however, that topic modeling is more appropriate for highly heterogeneous single cell data 
sets like this one. We also explored sources of variation in cell type composition and gene expression. 
We found that individual variation primarily contributes to patterns in cell type composition based on 
both discrete clustering and topic modeling. However, variation between replicates is non- negligible, 
indicating that future studies should focus on inter- individual variation in cell type composition. We 
also found that technical variation between replicates contributes to variation in gene expression. 
Future efforts to map regulatory QTLs in EBs should implement study designs with multiple replicates 
to appropriately correct for batch effects. Overall, this pilot study has laid the groundwork to trans-
form EBs into a powerful model system for the understanding of human gene regulation.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Cell line (Homo- sapiens) 18511 PMID:29208628     

Cell line (Homo- sapiens) 19160 PMID:29208629     

Cell line (Homo- sapiens) 18858 PMID:29208630     

Cell line (Homo- sapiens) 18856 PMID:29208631     

Cell line (Homo- sapiens) 18912 PMID:29208632     

Cell line (Homo- sapiens) 19140 PMID:29208633     

Cell line (Homo- sapiens) 19159 PMID:29208634     

Cell line (Homo- sapiens) 19210 PMID:29208635     

Samples
We used iPSC lines from eight unrelated individuals from the Yoruba HapMap population to form EBs. 
The iPSC lines were reprogrammed from lymphoblastoid cell lines (LCLs) and were characterized and 
validated previously (Banovich et al., 2018). The original LCL lines were genotyped by the HapMap 
project and identity of the stocks used in this study is confirmed by scRNA- seq data collected for this 
study (Belmont et al., 2003). All cell lines used in this study tested negative for mycoplasm. Lines 
18511, 18858, 18912, 19140, and 19159 are from female individuals. Lines 19160, 18856, and 19210 
are from male individuals. Preprocessing and analysis of lines 18511, 18858, and 19160 are described 
throughout the Materials and methods section. Preprocessing and analysis of lines 18856, 18912, 
19140, 19159, and 19210 is restricted to the Methods section titled ‘Assessment of cell type compo-
sition and differentiation efficiency in five additional lines’.

iPSC maintenance
We maintained feeder- free iPSC cultures on Matrigel Growth Factor Reduced Matrix (CB- 40230, 
Thermo Fisher Scientific) with StemFlex Medium (A3349401, Thermo Fisher Scientific) and Penicillin/
Streptomycin (30,002 Cl, Corning). We grew cells in an incubator at 37 °C, 5% CO2, and atmospheric 
O2. Every 3–5 days thereafter, we passaged cells to a new dish using a dissociation reagent (0.5 mM 
EDTA, 300 mM NaCl in PBS) and seeded cells with ROCK inhibitor Y- 27632 (ab120129, Abcam).

EB formation and maintenance
We formed EBs using a modified version of the STEMCELL Aggrewell400 protocol. Briefly, we coated 
wells of an Aggrewell 400 24- well plate (34415, STEMCELL) with anti- adherence rinsing solution (07010, 
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STEMCELL). We dissociated iPSCs and seeded them into the Aggrewell400 24- well plate at a density 
of 1,000 cells per microwell (1.2 × 106 cells per well) in Aggrewell EB Formation Medium (05893, STEM-
CELL). After 24 hr, we replaced half of the spent media with fresh Aggrewell EB Formation Medium. Forty- 
eight hr after seeding the Aggrewell plate, we harvested EBs and moved them to an ultra- low attachment 
six- well plate (CLS3471- 24EA, Sigma) in E6 media (A1516401, ThermoFisher Scientific). We maintained 
EBs in culture for an additional 19 days, replacing media with fresh E6 every 48 hr. We performed three 
replicates of EB formation on different days; each replicate included all three lines.

EB Dissociation
We collected and dissociated EBs 21 days after formation. We dissociated EBs by washing them with 
phosphate- buffered saline (PBS) (Corning 21–040- CV), treating them with AccuMax (STEMCELL 7921) 
and incubating them at 37 °C in for 15–35 min. After 10 min in Accumax, we pipetted EBs up and 
down with a clipped p1000 pipette tip for 30 s. We repeated pipetting every 5 min until EBs were 
completely dissociated. We then stopped dissociation by adding E6 media and straining cells through 
a 40 µm strainer (Fisherbrand 22- 363- 547). We resuspended cells in PBS and counted them with a 
TC20 Automated Cell Counter (450102, BioRad). Before scRNA- seq, we mixed together an equal 
number of cells from each line.

Single-cell sequencing
We collected scRNA- seq data using the 10x Genomics V3.0 kit. Single- cell collections for this exper-
iment were mixed with cells from a larger experiment in all three replicates. From the first replicate 
of EB differentiations, we mixed EB cells YRI individuals 18511, 18858, and 19160 with EB cells from 
an additional three humans and chimpanzees (nine individuals total). Even numbers of cells from all 
nine individuals were collected across nine lanes of a 10x chip, targeting 10,000 cells per lane. In this 
replicate, reagents from three different 10x kits were used. From replicates 2 and 3 of EB differentia-
tion, EBs were only generated from the same three YRI individuals (18511, 18858, and 19160) and the 
three chimpanzees (six individuals total). In each replicate, we mixed even numbers of cells of each 
individual and collected cells in four lanes of a 10x chip, targeting 10,000 cells per lane, and samples 
were processed using reagents from a single 10x kit.

Libraries were sequenced using paired- end 100 base pair sequencing on the HiSeq 4000 in the 
University of Chicago Functional Genomics Core. For libraries from replicate 1, we mixed equal 
proportions of each of the six EB libraries and sequenced the pooled samples on one lane of the 
HiSeq 4000. Preliminary analyses showed that two of these lines were low quality. We remade one 
of the low- quality libraries and discarded the other. We then mixed equal proportions of the remade 
library with the remaining three libraries from replicate one and sequenced the pooled samples on 
one lane of the HiSeq 4000. Preliminary analyses indicated that three out of four of these libraries 
were below optimal quality, but would produce usable data. We then pooled together samples from 
the final eight libraries from replicate 1, mixing equal parts of each of the five high- quality libraries 
with half the amount of the other three, and deep- sequenced this pool on eight lanes of the HiSeq 
4000. For replicate two libraries, we mixed equal parts of all four libraries and sequenced them on 
one lane. After confirming that each library was high- quality, we deep- sequenced the same pool on 
six additional lanes of the HiSeq 4000. For replicate three libraries, we mixed equal parts of all four 
libraries and sequenced them on one lane. After confirming that each library was high- quality, we 
deep- sequenced the same pool on four additional lanes of the HiSeq 4000. In all cases, the number 
of lanes for deep sequencing was calculated to reach 50% saturation.

Alignment and sample deconvolution
We used STARsolo to align samples to both the human genome (GRCh38) (Dobin et al., 2013) and 
the chimpanzee genome (January 2018; Clint_PTRv2/panTro6). We used gene annotations from 
ensembl98 and transmapV5, respectively. In order to separate human cells from chimpanzee cells, 
we identified discordant reads – those that mapped with different scores in each species. We identi-
fied a cell as human if (1) at least five discordant reads that had a higher human mapping score and 
(2) at least 80% of discordant reads had a higher human mapping score. The remainder of analyses 
in this work were restricted to these human cells. We demultiplexed individual samples and identi-
fied doublets using demuxlet (Kang et al., 2018). For this demultiplexing with demuxlet, we used 
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previously collected and imputed genotype data for these three Yoruba individuals from the HapMap 
and 1000 Genomes Project (Auton et al., 2015; Belmont et al., 2003).

Filtering and integration
We ran EmptyDrops to identify barcodes tagging empty droplets and kept only barcodes with a high 
probability of tagging a cell- containing droplet (i.e. we kept cells with an EmptyDrops FDR < 0.0001) 
(Lun et al., 2019). We removed cells labeled as doublets or ambiguous by demuxlet, keeping only 
barcodes labeled as singlets. We also filtered the data to include only high- quality cells expressing 
between 3% and 20% mitochondrial reads and expressing more than 1500 genes. We normalized data 
from each 10x lane using SCTransform in Seurat (Butler et al., 2018; Hafemeister and Satija, 2019). 
In total, we obtained 42,488 high- quality cells. We then merged data from each of the 10x lanes 
from all replicates, scaled the data, and ran principal components analysis (PCA) using 5000 variable 
features. We then integrated data with Harmony to correct the PCA embeddings for batch effects and 
individual effects (Korsunsky et al., 2019).

Clustering and cell type annotation
To cluster the data, we applied Seurat’s FindNeighbors using 100 dimensions from the Harmony- 
corrected reduced dimensions, followed by FindClusters at resolutions 0.1, 0.5, 0.8, and 1.

We performed differential expression analysis using the limma R package (Ritchie et al., 2015). 
First, we filtered genes to include only those expressed in at least 20% of cells in at least one cluster 
at a given clustering resolution. We then calculated pseudobulk expression values for each individual- 
replicate- cluster grouping (i.e. cells from the same individual, same replicate, and same cluster assign-
ment). Accordingly, we define pseudobulk expression values as the sum of normalized counts in 
each group. Next we TMM- normalized pseudobulk expression values and used voom to calculate a 
weighted gene expression value to account for the mean- variance relationship (Law et al., 2014). We 
then fit the following linear model:

 Y = 0 + βcluster ∗ x + βreplicate ∗ x + βindividual ∗ x  

We used contrasts to first test for differential expression of each cluster compared to all other clus-
ters and then to test for differential expression between pairs of similar clusters to find distinguishing 
markers. We annotated cell type identity of each cluster based on significant differential expression 
of the known marker genes.

Assessment of cell type composition and differentiation efficiency in 
five additional lines
To evaluate the cell type composition resulting from EB differentiation of YRI iPSC lines more gener-
ally, we differentiated five additional randomly chosen lines (18856, 18912, 19140, 19159, and 19210) 
from the YRI iPSC panel. We differentiated and dissociated iPSCs in parallel using the same protocols 
described above. After dissociation, we mixed cells from each individual in equal proportions and 
collected scRNA- seq data using the 10x genomics V3.1 kit, targeting collection of 10,000 cells per 
lane and 10,000 cells per individual. Notably, we mixed cells from these five lines with cells from two 
additional lines (each with distinct genotypes) from a separate experiment during 10x collections. 
Libraries were sequenced using paired- end 100 bp sequencing on the NovaSeq 6000 at the University 
of Chicago Genomics Core. We aligned samples to the human genome (GRCh38) using CellRanger 
(Zheng et al., 2017). We then assigned cells to individuals. We used demuxlet to identify doublets 
with previously collected and imputed genotype data for the five additional YRI individuals; this data 
originated from the HapMap and 1000 Genomes Projects (Kang et al., 2018; Auton et al., 2015; 
Belmont et al., 2003). Finally, we removed cells assigned to individuals that were not a part of this 
experiment. We filtered out doublets, cells with greater than 15% mitochondrial reads or fewer than 
3% mitochondrial reads, and cells with fewer than 1000 unique genes expressed.

We then normalized data using SCTransform (Butler et al., 2018; Hafemeister and Satija, 2019), 
identified clusters using the Louvain algorithm in Seurat (at Resolution 0.15), and visualized expression 
of canonical marker genes and the most significant marker genes of clusters identified in differential 
expression analysis (Figure 1—figure supplement 4). Based on marker gene expression, clusters 0 
and 2 represent early ectoderm, cluster one represents neural crest cells, cluster three represents 
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pluripotent cells, clusters 4 and 6 represent neurons, cluster 5 represents mesoderm, cluster seven 
represents endoderm, and cluster 8 represents endothelial cells. We calculated the proportion of cells 
from each individual that were assigned to each of these cell type categories. We observed that each 
of these five additional cell lines exhibits high differentiation efficiency, comparable to that of iPSC 
lines 18511 and 19160. Additional lines were also integrated with reference data to annotate cell 
types as described below.

Reference integration and label transfer
We next compared cells to reference data sets of primary fetal cell types, Day 20 hESC- derived EBs, and 
hESCs (Cao et al., 2020; Han et al., 2020). To integrate our cells with the reference sets, we first subset 
each reference set to include only protein coding genes. Because the Cao et al. reference set is so large, 
containing over 4 million cells, we subset cells from this reference set to include a maximum of 500 cells 
per cell type. We then normalized each reference set using SCTransform (Butler et al., 2018; Hafe-
meister and Satija, 2019). We then merged the data sets using Seurat, re- ran SCTransform regressing 
out data set specific effects of sequencing depth, scaled the data, and ran PCA. We then ran Harmony 
to correct PCA embeddings for the effects of each data set to complete the integration (Korsunsky 
et al., 2019). We then transferred cell type annotations from cell types present in the fetal reference and 
hESC to EB cells. For each EB cell, we found the five nearest reference cells in Harmony- corrected PCA 
space based on Euclidean distance; if at least 3/5 of the nearest reference cells shared an annotation, 
that annotation was transferred to the EB cell. If fewer than three of the nearest reference cells shared an 
annotation, the EB cell was annotated as ‘uncertain’.

To assess the quality of our reference integration strategy, we asked whether (1) datasets are being 
over- corrected and (2) EB cells annotated using reference cell types express expected marker genes. We 
first subsetted EB cells to broad cell type categories identified using clustering (at resolution 0.1) and 
differential expression analysis: Pluripotent (cluster 0), Early Ectoderm (cluster 1), Endoderm (cluster 4), 
Meso- derm (clusters 2, 6), Neural Crest (cluster 3), and Neurons (cluster 5). Using each subset of cells, 
we repeated the reference integration pipeline by merging the EB cells with three reference data sets 
(fetal cells, hESCs, and an external set of Day 20 EBs), normalizing using SCTransform, running PCA using 
5,000 variable features, in- tegrating the data using Harmony, and transferring labels based on the five 
nearest reference cells (see Materials and methods) (Butler et al., 2018; Hafemeister and Satija, 2019; 
Korsunsky et al., 2019). We found that 79% of EB cells are assigned to the same cell type in the full inte-
gration and subset integration. Of EB cells that are anno- tated differently in the full and subset integra-
tions, 82% were labeled as ‘hESC’ or ‘uncertain’ in either the full or subset integration. This suggests that 
differences in these annotations are often be due to slight changes in the positioning of cells between the 
hESC reference cells and fetal reference cells; this is expected when pluripotent cells are not included in 
subsets of EB cells. And, importantly, cells are not often annotated as a different fetal cell type. Together, 
these results suggest that our integration approach is robust to subsetting input cell types and is likely not 
over- integrating the test and reference data sets.

Next, we asked whether annotated EB cells differentially express expected marker genes. We 
limited this analy- sis to annotations with at least 10 total EB cells from at least two individuals in two 
replicates. We then calculat- ed pseudobulk expression for cells of the same annotation, individual, 
and replicate, and filtered genes to in- clude only those with at least 10 counts in at least one sample 
and at least 15 total counts across all samples. We then TMM- normalized pseudobulk expression 
values, used voom to calculate a weighted gene expression value, and tested for differential expres-
sion between annotations using limma. Of the annotations tested, the most significantly differentially 
expressed genes often included known cell type markers. For example, cells annotated as cardiomyo-
cytes showed significant upregulation of of MYL7, MYL4, and TNNT2 (Figure 2—figure supplement 
3). Cells annotated as hepatoblasts showed significant upregulation of AFP, FGB, and ACSS2. Cells 
annotated as mesothelial cells showed significant upregulation of NID2 and collagen genes (COL6A3, 
COL1A1, COL3A1, COL6A1). These results provide further support that our reference integration 
approach yields meaningful annotation of EB cells.

Topic modeling
We also performed topic modeling using FastTopics to learn major patterns in gene expression within 
the data set, or topics, and model each cell as a combination of these topics. For this analysis, we 
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used raw counts and filtered the data to include genes expressed in at least 10 cells. We then pre- fit 
a Poisson non- negative matrix factorization by running 1000 EM updates without extrapolation to 
identify a good initialization at values of k equal to 6, 10, 15, 25, and 30. We used this initialization 
to fit a non- negative matrix factorization using 500 updates of the scd algorithm with extrapolation 
to identify 6, 10, 15, 25, and 30 topics. We then used FastTopics’ diff_count_analysis function to 
identify genes differentially expressed between topics. We used these differentially expressed genes 
to interpret the cellular functions and identities captured by each topic. In some cases, differentially 
expressed genes included known marker genes (Table 2).

Hierarchical clustering based on cell type composition and gene 
expression
To understand how similar cell type composition is between replicates and individuals, we first calcu-
lated the proportion of cells from each individual in each replicate assigned to each Seurat cluster at 
resolution 0.1. Then, using the ComplexHeatmap R package and performing hierarchical clustering 
based on the complete linkage method, we visualized the clustering of these replicate- individual 
groups (Gu et al., 2016). We repeated this analysis using Seurat clusters at resolution 0.5, 0.8, and 
1 to show that the overall patterns of hierarchical clustering are robust to cluster resolution. We 
performed an analogous analysis using topic loadings instead of cluster proportions. Here, we deter-
mined the loading of each topic on cells from the same individual and replicate, then used the same 
hierarchical clustering with ComplexHeatmap to visualize patterns of similarity between cells of each 
individual and replicate (Gu et al., 2016).

We also performed hierarchical clustering on gene expression of individual cells. To do so, we took 
the pseudobulk expression for each individual- replicate- cluster group and filtered to genes expressed 
in at least 20% of cells in at least one cluster. We then calculated the log10 counts per million expres-
sion of each gene. We then generated a heatmap using the ComplexHeatmap R package, again 
performing hierarchical clustering based on the complete linkage method (Gu et al., 2016).

Variance partitioning
Using the same pseudobulk data and precision weights computed by voom from differential expres-
sion analysis, we used the VariancePartition R package to quantify the variation attributable to cluster, 
replicate, and individual (Hoffman and Schadt, 2016). We fit a random effect model and modeled 
cluster, replicate, and individual as random effects. We performed this analysis across all tested Seurat 
clustering resolutions (0.1, 0.5, 0.8, 1). We performed this analysis using both pseudobulk samples 
of cells from the same cluster, replicate, and individual and at single- cell resolution with each cell as 
a sample. We also partitioned the variance in each Seurat cluster separately using a random effect 
model with terms for replicate and individual. For this analysis, we used pseudobulk samples of cells 
from each individual and replicate.

Power analysis
To ascertain the power to detect eQTLs and dynamic eQTLs across a range of sample sizes, standard-
ized effect sizes, and experiment sizes we used a power function as derived in Sarkar et al., 2019:

 
Pow

(
β,α, n,σ

)
= Φ

(
Φ−1 α

2 + β
σ

√
n
)
  

where β denotes the true additive significance level, ɑ denotes the significance level, n denotes 
sample size, and σ represents the phenotype standard deviation. This approach assumes a simple 
linear regression for eQTL mapping and a conservative Bonferroni correction (FWER = 0.05, assuming 
10,000 genes tested, α = 5e- 6).

To estimate the standard deviation for a given experiment size, we downsampled cells from this 
experiment, sampling evenly between individuals and replicates to range of experiment sizes from 
2700 cells to 21,600 cells. For each experiment size, we took 10 random samples of cells and calcu-
lated pseudobulk expression of cells from the same cluster (defined at resolution 1), individual, and 
replicate. We filtered to include genes expressed in at least 20% of cells in at least one cluster (at 
resolution 1) in the full set of EB cells. For each sample we then partitioned the median variance 
attributable to residuals using the variancePartition package. We then took the median of the median 
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variance from the 10 samples at each experiment size and fit an exponential decay model to quantify 
the relationship between experiment size and residual variance. We used square root of this variance 
to determine the standard deviation for a given experiment size in our power calculations.

Trajectory inference and identification of dynamic gene modules
We inferred trajectories using PAGA in Scanpy using Seurat clusters at all tested resolutions (Wolf 
et al., 2019). We assigned pseudo- time using diffusion pseudo- time with the pluripotent cells assigned 
as the root (Haghverdi et  al., 2016). We then manually traced known developmental trajectories 
supported by the PAGA graph. At clustering resolution 1, we traced the trajectory from pluripotent 
cells to hepatocytes (clusters 0, 1, 5, 6, 7, 10, 11, 16, 18, 19, 25, and 22), pluripotent cells to endothe-
lial cells (clusters 0, 1, 4, 5, 6, 7, 11, 16, 18, 22, 24, and 25), and pluripotent cells to neurons (clusters 
0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 26, and 27) (Figure 7A–C).

We then isolated cells from each of these three trajectories and used Split- GPM to simultaneously 
cluster samples and identify dynamic gene modules. For this analysis, we divided data into decile 
pseudo- time bins and calculated pseudobulk gene expression for cells of the same individual, repli-
cate, and pseudo- time bin. We identified 20 dynamic gene modules in each trajectory and interpreted 
them using gene set enrichment. To understand the variation in dynamic gene expression between 
individuals and replicates, we re- ran split- GPM ten times and observed how often cells from each 
individual and replicate were assigned to the same sample cluster.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Han X, Guo G, Zhou 
Z, Fei L, Sun H, Wang 
R, Wang J, Chen H
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level

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE134355

NCBI Gene Expression 
Omnibus, GSE134355

Cao J, O'Day DR, 
Pliner HA, Kingsley 
P, Deng M, Daza RM, 
Zager MA, Kimberly 
A, Blecher R, Zhang F, 
Spielmann M, Palis J, 
Doherty D, Steemers 
FJ, Glass IA, Trapnell 
C, Shendure J

2020 A human cell atlas of fetal 
gene expression

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE156793

NCBI Gene Expression 
Omnibus, GSE156793
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