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ABSTRACT

Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation

strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques.

Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-

dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe

approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while

maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage

settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while

maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be

achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose.

Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should

be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first

pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume,

thereby improving the tolerability of contrast administration.

INTRODUCTION
CT is an indispensable diagnostic imaging technique whose
use and range of applications have increased dramatically in
recent years, primarily due to its widespread availability, ease-
of-use and cost-effectiveness relative to other diagnostic
procedures.1 However, while rapid, ongoing technical inno-
vations have led to marked improvements in image quality
and diagnostic performance, the increasing utilization of CT
has raised considerable concern over the risks associated with
exposure to ionizing radiation, particularly with regard to the
risk of radiation-induced cancer.2–11 Overall, radiation ex-
posure from CT examinations in Europe accounts for
roughly 60% of the total radiation dose from all radiographic
procedures12 while the Lifetime Attributable Risk of
radiation-induced cancer from CT scanning has been esti-
mated to range from around 0.7%3 to 1.5–2.0%.4

Although the “as low as reasonably achievable”13,14 or,
more appropriately for radiographic procedures, the “as

low as diagnostically acceptable” principle is the widely
invoked “rule-of-thumb” approach to minimize patient
exposure to radiation, it is, as the term indicates, merely
a principle rather than a scientific or technical innovation.
In looking to reduce radiation exposure to patients, man-
ufacturers of scanners have introduced various automated
dose modulation strategies on the basis of lower tube
voltage (kVp) and/or tube current (mAs) combined with
iterative reconstruction (IR) and other dose-saving
approaches to image acquisition.1 Such techniques have
been shown to permit considerable radiation dose savings.

Less clearly appreciated is the potentially substantial role
that iodinated contrast media (CM) can play in low-
radiation-dose CT examinations. The relative attenuation
of iodinated contrast material is increased at lower kVp,15

resulting in higher contrast enhancement than that
obtained at higher kVp for a similar amount of adminis-
tered CM. Several studies across a range of applications
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have exploited this increased attenuation at low kVp to em-
phasize the possibilities for reducing both CM dose and radia-
tion dose when utilizing low-kVp protocols.16–22 However, very
few studies have focused on the possibilities for further radiation
dose reduction using optimized CM injection protocols. More-
over, considerable debate exists as to the optimal approach to
lowering the CM dose when utilizing low-kVp protocols.

Herein we discuss the role of iodinated CM in low-radiation-
dose examinations and describe approaches for the optimization
of CM administration protocols to further reduce radiation dose
and/or CM dose while maintaining image quality for accurate
diagnosis.

Fundamentals of low-tube-voltage
examinations in CT
The number of X-ray photons delivered in CT depends on the
tube current (mA) and exposure time (s) and increases linearly
with increasing mAs. The number of photons is directly pro-
portional to the applied radiation dose.23 Conversely, the kVp
determines the energy of the photons delivered. A common
misconception is that the lower energy of the delivered photons
is the reason for the radiation dose reduction potential of low-
kVp examinations in CT. However, according to the recom-
mendations of the International Commission on Radiological
Protection, the weighting factor given to all sparsely ionizing
radiations is equivalent (i.e. scored as “one”), implying that the
biological effect of X-ray photons is independent of their energy.
Moreover, the absorption of the low-energy photons typically
delivered in medical examinations is higher than that of higher
energy photons, especially in superficial body regions, meaning
that the radiation dose applied to a patient should be even
higher at low kVp. Softer X-rays are potentially more bi-
ologically damaging and thus have a larger radiation risk than
hard X-rays because lower energy X-rays deposit a larger pro-
portion of the dose in the body in the form of track-end elec-
trons.23 The actual reason the radiation dose is lower at low kVp
is that the number of photons generated by the CT tube is
considerably lower at low kVp than at higher kVp when the
same mAs value is used.24 This is primarily for technical reasons,
such as the lower effectiveness of the tube at low kV (the X-ray
tube output is proportional to kVp2 and thus a reduction from
120 to 100 kVp will result in (100/120)25 0.69, i.e. about 69% of
the photons compared with that emitted at 120 kVp) and
stronger filtering of low-kV photons.

Knowing this, it is evident that increased image noise (N) is
a consequence of imaging at low kVp. Image noise is proportional
to the denominator of the square root of the number of X-ray
photons (#p) and is thus directly dependent on the number of
photons delivered:24
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The lower the number of photons delivered, the greater the
image noise. Thus, protocols that utilize a low-kVp setting with
unchanged mAs will deliver a reduced radiation dose but will
suffer from increased image noise. A compensatory increase in

mAs is thus required to overcome the greater noise. However,
quantifying the optimum increase in mAs for an individual
patient can be challenging. The resulting low practicability and
lack of standardized guidelines may have been reasons for the
reluctance among radiologists to use low-kVp protocols.25

In practice, approaches to mAs compensation in low-kVp
examinations focus on maintaining either a constant image
noise (N) or a constant signal-to-noise ratio (SNR).

Constant image noise
If the approach chosen is to maintain a constant N, then the
potential for radiation dose reduction at lower tube potentials is
limited or non-existent.26 This has been demonstrated in studies
on phantoms in which noise was shown to increase substantially
on low-kV images, especially for phantoms with larger diame-
ters.27 Moreover, significant photon-starvation artefacts appear
due to the decreased penetration capability of the lower energy
photons and electronic noise. Even for a 25-cm phantom which
represents the attenuation of a very small adult, a 29% increase
in dose [relative volume CT dose index (CTDIvol)] was required
at 80-kV examination in order to match the noise of a 120-kV
examination.26 In other words, the required mAs compensation
would have to be high even in small adults so as to swamp any
perceived benefit of reduced kV if mAs compensation is based
on matching image noise. For this reason, image reconstruction
techniques such as IR have been developed to compensate for
image noise.

Constant signal-to-noise ratio
The alternative approach is to maintain a constant SNR, in
which the signal S is defined as the signal from the iodinated CM
in the body. The X-ray absorption of iodine increases with de-
creasing effective kVp as long as the effective energy remains
above the k-edge (33.2 KeV) of iodine.15 Thus, the signal S will
be higher in low-kV CT examinations with the same amount of
contrast applied. This is one of the fundamental roles of iodine
in low-radiation-dose examinations. Owing to this higher signal,
higher noise can also be accepted when maintaining a constant
SNR because:

SNR5S=N;S×
ffiffiffiffiffiffiffiffiffi
mAs

p
(2)

Thus, when the SNR is kept constant at reduced kVp, only
a moderate compensatory increase in mAs is needed. However,
the indication and size of the patient should still be considered.
Phantom measurements have shown that the CTDIvol needed
for identical SNR relative to that at 120 kV is 46% at 80 kV and
62% at 100 kV for a small adult phantom. This implies a tre-
mendous reduction in radiation dose. However, for a large pa-
tient (45-cm diameter phantom), 18% more dose (CTDIvol) is
needed at 80 kV relative to that at 120 kV in order to match the
iodine SNR.15 Thus, even when the choice is to maintain
a constant SNR, a low-kV protocol may not be feasible for ra-
diation dose reduction in all patients (Figure 1). Importantly,
these considerations apply not only to single-energy low-kVp
examinations but also to dual-energy or spectral imaging
examinations.
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One option to optimizing tube potential is to use patient weight
or size-based kV-mAs tables and to manually adjust values for
a specific patient. However, a less complex approach is auto-
mated kVp selection in which radiation exposure is individually
determined on the basis of effective attenuation values measured
by the scanner.28

The appropriate choice of kV is invariably determined by the
clinical task to be performed. For the evaluation of highly
iodine-enhanced vessels or structures, the iodine contrast-to-
noise ratio (CNR) may be the most appropriate metric to use.
Thus, the potential of low-kVp protocols for radiation dose
reduction is highest for indications such as CT angiography
(CTA) and acquisitions during the arterial phase (e.g. for de-
tection of arterially vascularized liver tumours). For these indi-
cations, low kVp and higher iodine signal not only have the
potential to reduce radiation dose but also to improve image
quality. This applies similarly to all organs with considerable
parenchymal enhancement in the portal-venous phase such as in
the liver, kidney and pancreas. Zamboni et al29 found a higher
conspicuity of pancreatic adenocarcinoma when using low kVp,
whereas Ramgren et al30 used highly concentrated CM and low
kVp to improve image quality in intracranial CTA.

On the other hand, for non-enhancing or poorly enhancing soft-
tissue structures, matching noise may be more appropriate.
Since iodine does not provide a higher signal in these cases, dose
reduction with low kV is generally limited. Many diagnostic
tasks, such as routine contrast-enhanced abdominal CT exami-
nations, fall somewhere between these two scenarios. Image
quality indices such as the “noise-constrained iodine CNR” have

been proposed to quantify different levels of image quality for
different diagnostic tasks.31 AutokV tools (e.g. CarekV; Siemens
Healthcare) employ these principles; the strength of the setting
“noise vs CNR constraints” for an individual examination is
defined by the user (settings from non-enhanced CT to highly
iodine-enhanced CT, e.g. in CTA) and the software automatically
determines the optimal kVp and adapted mAs based on a fixed-
reference mAs.

In summary, the role of iodine in radiation dose reduction using
low kVp is fundamental. Iodine attenuation is higher at low
kVp, and thus SNR can be kept constant with reduced radiation
exposure. The greatest potential of low kVp for reducing ex-
posure is mainly limited to highly iodine-enhancing examina-
tions such as CTA or arterial phase imaging.

AN ADDITIONAL OPTION TO REDUCE RADIATION
DOSE WITH IODINE
An alternative and supplemental approach to reducing the ra-
diation dose in CT is through increasing the iodine concentra-
tion in the target structures to be examined. Based on a similar
SNR5 constant approach to that utilized in low-kV examina-
tions, the use of a higher iodine concentration means that higher
noise can be accepted due to the higher iodine signal. The in-
creased noise in this scenario is realized by lowering the mAs
which in turn implies reduced radiation dose (Figure 2). To
note, however, is that this approach is different from and in
addition to the approaches utilized in the automated tube cur-
rent modulation tools that are provided for CT scanners. These
tools can further reduce the overall applied radiation dose by
modifying a reference mAs over scanning time and space32 while
the “high iodine concentration—low mAs” concept allows an
overall lowering of the reference mAs.

Despite the fact that this concept seems simple and straight-
forward, awareness of and experience with this approach to

Figure 1. The volume CT dose index (CTDIvol) values needed to

match the signal-to-noise ratio (SNR) obtained in water

phantoms with three tube potentials and three phantom sizes

(25-, 35- and 45-cm diameter). Unlike at 120kV, 80 and 100kV

allow for a radiation dose reduction in small- and medium-size

phantoms. However, with the large-size phantom, 80kV would

require a higher radiation dose to match SNR than 120kV

(based on values provided by Yu26).

Figure 2. Two options to reduce the radiation dose while

keeping a constant signal-to-noise ratio (SNR). (A) Low-tube-

voltage approach: lowering kV increases iodine signal but at

the same time increases noise; a compensatory increase in

mAs is needed to achieve the same SNR (green dot); (B)

starting from the same standard examination (standard kV,

blue dot), increasing the local iodine concentration provides

higher signal and allows for a reduction of the mAs to match

the SNR at the identical level.
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radiation dose reduction is somewhat limited. Nevertheless,
several studies have demonstrated its validity. Szucs-Farkas
et al33 demonstrated its potential in chest phantom studies,
noting that a similar CNR to that achieved with a 300-mg-
iodine/ml CM concentration could be achieved with a 400-mg-
iodine/ml CM concentration but at 18–40% lower CTDIvol
depending on the phantom size and applied kVp.

In clinical studies, this benefit has been demonstrated for CTA of
the aorta, the pulmonary arteries and myocardial perfusion
CT.34–38 One advantage is that the limitations associated with
low-kVp examinations do not apply to this approach. Thus,
large body habitus, for which a low-kVp protocol is typically not
a feasible approach to reduce radiation dose (Figure 1), is gen-
erally not a limitation for the high iodine concentration–low
mAs concept. Furthermore, low kV is a limitation in some other
applications since the maximum tube output (mAs) is techni-
cally limited at lower kVp. The required compensatory mAs
increase for low kV may thus not always be feasible. This is
especially the case at high helical pitch. Therefore, when a fast
scanning speed and a short scan time are desired, a low tube
potential may not be appropriate, even for small patients.26 The
high iodine concentration–low mAs approach, however, would
again not be a limitation in these cases.

The low kV and “low mAs–high iodine concentration” options
can be combined to maximize the radiation dose reduction
potential. Iezzi et al34 showed that the radiation dose could be
reduced by as much as 74% when reducing kVp from 120 to 80,
at the same time increasing the iodine signal by using 400mg
iodine/ml concentration instead of 300mg iodine/ml. It can also
be combined with automatic kVp selection tools. In this case,
the reference mAs should be set at a lower level when using
a contrast injection protocol that provides higher signal. Schwarz
et al35 demonstrated that autokV tools can work more effectively
in choosing the lower kVp option more frequently when high
iodine concentration (IC)/low mAs is used.

Limitations of both the low-kV and low-mAs/high-iodine-signal
approaches—especially when both approaches are combined—are
that streaking and dark shadow artefacts are potentially more
prevalent in high-signal structures.26 On the other hand, broad-
ening the window width can compensate for image noise and thus
further improve image quality at high-contrast examinations.39,40

THE IMPORTANCE OF IODINE DELIVERY RATE
The “low-mAs/high-iodine-signal” approach requires a higher io-
dine concentration in the relevant body structures to be examined.
Two injection parameters influence iodine enhancement in CT: the
total iodine dose (D) and the iodine delivery rate (IDR).41–43

D½g iodine�5Volume½ml� 3 iodine concentration½g iodine=ml�
(3)

IDR½g iodine=s�5 flow rate½ml=s�
3 iodine concentration½g iodine=ml� (4)

Dose D is the relevant parameter that determines maximum
enhancement in venous phase examinations while the IDR
crucially influences the maximum enhancement in first pass
examinations such as CTA, arterial phase imaging and perfusion
CT.41–43 It also has benefits in parenchymal phases although to
a lesser degree.44 Since first pass examinations are precisely the
highly iodine-enhancing examinations in which the potential for
radiation dose reduction is the greatest, when designing opti-
mum contrast injection protocols for radiation dose reduction,
it is the IDR that is the most crucial parameter. This has been
borne out by several studies that have utilized optimized contrast
injection protocols using high flow rates and high iodine con-
centrations to increase IDR in the context of radiation dose
reduction.34–38 Crucially, it is important to bear in mind that
such protocols do not imply the injection of more iodine but
merely that a faster IDR is needed.43

On the other hand, an increase in iodine dose is potentially an
option for radiation dose reduction in venous phase exami-
nations, although in these low-iodine-enhancing examina-
tions, the potential to reduce radiation dose using the
SNR5 constant approach (either by lowering kVp or by high
IC/low mAs) is more limited. Nevertheless, lower radiation
exposure and improved image quality using the “high IC/low
mAs” concept has been demonstrated for portal-venous phase
abdominal CT.45

CONTRIBUTION OF ITERATIVE RECONSTRUCTION
IR is a technique for reducing radiation exposure that utilizes an
alternative image reconstruction algorithm to filtered back
projection to reduce noise without impairing signal.46–51 The
combination of low kVp and IR is now an established approach
in modern CT. Importantly, IR can be combined with the high
IC/low mAs approach and other techniques to further reduce
radiation dose. In principle, IR has three potential benefits
(Figure 3).

Figure 3. Three options when combining iterative reconstruc-

tion (IR) and low kVp. (A) Increased image quality due to

a higher signal-to-noise ratio (SNR) (all blue arrows, end at

blue dot). (B) Additional reduction in radiation dose by

lowering mAs (green arrow to green dot, to match SNR of

that obtained at low kV if no IR was used). (C) Contrast dose

reduction to obtain signal, image noise and SNR as before (red

arrow to red dot; identical situation compared with standard).
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Improved image quality
Without any modification, the higher SNR can be used to im-
prove image quality and the visualization of small enhancing
structures (e.g. small vessels in CTA or arterially enhancing
lesions) (Figure 3a). Studies have shown that low kVp in the
absence of IR can lead to an increase in image quality.29,30

Clearly, if IR were to be utilized, a further reduction of noise and
thus an increase in SNR would be possible, resulting in increased
image quality.

Lowered radiation exposure
The mAs can be further reduced to obtain a SNR that is similar
to that which would otherwise have been obtained had low kV
been used without IR (Figure 3b), thus IR is used to additionally
reduce radiation dose, giving SNR values that are similar to the
above-mentioned “low kV alone” and low-mAs/high-iodine-
signal approaches (Figure 2). This has been demonstrated in
several studies.52–55

Reduced iodine dose
The third option is to reduce the contrast dose to obtain the
same signal S, the same noise N and the same SNR as with the
standard kV and without IR (Figure 3c). Numerous studies
addressing low contrast volume and low iodine concentration
suggest that this approach is widely used.16–22,56–73

Of note, these three options can be combined to give a low kV1
IR CT protocol that provides a lower radiation dose but which
keeps the SNR higher than that of standard protocols, thereby
combining radiation dose reduction with image quality im-
provement. The limitations of the constant SNR approach in
low-iodine-enhancing examinations (e.g. routine venous phase
abdominal CT) do not apply in this setting since the noise is also
kept low. However, strong kVp reductions may still be suscep-
tible to photon-starvation artefacts, especially in larger patients.

In general, the relative benefits of increased image quality, lower
radiation exposure, and contrast dose reduction have to be
weighed against each other, especially in first pass examinations
where all options are feasible. The decision should depend on
the individual clinical situation. Although radiation dose re-
duction may be more important in younger, healthier patients,
the opposite may be true for contrast dose reduction. Safety and
tolerability of contrast injections thus become part of the
decision-making process.

HOW TO REDUCE CONTRAST DOSE
As evident from Equation (3) above, a reduction of contrast
volume and/or a reduction of the iodine concentration will re-
sult in a reduced iodine dose. However, although several studies
have focused on the potential value of reduced iodine concen-
tration in conjunction with low-kV settings,56–68 numerous
factors clearly favour reduced contrast volume rather than lower
concentration as a means to reduce the total administered
contrast dose.16–23,69–73

The CT applications with the highest potential for low-kV/low-
radiation-dose protocols are CTA and perfusion imaging in
which the signal during the first pass of CM is crucially

influenced by the IDR. As noted above, the potential for iodine
reduction in a low-kVp setting derives from the considerably
higher attenuation of iodine at low kV (Figure 4a,b). However,
a drawback of reducing the iodine concentration for these
applications is that the IDR would also be reduced for a similar
given injection rate. Although this would result in a lower CM
dose, both the contrast bolus shape and maximum enhancement
would remain essentially unchanged (Figure 4c), meaning that
the opportunity for further contrast (or radiation) dose re-
duction is lost. A benefit of maintaining a high iodine concen-
tration and reducing only the volume administered for the same
injection rate is that the IDR remains high resulting in greater
enhancement (Figure 4d) and potentially improved image
quality. An additional benefit is that the contrast and/or radia-
tion dose can be reduced still further (i.e. by further reductions
in administered CM volume or mAs, respectively).

To note is that the injection duration is shorter when the volume
administered is reduced. For most first pass examinations using
newer scanner technologies, this is an additional benefit because
the bolus duration should mimic the scanning duration.73 An
unnecessarily long injection leads to a waste of CM41 because the
CM administered after the acquisition of data does not con-
tribute to data acquisition. Unfortunately, this principle is often
overlooked in clinical practice. Multidetector CT has dramati-
cally short image acquisition times, typically of just a few
seconds.74,75 Therefore, the necessarily higher volumes associ-
ated with administration of CM containing lower concentrations
of iodine are increasingly inappropriate. The use of low iodine
concentration to reduce iodine dose does not utilize the po-
tential for contrast injection optimization (Figure 4a,c), whereas
the use of high iodine concentration and lower volume more
practically permits the optimization of injection protocols
(Figure 4d,e).

First pass examinations which cover large body areas such as
peripheral CTA not only require that the width of the contrast
bolus matches the acquisition over time but also that it matches
over space. Otherwise, the bolus may be overridden if the ac-
quisition time is too fast or venous overlay may occur if the scan
is too slow.75 Since the individual variation in bolus “trans-
portation” can be considerable and may not be known a priori,
a relatively slow table speed and broadening of the contrast bolus
is required. In such situations, the above-mentioned option to
optimize the bolus geometry is limited.

SAFETY AND TOLERABILITY ASPECTS OF
IODINATED CONTRAST ADMINISTRATION IN CT
For all CTexaminations, a reduction of the iodine concentration
generally means that the injected volume and flow rate will be
higher than if a higher iodine concentration is used at the same
contrast dose and IDR. This touches on issues related to toler-
ability and safety.

Apart from serious allergoid or anaphylactoid reactions, which
can occur after administration of only small amounts of any
CM,76 the most relevant side effect of iodinated CM which
possibly has a correlation with dose is contrast-induced ne-
phropathy,77 more recently referred to as contrast-induced acute
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kidney injury. Although the existence of contrast-induced
nephropathy/contrast-induced acute kidney injury in contrast-
enhanced CT is currently a matter of debate,78–84 patients with
renal impairment or an elevated risk of renal impairment are
nevertheless still likely to benefit most from a reduction of
contrast dose.77

Apart from iodine dose, also injection volume and flow rate can
influence safety and tolerability. Although maintaining a high
flow rate is beneficial in terms of IDR and the potential for
radiation and/or CM dose reduction, for many patients, par-
ticularly elderly patients or patients with poor venous condition,
a high flow rate may be difficult to achieve, inappropriate or
potentially harmful. In such cases, administration of a higher
concentration CM at a reduced flow rate is potentially advan-
tageous in reducing intolerability while maintaining a suffi-
ciently high IDR.43 Likewise, a reduced total volume of
administered CM is beneficial in terms of lowered cardiac pre-
load, a factor that may be especially crucial in critically ill
patients.

It has been stated that high IC and newer scanner generations
are mutually compatible and that sporadic failure would be
unpreventable if using low IC due to the fact that, in most cases,
a patient’s cardiac output is not known prior to scan initiation.84

Studies have confirmed this suggestion. A study comparing low-
and high-concentration CM at identical flow rate (i.e. resulting
in a higher IDR with the high iodine concentration) found no
differences in the rate of adverse events.85 Conversely, at iden-
tical IDR, Mühlenbruch86 found a significantly higher rate of
general patient discomfort when using a lower iodine concen-
tration. Specifically, significantly greater patient discomfort was
noted with a CM containing 300mgI/ml than with CM

containing 370 or 400mgI/ml despite relatively moderate in-
jection rates.

The possibility that high flow rate is associated with greater
patient discomfort was reinforced by Andreini et al87 who
demonstrated increased heat sensation, higher post-examination
heart rate and an increased number of premature heartbeats for
an identical volume (80ml) of iodixanol-320 injected at
6.2ml s21 compared with 5.0ml s21. Again, these findings sug-
gest that the possibility to lower the injection rate while main-
taining a sufficiently high IDR for diagnosis is a potential
advantage for high-concentration CM over low-concentration
CM in terms of patient tolerability.

A potentially confounding factor is that solution viscosity
increases when the iodine concentration is increased. However,
there is no evidence that a higher viscosity of the contrast agent
formulation reduces tolerability or safety.86,87 On the other
hand, high viscosity can be a technical challenge since the re-
quired injection pressure increases with viscosity. With the
highest iodine concentration (400mg I/ml) flow rates of up to
6ml s21 are feasible using commercially available injectors.88 Of
note, administration of CM containing 300mg I/ml does not
deliver a higher maximum IDR since 8ml s21 was the maximum
injection rate achievable with this lower iodine concentration
giving the same maximum IDR of 2.4 gI/s. Warming the CM
reduces viscosity, and therefore allows for higher injection rates.
Clinical observation suggests that patients are often more
comfortable if the CM is warmed before administration.89

More relevant than CM formulation viscosity is the viscosity of
the iodinated molecules themselves, and it is important not to
confuse the two. Contrast agents formulated at high iodine

Figure 4. Illustration of contrast dose reduction in first pass CT examinations. (a) Contrast enhancement over time compared with

acquisition time (green bar) in a standard setting. (b) Use of low kV increases iodine enhancement when the same injection protocol

is used. (c) Iodine concentration (IC) is reduced to obtain the same enhancement level as in the standard examination. (d) When

volume V is reduced instead of IC, a sharper contrast bolus will be injected (due to higher IDR); with the same amount of contrast

dose reduction compared with (c) (in grams of iodine), a higher enhancement level is obtained. (e) Thus, more contrast dose

reduction is feasible when lowering volume V instead of IC when targeting the same enhancement level. HU, Hounsfield unit.
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concentrations have, by definition, minimally viscous molecules
because it is their low viscosity that facilitates the preparation of
more highly concentrated formulations.90 Conversely, the more
viscous molecules (e.g. molecular dimers such as iodixanol
which have the highest viscosity of all non-ionic products)
cannot be formulated at high concentrations. Any consid-
erations or concerns regarding the viscosity of the ingredients
should therefore not impact the choice of the iodine concen-
tration but rather the choice of the contrast agent product itself.

CONCLUSION
The role of iodine is fundamental in low-radiation-dose CT. The
higher iodine attenuation obtained at low-kVp settings allows
for a reduction in radiation exposure while maintaining SNR.
Similarly, high-iodine-signal protocols may permit radiation

dose reduction by permitting a lowering of mAs. This is
particularly feasible in first pass examinations where high-
iodine signal can be achieved by injecting iodine more rapidly.
The combination of recent technical developments, princi-
pally relating to low kV and IR, permits further reductions of
radiation exposure, increases diagnostic image quality and/or
allows for a reduction of the iodine dose. In an optimum
contrast injection protocol, the volume of CM administered
rather than the iodine concentration should be reduced, as
with high-iodine-concentration CM further reductions of io-
dine dose are achievable for modern first pass examinations.
Moreover, when necessary (e.g. in elderly patients), higher
concentration CM more readily permit a reduction of flow
rate and volume, thereby improving the tolerability of contrast
administration.
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7. Berrington de González A, Darby S. Risk of

cancer from diagnostic X-rays: estimates for

the UK and 14 other countries. Lancet 2004;

363: 345–51. doi: https://doi.org/10.1016/

s0140-6736(04)15433-0

8. Fazel R, Krumholz HM, Wang Y, Ross JS,

Chen J, Ting HH, et al. Exposure to low-dose

ionizing radiation from medical imaging

procedures. N Engl J Med 2009; 361: 849–57.

doi: https://doi.org/10.1056/nejmoa0901249

9. Chen J, Einstein AJ, Fazel R, Krumholz HM,

Wang Y, Ross JS, et al. Cumulative exposure

to ionizing radiation from diagnostic and

therapeutic cardiac imaging procedures:

a population-based analysis. J Am Coll

Cardiol 2010; 56: 702–11. doi: https://doi.

org/10.1016/j.jacc.2010.05.014

10. Dorfman AL, Fazel R, Einstein AJ. Use of

medical imaging procedures with ionizing

radiation in children: a population-based

study. Arch Pediatr Adolesc Med 2011; 165:

458–64. doi: https://doi.org/10.1001/

archpediatrics.2010.270

11. Meer AB, Basu PA, Baker LC, Atlas SW.

Exposure to ionizing radiation and estimate

of secondary cancers in the era of high-speed

CT scanning: projections from the Medicare

population. J Am Coll Radiol 2012; 9: 245–50.

doi: https://doi.org/10.1016/j.

jacr.2011.12.007

12. Medical Radiation Exposure of the European

Population. [Accessed 25 January 2017].

Available from: https://ec.europa.eu/energy/

sites/ener/files/documents/RP180.pdf

13. Sodhi KS, Krishna S, Saxena AK, Sinha A,

Khandelwal N, Lee EY. Clinical application of

“Justification” and “Optimization” principle

of ALARA in pediatric CT imaging: how

many children can be protected from un-

necessary radiation? Eur J Radiol 2015; 84:

1752–7. doi: https://doi.org/10.1016/j.

ejrad.2015.05.030

14. McCollough CH, Primak AN, Braun N,

Kofler J, Yu L, Christner J. Strategies for

reducing radiation dose in CT. Radiol Clin

North Am 2009; 47: 27–40. doi: https://doi.

org/10.1016/j.rcl.2008.10.006

15. Waaijer A, Prokop M, Velthuis BK, Bakker

CJ, de Kort GA, van Leeuwen MS. Circle of

Willis at CT angiography: dose reduction and

image quality—reducing tube voltage and

increasing tube current settings. Radiology

2007; 242: 832–9. doi: https://doi.org/

10.1148/radiol.2423051191

16. Hunsaker AR, Oliva IB, Cai T. Contrast

opacification using a reduced volume of

iodinated contrast material and low peak

kilovoltage in pulmonary CT angiography:

objective and subjective evaluation. AJR Am J

Roentgenol 2010; 195: W118–24. doi: https://

doi.org/10.2214/ajr.09.3342

17. Szucs-Farkas Z, Christe A, Megyeri B,

Rohacek M, Vock P, Nagy EV, et al. Di-

agnostic accuracy of computed tomography

pulmonary angiography with reduced radia-

tion and contrast material dose: a prospective

randomized clinical trial. Invest Radiol 2014;

49: 201–8.

18. Cho ES, Chung TS, Ahn SJ, Chong K, Baek

JH, Suh SH. Cerebral computed tomogra-

phy angiography using a 70 kVp protocol:

improved vascular enhancement with a re-

duced volume of contrast medium and

radiation dose. Eur Radiol 2015; 25:

1421–30. doi: https://doi.org/10.1007/

s00330-014-3540-z

19. Oda S, Utsunomiya D, Awai K, Takaoka H,

Nakaura T, Katahira K, et al. Indirect

computed tomography venography with

a low-tube-voltage technique: reduction in

the radiation and contrast material dose—

a prospective randomized study. J Comput

Assist Tomogr 2011; 35: 631–6. doi: https://

doi.org/10.1097/rct.0b013e31822a563d

20. Nakaura T, Nakamura S, Maruyama N. Low

contrast agent and radiation dose protocol

for hepatic dynamic CTof thin adults at 256-

detector row CT: effect of low tube voltage

and hybrid iterative reconstruction algorithm

on image quality. Radiology 2012; 264:

445–54. doi: https://doi.org/10.1148/

radiol.12111082

Review article: Role of iodine in low radiation dose CT BJR

7 of 10 birpublications.org/bjr Br J Radiol;90:20170079

https://doi.org/10.1016/j.ejrad.2010.06.036
https://doi.org/10.1016/j.ejrad.2010.06.036
https://doi.org/10.1148/radiol.2511081296
https://doi.org/10.1148/radiol.2511081296
https://doi.org/10.1056/nejmra072149
https://doi.org/10.2214/ajr.08.1351
https://doi.org/10.2214/ajr.08.1351
https://doi.org/10.1016/S0140-6736(04)16373-3
https://doi.org/10.1016/S0140-6736(04)16373-3
https://doi.org/10.1016/s0140-6736(04)15433-0
https://doi.org/10.1016/s0140-6736(04)15433-0
https://doi.org/10.1056/nejmoa0901249
https://doi.org/10.1016/j.jacc.2010.05.014
https://doi.org/10.1016/j.jacc.2010.05.014
https://doi.org/10.1001/archpediatrics.2010.270
https://doi.org/10.1001/archpediatrics.2010.270
https://doi.org/10.1016/j.jacr.2011.12.007
https://doi.org/10.1016/j.jacr.2011.12.007
https://ec.europa.eu/energy/sites/ener/files/documents/RP180.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/RP180.pdf
https://doi.org/10.1016/j.ejrad.2015.05.030
https://doi.org/10.1016/j.ejrad.2015.05.030
https://doi.org/10.1016/j.rcl.2008.10.006
https://doi.org/10.1016/j.rcl.2008.10.006
https://doi.org/10.1148/radiol.2423051191
https://doi.org/10.1148/radiol.2423051191
https://doi.org/10.2214/ajr.09.3342
https://doi.org/10.2214/ajr.09.3342
https://doi.org/10.1007/s00330-014-3540-z
https://doi.org/10.1007/s00330-014-3540-z
https://doi.org/10.1097/rct.0b013e31822a563d
https://doi.org/10.1097/rct.0b013e31822a563d
https://doi.org/10.1148/radiol.12111082
https://doi.org/10.1148/radiol.12111082
http://birpublications.org/bjr


21. Luo S, Zhang LJ, Meinel FG, Zhou CS, Qi L,

McQuiston AD, et al. Low tube voltage and

low contrast material volume cerebral CT

angiography. Eur Radiol 2014; 24: 1677–85.

doi: https://doi.org/10.1007/s00330-014-

3184-z

22. Noda Y, Kanematsu M, Goshima S, Kondo

H, Watanabe H, Kawada H, et al. Reduction

of iodine load in CT imaging of pancreas

acquired with low tube voltage and an

adaptive statistical iterative reconstruction

technique. J Comput Assist Tomogr 2014; 38:

714–20. doi: https://doi.org/10.1097/

rct.0000000000000106

23. Chadwick KH, Leenhouts HP. Risks from

ionising radiation. In: Radiation dose from

multidetector CT. Tack D, Kalra MK,

Gevenois PA, eds. 2nd edn. Berlin, Germany:

Springer; 2012.

24. Edyvean S, Lewis M, Britten A. Radiation

dose metrics and the effect of CT scan

protocol parameters. In: Radiation dose from

multidetector CT. Tack D, Kalra MK,

Gevenois PA, eds. 2nd edn. Berlin, Germany:

Springer; 2012.

25. Niemann T, Henry S, Faivre JB. Clinical

evaluation of automatic tube voltage selec-

tion in chest CT angiography. Eur Radiol

2013; 23: 2643–51. doi: https://doi.org/

10.1007/s00330-013-2887-x

26. Yu L. Optimization of tube potential. In:

Radiation dose from multidetector CT. Tack D,

Kalra MK, Gevenois PA, eds. 2nd edn. Berlin,

Germany: Springer; 2012.

27. Guimarães LS, Fletcher JG, Harmsen WS, Yu

L, Siddiki H, Melton Z, et al. Appropriate

patient selection at abdominal dual-energy

CT using 80 kV: relationship between patient

size, image noise, and image quality. Radiol-

ogy 2010; 257: 732–42. doi: https://doi.org/

10.1148/radiol.10092016

28. Winklehner A, Goetti R, Baumueller S, Karlo

C, Schmidt B, Raupach R, et al. Automated

attenuation-based tube potential selection for

thoracoabdominal computed tomography

angiography: improved dose effectiveness.

Invest Radiol 2011; 46: 767–73. doi: https://

doi.org/10.1097/rli.0b013e3182266448

29. Zamboni GA, Ambrosetti MC, Guariglia S,

Cavedon C, Pozzi Mucelli R. Single-energy

low-voltage arterial phase MDCT scanning

increases conspicuity of adenocarcinoma of

the pancreas. Eur J Radiol 2014; 83: e113–17.

doi: https://doi.org/10.1016/j.

ejrad.2013.12.022

30. Ramgren B, Björkman-Burtscher IM, Holtås
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