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ABSTRACT Microbial network inference and analysis have become successful ap-
proaches to extract biological hypotheses from microbial sequencing data. Network
clustering is a crucial step in this analysis. Here, we present a novel heuristic net-
work clustering algorithm, manta, which clusters nodes in weighted networks. In
contrast to existing algorithms, manta exploits negative edges while differentiating
between weak and strong cluster assignments. For this reason, manta can tackle
gradients and is able to avoid clustering problematic nodes. In addition, manta as-
sesses the robustness of cluster assignment, which makes it more robust to noisy
data than most existing tools. On noise-free synthetic data, manta equals or outper-
forms existing algorithms, while it identifies biologically relevant subcompositions in
real-world data sets. On a cheese rind data set, manta identifies groups of taxa that
correspond to intermediate moisture content in the rinds, while on an ocean data
set, the algorithm identifies a cluster of organisms that were reduced in abundance
during a transition period but did not correlate strongly to biochemical parameters
that changed during the transition period. These case studies demonstrate the
power of manta as a tool that identifies biologically informative groups within mi-
crobial networks.

IMPORTANCE manta comes with unique strengths, such as the abilities to identify
nodes that represent an intermediate between clusters, to exploit negative edges,
and to assess the robustness of cluster membership. manta does not require param-
eter tuning, is straightforward to install and run, and can be easily combined with
existing microbial network inference tools.

KEYWORDS microbial ecology, network analysis, bioinformatics, clustering,
microbiome, networks

As most environmental covariates can explain only a small fraction of the variation
in microbial communities, other factors such as species interactions have been

suggested to play a large role (1). A range of tools has become available to predict
potential interactions as associations. Many of these tools can predict positive as well
as negative associations, with the exception of some approaches, such as those based
on mutual information (2). Consequently, most microbial networks can be assigned
edge weights that quantify the strength of the association. While the exact values of
such edge weights may differ depending on tool usage, the sign is highly informative.
Microbes can cooccur or exclude each other, as a range of ecological interactions takes
place (3). Previous work on ecological networks has demonstrated that the ratios of
these interaction types may have implications for biodiversity and ecosystem stability
(4–6).

While ecosystem stability, biodiversity patterns, and nestedness have been linked to
patterns of biotic interactions (5, 7, 8), such ecological properties cannot be translated
to association networks. Unlike many ecological networks, microbial association net-
works suffer from interpretational challenges, as they cannot be observed directly (9).
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Moreover, tools used to infer associations generally suffer from high error rates (10).
Despite these drawbacks, clusters from microbial association networks have been
shown to reflect important drivers of community composition (11, 12). However,
traditional choices for network clustering algorithms are unable to make optimal use of
information contained in edge signs. For example, the Markov cluster algorithm (MCL)
uses a probability matrix to identify clusters (13). While a weighted adjacency matrix
can be scaled to generate a probability matrix, the algorithm depends on edge density
to infer clusters and is therefore mostly suitable for networks with a low number of
negatively weighted intercluster edges.

Alternatives that are able to take edge weight into account are available, such as the
Louvain method for community detection (14) and the Kernighan-Lin bisection algo-
rithm (15), an algorithm that optimizes separation of the network into two parts. A
different approach is to scale node weights such that negatively weighted edges are
either converted to positively weighted edges or have lower positive weights; this
approach is implemented in WGCNA (16), a pipeline for network inference and clus-
tering. Although scaling approaches result in a loss of sign information, such ap-
proaches can also yield satisfactory results.

While some of these clustering approaches can cluster weighted networks, they
have not specifically been designed to detect association patterns generated through
ecological processes. Even if microorganisms are not directly interacting, they may
cooccur as a result of niche filtering (17), or they may actively prevent establishment of
other species. Such antagonistic relationships have been described for sponge symbi-
onts (18), the plant rhizosphere (19), and biofilm formation (20, 21). Regardless of the
ongoing process, cooccurrence with one species but not another can be described as
“the enemy of my enemy is my friend” in an undirected network. Even if there are no
direct interactions between cooccurring species, a powerful shared negative associa-
tion introduced through niche filtering or competition may be sufficient to result in
observed cooccurrence.

In this work, we describe manta (microbial association network clustering algo-
rithm), a novel method for clustering microbial networks. We demonstrate in two case
studies that our method can identify subcompositions with biological importance that
cannot be found through conventional correlation strategies. Moreover, we include a
robustness metric to quantify whether cluster assignments are robust to the high error
rates found in microbial association networks. Our method represents an alternative to
the popular MCL algorithm (13) that, in contrast to MCL, can take advantage of edge
signs and does not need parameter optimization (Table 1).

(This article was submitted to an online preprint archive [22].)

RESULTS
manta implements features for clustering weighted and noisy networks. The

indirect effect of one node on another node in the network can be estimated by

TABLE 1 Overview of different clustering algorithmsa

Algorithm Cluster no. criterion
Unassigned
nodes

No edge filtering
required Preferred network type

No parameter
tuning

manta Optimize sparsity Yes Yes Undirected Yes
WGCNA signed Dynamic branch cut Yes Yes None (constructs network) Yes
WGCNA unsigned Dynamic branch cut Yes No None (constructs network) Yes
Louvain method Optimize modularity No Yes Undirected; directed version

possible
No

MCL Parameter dependent No Yes, if parameters
optimized

Undirected No

Girvan-Newman algorithm User dependent No No Undirected; directed version
possible

Yes

Kernighan-Lin bisection Only bisection No Yes Any Yes
aDifferent properties of manta, WGCNA, MCL, Louvain community detection, the Girvan-Newman algorithm, and the Kernighan-Lin bisection algorithm. The following
properties are summarized: how algorithms choose a cluster number, whether they can leave nodes unassigned, whether they perform better with negatively
weighted edges removed, and what types of networks they accept. Finally, we assessed whether algorithms required extensive parameter tuning before achieving
optimal performance on simulated data.
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multiplying the weights of the edges connecting the two nodes (Fig. 1A). If the nodes
are connected only by positively weighted edges, the indirect effect is also positive. In
contrast, if the path between the two nodes contains a single negatively weighted
edge, the indirect effect is negative; hence, clusters found by manta reflect the principle
“the enemy of my enemy is my friend.” Depending on the structure of the network
(Fig. 1A and B), manta uses two alternative strategies to generate scoring matrices
(Fig. 1C and D). See Materials and Methods for a detailed explanation and the
pseudocode describing the algorithm.

After the scoring matrix is generated, it can be clustered with an agglomerative
clustering approach (Fig. 1E). The optimal cluster number is identified with the sparsity
score (equation 1 in Materials and Methods), which is calculated from intracluster to
intercluster weighted edges. The network can then be rewired and the procedure
repeated to generate robustness scores (Fig. 1F). This approach generates biologically
relevant clusters while ignoring nodes that cannot be confidently assigned to a cluster.

manta equals or outperforms other algorithms on synthetic data sets. To
evaluate the performance of manta in comparison to alternative methods, we gener-
ated synthetic data sets using two different approaches. One is based on the gener-

FIG 1 manta pipeline. (A) Toy graph with two clusters separated by negatively weighted edges. The
effect of node x on node z can be estimated by taking the product of edges 1,2 and 2,5. (B) Toy graph
with a single negatively weighted edge in the left cluster. (C) Scoring matrix for panel A across six
iterations. Black and white values reflect �1 and 1, respectively. After six iterations, the scoring matrix
reaches convergence. (D) Scoring matrix for panel B across nine iterations. Unlike panel C, this matrix
reaches a flip-flop state, where the scoring matrix alternates between the configurations shown in
iterations 6, 7, 8, and 9. A few values in the matrix reach �1 or 1, while all other values oscillate near 0.
(E) manta uses agglomerative clustering on the scoring matrix to assign each node to a cluster. For
flip-flopping matrices, the scoring matrix is generated from subsets of the complete network. (F) A
fraction of the original network is rewired to generate permuted cluster assignments with identical
degree distributions. The robustness of cluster assignments can then be estimated by comparing the
Jaccard similarities of cluster memberships cluster-wise or node-wise.
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alized Lotka-Volterra (gLV) equation, while the other (FABIA) was developed for the
evaluation of biclustering applied to gene expression data (23). We chose to use these
approaches because they provide a ground truth and have entirely different network
topologies. For example, the median approximated node connectivity of the gLV
networks is 1, in contrast to 46 for the FABIA networks. The latter networks more closely
represent ecosystems without biotic interactions, where network topology is governed
solely by niche filtering or other dynamics.

Cluster assignments were evaluated by the complex-wise sensitivity (Sn), the cluster-
wise positive predictive value (PPV), geometrical accuracy (Acc), and separation (Sep)
(24). Additionally, we included the sparsity score used by manta (equation 1) to
visualize the ratio of intracluster to intercluster weighted edges. The complex-wise
sensitivity estimates the coverage of a true-positive cluster by its best-matching
assigned cluster, whereas the cluster-wise positive predictive value measures how well
an assigned cluster covers its best-matching true-positive cluster. In contrast, the
separation is calculated by taking the product of the fraction of assigned nodes in the
true positive clusters and the fraction of true-positive nodes in the assigned clusters.
Hence, the separation penalizes for cluster overlap, unlike the reported Acc, PPV, and
Sn. A perfect cluster assignment would therefore have a separation score of 1, while
worse assignments would reach 0.5 or even lower.

This approach uses the contingency matrix rather than a list of true positives,
effectively permitting evaluation of assignments that do not necessarily match the
true-positive clusters (see Fig. S1) in the supplemental material. However, these mea-
sures can be skewed by cluster assignments that mostly assign all nodes to one cluster
(Fig. S1B) or assign almost every node to its own cluster. Additionally, overlapping
clusters can inflate some measures of performance (Fig. S1C). To resolve these patho-
logical cases, we filtered assignments where over 80% of the nodes were assigned to
a single cluster or over 50 clusters were identified. While Acc, PPV, and Sn can be high
for algorithms that assign true-positive clusters to a single cluster, separation is
calculated by multiplying the proportion of true-positive nodes in the assigned cluster
with the proportion of cluster nodes in the true-positive cluster. Hence, the separation
measure punishes cluster assignments that mix up multiple true-positive clusters.

Under the right circumstances, multiple algorithms achieve a separation around 0.6
when clustering the two-cluster network (Fig. 2). However, this requires the use of a
positive-edge-only subnetwork for the Louvain method, the WGCNA unsigned ap-
proach (data not shown), and the Girvan-Newman algorithm; on the complete network,
these algorithms do not separate the nodes into two clusters or fail to separate the
true-positive clusters. Shifting the edge weights failed to resolve this (Fig. S9). For MCL,
separation depends on the parameter settings (Fig. S2). This algorithm can cluster the
complete network but only if the inflation parameter is set to 3 or to another uneven
value. In this simulation, MCL with default parameters was unable to recover the
true-positive cluster assignment (data not shown). Strikingly, performance is improved
for the Louvain method but not for the Kernighan-Lin bisection when only positively
weighted edges are considered. While the Louvain method takes edge sign into
account during its optimization, negatively weighted edges appear to have a negative
effect on separation.

The environmentally motivated clusters from the gLV simulation have an underlying
interaction network that can affect network topology. In contrast, the FABIA approach
does not have an interaction network from which abundances are generated (Fig. 3). As
a result of this change in topology, no algorithm is able to generate cluster assignments
that have sparsity scores close to 1. However, not all algorithms are equally affected by
the change in topology. Especially affected are those networks that assume a modular
or scale-free structure, such as WGCNA. The reduced performance may be attributed to
one of WGCNA’s core assumptions: gene regulatory networks are assumed to be
scale-free. Consequently, WGCNA infers a correlation network and soft-thresholds this
network by choosing the matrix power such that scale-freeness is optimized. The
change in network topology appears to rescue performance for the unsigned WGCNA
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method; while this method did not return cluster assignments on the gLV simulated
data, it does return cluster assignments on the FABIA simulation. Surprisingly, the
opposite result holds for MCL, as the algorithm can no longer return cluster assign-
ments on the positive-edge-only networks. MCL does better on the FABIA networks

FIG 2 Performance of network clustering tools on two environmentally motivated clusters. Clustering
performance was estimated on 50 independently generated data sets generated from random interac-
tion matrices. Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc), and separation (Sep) were
calculated as described previously (24). The sparsity of the assignment is a function of the edge weights
of intracluster versus intercluster edges (equation 1). The numbers next to the sensitivity results indicate
how many cluster assignments met the following criteria for a particular algorithm: no cluster should
exceed 80% of the total number of nodes, and there should be fewer than 50 clusters. The manta
algorithm was run with and without weak assignments, while WGCNA was run with signed networks and
a signed topological overlap matrix and with unsigned networks combined with the unsigned matrix. For
all other algorithms, we provided the complete network in addition to the positive-edge-only network
(indicated by �).

FIG 3 Performance of network clustering tools on two biclusters generated with FABIA (23). Clustering
performance was estimated on 50 independently generated data sets without an underlying topology.
Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc), and separation (Sep) were calculated as
described previously (24). The sparsity of the assignment is a function of the edge weights of intracluster
versus intercluster edges (equation 1). The numbers next to the sensitivity results indicate how many
cluster assignments met the following criteria for a particular algorithm: no cluster should exceed 80% of the
total number of nodes, and there should be fewer than 50 clusters. The manta algorithm was run with and
without weak assignments, while WGCNA was run with signed networks and a signed topological overlap
matrix and with unsigned networks combined with the unsigned matrix. For all other algorithms, we provided
the complete network in addition to the positive-edge-only network (indicated by �).
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with the negatively weighted edges included, while it performed worse on the gLV
networks when these were included. This demonstrates that MCL performance can
require parameter optimization and may benefit from different preprocessing strate-
gies depending on the network topology.

Neither manta nor the Kernighan-Lin method optimizes toward a modular or
scale-free network. As with the environmentally motivated simulation, Kernighan-Lin
bisection achieves some of the best results on this simulation. Hence, if users suspect
based on a preliminary analysis that their data set contains only two clusters, this
algorithm is likely to recover that separation regardless of the underlying structure.
However, manta has the advantage of a tunable weak cluster assignment that can
handle noisier data and less accurate networks, as well as data with more than two
clusters.

While accuracy could not be estimated well on three clusters, manta was able to
return cluster assignments with the highest sparsity (Fig. S6) and returned assignments
with high separation in increasingly permuted data (Fig. S7). Performance dropped on
networks generated from data with added multinomial noise, even if the overall
network structure appeared to be preserved (Fig. S8). Additionally, scaling the corre-
lations instead of removing negatively weighted edges failed to improve performance,
as most algorithms quit returning cluster assignments or the assignments did not
recover the original network structure (Fig. S9).

manta identifies biologically relevant groups in cheese rinds. We demonstrate

the real-world applicability of manta on a cheese rind data set generated by Wolfe et
al. (25). In this study, the authors analyzed 137 cheese rind communities and identified
important community members. Moreover, they found that community assembly of
cheese rind communities was highly reproducible, despite the large geographical
distances between cheeses. This can be explained at least partially by manipulation of
the rind biofilm, as cheesemakers can introduce an initial community through starter
cultures and then control the environment during the aging process. In their study on
cheese rinds, Wolfe et al. (25) originally demonstrated that most of the community
variation could be explained by the rind type. Indeed, most samples appear to cluster
by rind type (Fig. 4B). The authors found that samples from washed cheeses could
cluster closely with both other types of rinds; the principal-coordinate analysis (PCoA)
also captures this phenomenon, as samples from washed cheeses are dispersed across
the entirety of the axes.

We ran manta on the association network to assess whether cluster analysis would
be able to recapitulate some of the drivers of community structure in the cheeses
(Fig. 4A). The network visualization of the data reveals some interesting trends, as the
network contains three clusters that correlate with moisture and taxonomy. Cluster 1 is
mostly comprised of Firmicutes, and its summed abundances have a strong negative
correlation with moisture. In fact, several of these taxa belong to the genus Staphylo-
coccus, replicating the results by Wolfe et al. (25), as they demonstrated that Staphy-
lococcus spp. are abundant on dry natural rinds. In contrast, cluster 1 consists mostly of
Proteobacteria and correlates positively with moisture.

While the clusters correspond well to the results obtained by Wolfe et al. (25), manta
is able to offer additional insight into community structure through its separation of
Actinobacteria. Wolfe et al. (25) demonstrated that the abundance of taxa belonging to
this phylum is negatively correlated with moisture. However, the clusters indicate that
this correlation is more nuanced. Some of the taxon abundances may reflect a gradual
response to moisture rather than a strict preference for dry or moist cheese rinds, as
summed abundances for Actinobacteria belonging to clusters 2 and 3 display a weak
and nonsignificant correlation with moisture rather than the strong negative correla-
tion associated with cluster 1.

On this data set, manta identifies clusters that correspond well with the main drivers
of community composition in this study, while also identifying taxa that display
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intermediate responses to these drivers. Hence, this case study demonstrates that
cluster analysis can yield novel insights into community structure.

manta detects global trends in coastal plankton communities. One advantage of
manta is its ability to handle networks generated through any type of inference
algorithm (though conversion to undirected networks is necessary in some cases). We
demonstrate this through a time series analysis of coastal plankton communities (26).
Martin-Platero et al. (26) collected samples for 93 days and used these data to dem-
onstrate that the communities changed rapidly, but only when lower taxonomic ranks
were taken into account. The authors demonstrated the use of WaveClust on this data
set, a novel clustering method based on wavelet analysis of longitudinal data. Conse-
quently, WaveClust can find taxon associations at low and high frequencies that are not
visible without a frequency decomposition. The authors evaluated their technique on
data from coastal plankton, where clusters identified by WaveClust corresponded to
rapid growth of specific groups of taxa. A network analysis of the Granger causalities
between clusters and metadata further demonstrated that the clusters could be

FIG 4 Network analysis of a cheese data set (25). (A) CoNet network clustered with manta. Cluster identity is
represented by node shape, whereas phylum membership is indicated by node color. The edge color is mapped
to the sign of the association. (B) Principal-coordinate analysis (PCoA) of Bray-Curtis dissimilarities for sample
compositions. The colors indicate the different cheese rind types: bloomy cheeses are inoculated with fungi, while
washed cheeses are repeatedly washed with a brine solution. In contrast, natural rinds are not disturbed during
aging. (C) Spearman correlation of moisture to summed taxon abundances. Correlations for the phylum Actino-
bacteria are highlighted in blue.
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separated into two regimes, both corresponding with an initial warm period followed
by a rapid or gradual cooling period. These regimes are also visible in the ordination
plot, as the samples separate over time around day 215 (Fig. 5B). We generated a
network with eLSA and clustered it with manta (Fig. 5A).

manta is not designed for time series and therefore is not able to detect frequency-
specific associations. However, manta does summarize larger trends in the data. To
demonstrate this, we first computed a network with eLSA, a microbial network infer-
ence algorithm that takes temporal shifts into account (27, 28). A force-directed layout
reveals that the eLSA network contains a large number of anticorrelated nodes. These
clusters correlate with multiple environmental variables, thereby closely reflecting the
two metaregimes identified by Martin-Platero et al. (26). The vector for abundances of
taxa belonging to cluster 1 aligns closely with the chlorophyll concentration and wave
height; in contrast, the total abundance of taxa belonging to cluster 0 was highest at
the start of the experiment, when the seasonal warm period was still ongoing. The
vector for taxa that could not confidently be assigned to a cluster was also significantly
covarying with community composition and is directly opposite of the silicate concen-
tration. The silicate concentration is not part of the originally reported Granger causality
model (26), but it does increase sharply around the transition point between the two

FIG 5 Network analysis of longitudinal 16S data collected from coastal plankton (26). (A) eLSA network
clustered with manta. Cluster identity is represented by node shape, whereas phylum membership is
indicated by node color. The edge color is mapped to the local similarity score. Nodes that were not
assigned to a cluster by manta are shown with a pink border. (B) Principal-coordinate analysis (PCoA) of
Bray-Curtis dissimilarities for sample compositions, overlaid with significantly covarying environmental
vectors and cluster abundance vectors. The significance of these vectors was assessed through permu-
tation testing; only significant vectors are shown. Cluster abundance vectors were scaled independently
from environmental vectors; abundances of taxa that could not be assigned to a cluster were included
in the “Cluster weak” vector. The axis values are the eigenvalues of the ordination axes.
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metaregimes (days 240 to 260). Hence, the weak assignments capture a set of taxa that
become less abundant during the transition period and do not correlate strongly to
taxa in the assigned clusters.

DISCUSSION

The manta algorithm is able to perform as well as or better than preexisting
algorithms available for network clustering, while its ability to identify weak cluster
assignments can assist in defining cluster cores in networks that represent a gradient
rather than distinctly separated clusters. Additionally, since it has been designed
specifically to cluster networks with negatively weighted edges, it is better able to
exploit this information than several alternative algorithms. Our case studies demon-
strate how cluster assignments recapitulate main drivers of community composition.

A key limitation of manta is its inability to deal with networks with only a few
negative edges. In such cases, cluster assignments mostly separate central nodes from
peripheral nodes. However, manta was specifically developed for weighted networks;
when only a few edges have negative weights, treating the network as unweighted or
removing negatively weighted edges will not affect network structure significantly. As
demonstrated by the separation scores on positive-edge-only networks, algorithms like
MCL and the Louvain method will then perform adequately. Moreover, the clusters
assigned by manta can accurately be described as “the enemy of my enemy is my
friend”; while there are algorithms available that require nodes to be similar to nodes
within the community (29), manta has no such requirements and may assign nodes to
a cluster even though they are not necessarily positively associated with other nodes
within that cluster. Additionally, users should be aware that cluster assignments will
reflect only main drivers of community composition, as manta tends to generate a small
number of clusters separated by weakly assigned nodes. Separating a data set by its
main drivers (e.g., sample type or location) can help identify more interesting clusters.

Although we chose to evaluate manta in the context of microbial networks in this
paper, manta may also be useful for clustering other types of networks with a large
number of negative edges. For example, even though WGCNA was originally developed
for gene expression data (16), it has also been used for microbial data (11). The ability
of manta to identify clusters without any underlying topological structure implies that
it may be especially valuable in contexts where a small-world or scale-free structure
cannot be expected. Moreover, its lack of sensitivity to parameter settings in this
simulation demonstrates that manta is applicable in situations where little is known
about the structure of the analyzed network.

MATERIALS AND METHODS
Unless otherwise specified, computations were carried out in R v3.5.1 and Python v3.6.3. Correlation

networks were generated with the rcorr function from the Hmisc R library (version 4.2-0) (30). Analysis
of simulated data sets was carried out in Python using NetworkX (version 2.1) (31), numpy (version 1.15.4)
(32), pandas (version 0.21.0) (33), and scipy (version 1.2.0) (34). Additional analyses for case studies were
carried out in R using igraph (version 1.2.4.1) (35), phyloseq (version 1.26.1) (36), and vegan (version 2.5-5)
(37). In addition to the specified versions of NetworkX, numpy, and scipy, manta uses scikit-learn (version
0.19.1) (38).

Clustering by graph traversal. We can represent a graph as an adjacency matrix, with each node
in the graph represented as a row and column in the matrix. A nonzero entry in row i and column j
represents an edge between node i and node j. In the case of an undirected graph, the adjacency matrix
is symmetric, so position i, j is identical to position j, i. The weighted adjacency matrix, where the values
in the matrix are the edge weights, is used by manta to cluster networks without losing sign information.

manta was originally designed as an alternative to MCL, which uses random walks to find clusters.
MCL does so through iterations of matrix expansion and inflation so that values in the matrix eventually
converge to 0 or 1. The process of modeling random walks as Markov chains requires the adjacency
matrix to be converted to a stochastic matrix in each iteration, so that all columns sum to 1. This
normalization step removes the signs from all values. Since manta uses an alternative normalization
method to retain the signs, manta does not model Markov chains. The pseudocode below describes the
core algorithm (Tables 2 to 4). The adapted normalization steps (Table 2) and inflation steps (Table 3,
steps 9 to 11) retain the signs introduced by the weighted adjacency matrix. We also tested other variants
of these steps, i.e., raising each element to a power or taking the root; unlike the current inflation step,
no variant was able to capture the cluster structure. While this step may seem counterintuitive, as it
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reduces the difference between small and large values in the matrix (rather than inflating them as in
MCL), values converge to �1 and 1 each time for the toy model (Fig. 1B).

Like MCL, the time and space complexity of manta is a function of the matrix dimensions. The most
time-intensive operation is the matrix power: for a n times n matrix, the time complexity of a naive matrix
power is O(n3) (39). MCL has tackled this problem through a pruning strategy that removes values close
to zero, which reduces the time complexity of the algorithm. However, the complexity of the manta
intermediate matrices increases rather than decreases as each position converges toward –1 or 1, so no
pruning strategy could be implemented. Since manta uses numpy to carry out matrix multiplications, the
time complexity is instead determined by high-performance BLAS implementations and is a bit lower
than O(n3) in practice (40). As the entire matrix is stored in memory, the space complexity is O(n2). The
time and space complexities provided above ignore the number of iterations; generally, between 50 and
100 iterations are sufficient to generate a scoring matrix for an unbalanced graph, while a balanced
graph will need even fewer. On the 100-species gLV example, the complete algorithm took approxi-
mately 7 seconds to run (Windows, Intel Xeon E3-1505M processor, 3.00 GHz, 32 GB memory).

As described by Van Dongen (13), classes of matrices that do not converge to a stable state after
repeated iterations exist. Instead, these matrices exhibit flip-flop equilibrium states and switch to
alternative configurations with each iteration. While these flip-flop states represent rare cases when MCL
is applied, the use of signed graphs by manta strongly increases the probability of these states to appear.
This relates to the notion of balance in signed graphs (41), where a graph is balanced only if the product
of edge weights in every cycle is positive. A cycle is a closed chain of nodes; for example, the cycle 1, 2,
3 in the balanced toy model (Fig. 1A) has a positive product, while the same cycle in the unbalanced toy
model (Fig. 1B) has a negative product. The balance of the graph matters for the expansion step; we
observed that the sign of nonzero elements of the expanded scoring matrix never conflicts with the sign
of nonzero elements in the weighted adjacency matrix if the adjacency matrix corresponds to a balanced
graph.

If the graph is not balanced (42), manta carries out the previously described diffusion procedure on
a subset of nodes (Table 4). Only one iteration is carried out on this subset, as any more iterations would
lead to the appearance of flip-flop states. The subsetting approach is complemented by an analysis of
any balanced components in the graph; if those are present, multiple iterations of expansion and
inflation are carried out on the balanced subgraph until convergence occurs. The scoring matrix used for
cluster assignment is reconstructed from the subsets, but only from positions in the subsets where the
sign of the value is consistent with the sign reported by most subsets. However, the accumulation of high

TABLE 2 Pseudocode for normalizing scoring matrix (algorithm 1)a

Step Description

1 M ¢ scoring matrix
2 for row, column in M do
3 Mrow,column¢Mrow,column⁄max�abs�M��
4 end
aPseudocode operators “for,” “do,” and “end” are highlighted in bold for clarity.

TABLE 3 Pseudocode for balanced graphs (algorithm 2)a

Step Description

1 M[0] ¢ scoring matrix initialized from weighted adjacency matrix
2 � ¢ threshold for convergence
3 E ¢ initial error value, set to 1
4 I ¢ maximum number of iterations
5 for i � 1 to I do
6 while 100E � � then
7 M�i�¢M�i � 1�2

8 M�i�¢ apply algorithm 1 on M[i]
9 for row, column in M[i] do
10 M�i�row,column¢M�i�row,column � 1⁄M�i�row,column

11 end
12 M�i�¢ apply algorithm 1 on M[i]
13 E¢0
14 b¢0
15 for row, column in M[i] do
16 if M�i�row,column is not 0 then

17 b¢b � 1
18 E¢M�i�row,column � M�i � 1�row,column

19 end
20 E¢E⁄b
21 end
aPseudocode operators “while,” “for,” “if,” “is not,” “then,” “do,” and “end” are highlighted in bold for clarity.
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scores for central nodes prevents the agglomerative clustering algorithm from identifying relevant
clusters. Therefore, whenever small clusters with a size below a user-specified threshold are detected,
rows and columns in the scoring matrix that correspond to these small clusters are removed and clusters
are calculated from the remaining values. The removed nodes are then assigned to a cluster based on
the average shortest path weights to cluster members.

With the scoring matrix M as input, we use agglomerative clustering on Euclidean distances with
Ward’s minimum variance method as a linkage function to define clusters (38). The optimization criterion
for choosing the optimal cluster number is based on the number of cut edges (equation 1). A graph G
can be defined as G � (V, e), with v and e, respectively, comprising the vertices and edges that make up
the graph. For such a graph with edge weights w, the sparsity score of cluster assignments is calculated
as a function of the sum of the cardinalities of different sets of edges based on their cluster assignment
(equation 1). Consequently, the sparsity score ranges from �1 to 1, with �1 being the worst possible
cluster assignment: in this case, all negatively weighted edges are placed inside clusters and all positively
weighted edges are placed outside clusters.

s �
1

|N|
[e(w � 0) � C|�|e(w � 0) � C|

�|e(w � 0) � C|�|e(w � 0) � C|]

(1)

where s is the sparsity score, e is an edge, w is the edge weight, C is the set of edges inside clusters, and
N is the total set of edges in the graph.

manta is in theory able to handle directed graphs; in practice, strict limitations apply, and the
algorithm usually converges to zero.

Weak assignments and robustness. The subsetting strategy is complemented by additional
information generated through flip-flopping iterations of the network. The limits of the scoring matrix
approach �1 and 1 during flip-flop iterations, but these limits are approached only by a few diagonal
values; in a balanced matrix, all diagonal values should approach 1 (Fig. 1C). We identified a unique set
of nodes corresponding to these diagonals: oscillators. The maximum of the diagonal in the scoring
matrix approaches the positive limit for these nodes, while one position in M in the same row/column

TABLE 4 Pseudocode for unbalanced graphs (algorithm 3)a

Step Description

1 G ¢ original graph
2 K ¢ no. of subgraphs to generate
3 F ¢ no. of edges to subsample
4 R ¢ fraction of subgraphs where edges need to be stable
5 for k � 1 to K do
6 sample F edges from G to create g
7 if components in g are balanced then
8 for component in g do
9 B¢ apply algorithm 2 on component
10 end
11 M�k�¢ scoring matrix initialized from g
12 M�k�¢M�k�2

13 M�k�¢ apply algorithm 1 on M[k]
14 for row, column in M[k] do
15 M�k�row,column¢M�k�row,column � 1⁄M�k�row,column

16 end
17 M�k�¢ apply algorithm 1 on M[k]
18 M�k�¢M�k� � B
19 M�k�¢ apply algorithm 1 on M[k]
20 end
21 O ¢ empty matrix
22 for row, column in M do
23 p¢0
24 n¢0
25 for k � 1 to K do
26 if M�k�row,column�0 then
27 p¢p � 1
28 else if M�k�row,column�0 then
29 n¢n � 1
30 if p⁄K�R or if n⁄K�R then
31 for k � 1 to K do
32 Orow,column¢Orow,column � M�k�row,column

33 end
34 end
35 O¢O⁄max�abs�O��
aPseudocode operators “while,” “for,” “if,” “or,” “else,” “then,” “do,” and “end” are highlighted in bold for
clarity.
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as the oscillator reaches the minimum. With the oscillators, manta can identify the shortest paths that
assess whether nodes have edges that are in conflict with their cluster assignment. For each shortest
path n from node v to oscillator t, the product � of the scaled edge weights is calculated. The average
of these products is then the mean edge product (equation 2).

Pv,t �
1

|n|�i�1

n

�i(v, t) (2)

where P is the mean edge product, v is a node, t is an oscillator, n is the set of shortest paths from v to
t, and � is the product of weights from one shortest path i.

The node is considered to have a weak assignment if P meets one of the following criteria: (i) the sign
of Pv,t is not positive for v assigned to the same cluster as t or (ii) P is smaller than a user-specified
threshold.

The weak assignment does not check for nodes that belong to two clusters but rather filters out
nodes that could not be assigned to any cluster, given that the shortest paths were in conflict with the
node’s positions in the scoring matrix.

In addition to the identification of weakly assigned nodes, we developed two new robustness
measures to identify robust node assignments and cluster compositions (Fig. 1E). These measures were
inspired by the reliability metric developed by Frantz and Carley (43) and highlight parts of the clustering
outcome that are disproportionately sensitive to errors in network inference. Both measures are generated
from rewired networks and are reported as a confidence interval of Jaccard similarity coefficients. For the
cluster-wise robustness, Jaccard similarity scores are computed for the original clusters and their best
permuted matches (identified through the maximum Jaccard similarity coefficient).

These confidence intervals provide two different types of information. First, a low Jaccard similarity
coefficient indicates that a cluster has a different composition given a few errors or that a node is
assigned to a cluster with an entirely different composition given a few errors. Second, the width of the
confidence interval demonstrates how variable cluster assignments are; wide intervals for node-wise
robustness demonstrate that the node sometimes ends up in a similar cluster but can also be assigned
to a different cluster.

Synthetic data sets. We carried out two types of simulations with 50 replicates per simulation. For
the first type, species interaction networks with a connectivity of 5% were generated with the R package
seqtime (version 0.1.1). The effects of environmental factors on growth rates were sampled from a normal
distribution with 	 � 1. The strengths of these factors were sampled from a normal distribution with
	 � 3. To ensure that the cumulative effects of the environmental factors were unique to each condition,
one factor was set to be positively weighted while the remaining two were converted to negative values.
Data sets were then generated with the generalized Lotka-Volterra equation, with growth rates of each
organism adjusted per environmental condition. As some interaction matrices caused population
explosions, these were regenerated until enough matrices were available for which the generalized
Lotka-Volterra equation could be solved.

For details and source code on these data sets, see reference 9; note that in contrast to this work, we
did not enforce a scale-free structure in the interaction network. We generated densely connected
networks from the simulated species abundances with the Pearson correlation and filtered these for
significance (
 � 0.05).

The second type of simulation uses an adapted version of the FABIA R package (23), a package that
generates simulated data for evaluations of biclustering algorithms. We adapted the makeFabiaDatablocks-
Pos function to generate biclusters at set locations and used these locations to define true-positive clusters.
The constructed matrix was then used to infer a correlation network in the same manner as the gLV networks.

Clustering algorithms. We compared manta to the Louvain method (14), MCL (13), WGCNA (16), the
Girvan-Newman method (44), and Kernigan-Lin bisection (15); for an overview of properties relevant to
the present article, see Table 1. We used the following implementations of the algorithms:

● WGCNA: blockwiseModules function (version 1.66) (16)

● MCL: markov_clustering (version 0.0.5) (https://github.com/GuyAllard/markov_clustering)

● Louvain method: python-louvain (version 0.11) (https://github.com/taynaud/python-louvain)

● Girvan-Newman algorithm: networkx (version 2.1)

● Kernighan-Lin bisection: networkx (version 2.1)

We supplied both the complete network and the positive-edge-only network to each algorithm
except WGCNA and manta. WGCNA received the simulated data set instead of the Pearson correlations.
For its evaluation, only assigned nodes were considered (i.e., nodes with poor correlations to cluster
eigenvectors were ignored). We also tested scaled correlations (see Fig. S9 in the supplemental material).
A range of parameter settings was tested for manta, the Louvain method, the Kernighan-Lin algorithm,
and MCL (Fig. S2 to S5). We set these parameters as follows:

● manta: ratio set to 0.8, edgescale to 0.3

● MCL: on complete networks, inflation was set to 3 and expansion to 15; on positive-edge-only
networks, inflation was set to 2 and expansion to 7

● Louvain method: on complete networks, resolution was set to 0.1; on positive-edge-only networks,
resolution was set to 1

● Girvan-Newman algorithm: no parameter settings

● Kernighan-Lin bisection: on all networks, max_iter was set to 10
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Cluster assignments were evaluated as described previously (24). The true positives were constructed
through K-means clustering for the gLV approach. For the FABIA approach, identical indices were used
to generate vectors with activated genes, so the true positives could be extracted from these indices. We
report both the complex-wise sensitivity (Sn), the cluster-wise positive predictive value (PPV), geometrical
accuracy (Acc), and the separation (Sep) (Fig. S1). We also report the sparsity score (equation 1). When
a cluster size exceeded 80% of the total number of assigned species, all measures except the sparsity
score were replaced with missing values to avoid obfuscation of the results. The opposite case—when
nearly all species were assigned to their own clusters—was also replaced when the number of assigned
clusters exceeded 50.

Cheese rind case study. We downloaded BIOM-formatted bacterial abundances of this cheese data
set (study no. 11488 [25]) from Qiita (45). The data set was preprocessed by removing samples with fewer
than 10,000 counts, rarefying them to an even depth, and filtering taxa with less than 20% prevalence.
The final data set therefore included 97 taxa and 337 samples. We used these abundances to construct
a network with CoNet; an initial multigraph was constructed with Pearson correlation, Spearman
correlation, mutual information, Bray-Curtis dissimilarity, and Kullback-Leibler dissimilarity. Only edges
that were supported by at least two methods were retained. The bootstrapping procedure further
removed edges with P values below 0.05, where P values were merged by Brown’s method and the
Benjamini-Hochberg correction for multiple testing was applied. For clustering with manta, edge weights
were converted to �1 or 1 based on the inferred sign. Additionally, we inferred Spearman correlations
of taxon abundances to moisture, where taxon abundances were either summed per phylum or per
cluster. manta was run with default settings (edge scale and ratio set to 0.8).

Longitudinal coastal plankton case study. We downloaded the supplementary files from reference
26. Taxon abundances were first agglomerated at the genus level; then, we removed samples with fewer
than 2,000 counts and rarefied them to an even depth. Taxa with a sample prevalence below 30% were
removed, with the total counts preserved by including them in a bin. This resulted in a final data set of
143 taxa and 260 samples. Removed samples were given as columns with NA values, and the time series
supplied to eLSA therefore contained 90 time points with 3 replicates per time point. We then ran eLSA
(v1.0.2; Python v2.7.12) with simple replicate merging (averaging replicates) and a delay of 5 (27, 28). For
downstream analysis with manta, only associations with P values below 0.05 and q values below 0.05
were taken into account. The network was treated as undirected, and edge weights were converted to
�1 and 1 prior to clustering. manta was run with default settings except for an edge scale of 0.2; with
the default edge scale, nearly all nodes in the network were determined to be weakly assigned.

For an additional analysis of the clusters, a principal-coordinate analysis of the metadata with
Bray-Curtis dissimilarity was carried out. Technical replicates were averaged, and the metadata features
supplied by reference 26 were used to fit environmental vectors onto the ordination. The significance of
covariation of these vectors with community composition was assessed through permutation testing
(1,000 permutations), and only vectors with a P value below 0.05 (after Benjamini-Hochberg multiple
testing correction) and a q value below 0.05 were retained. To compare the directions of cluster
abundances to these vectors, all bacterial abundances were summed and the covariance between these
abundance vectors and principal-component vectors was estimated. These covariance values signifi-
cantly exceeded covariances of permuted bacterial abundances (1,000 permutations, P value of 0.001)
and were used to construct cluster abundance vectors; an arbitrary scaling coefficient was used for
visualization purposes.

Data availability. All code for manta is available under the Apache-2.0 license at https://github
.com/ramellose/manta. An archived version of manta, together with code and synthetic data used for
writing the paper, is available from https://doi.org/10.5281/zenodo.3578106.
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FIG S7, PDF file, 0.03 MB.
FIG S8, PDF file, 0.1 MB.
FIG S9, PDF file, 0.1 MB.

ACKNOWLEDGMENTS
We acknowledge Didier Gonze for helpful feedback on the balance of signed

matrices and Jan Aerts for pointing out the “enemy’s enemy is my friend” principle.
This project was supported by the KU Leuven under grant no. STG/16/006. K.F.

received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program under grant agreement no.
801747.

A Clustering Algorithm for Weighted Networks

January/February 2020 Volume 5 Issue 1 e00903-19 msystems.asm.org 13

https://github.com/ramellose/manta
https://github.com/ramellose/manta
https://doi.org/10.5281/zenodo.3578106
https://msystems.asm.org


REFERENCES
1. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov

A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S,
Rymenans L, Verspecht C, De Sutter L, Lima-Mendez G, D’hoe K, Jonck-
heere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts
L, Zhernakova A, Wijmenga C, Raes J. 2016. Population-level analysis of
gut microbiome variation. Sci 352:560 –564. https://doi.org/10.1126/
science.aad3503.

2. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh
PJ, Lander ES, Mitzenmacher M, Sabeti PC. 2011. Detecting novel asso-
ciations in large data sets. Science 334:1518 –1524. https://doi.org/10
.1126/science.1205438.

3. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J,
Huttenhower C. 2012. Microbial co-occurrence relationships in the
human microbiome. PLoS Comput Biol 8:e1002606. https://doi.org/10
.1371/journal.pcbi.1002606.

4. Melián CJ, Bascompte J, Jordano P, Krivan V. 2009. Diversity in a complex
ecological network with two interaction types. Oikos 118:122–130.
https://doi.org/10.1111/j.1600-0706.2008.16751.x.

5. Thébault E, Fontaine C. 2010. Stability of ecological communities and the
architecture of mutualistic and trophic networks. Science 329:853– 856.
https://doi.org/10.1126/science.1188321.

6. Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome:
networks, competition, and stability. Science 350:663– 666. https://doi
.org/10.1126/science.aad2602.

7. Neutel AM, Heesterbeek JAP, Van de Koppel J, Hoenderboom G, Vos A,
Kaldeway C, Berendse F, De Ruiter PC. 2007. Reconciling complexity with
stability in naturally assembling food webs. Nature 449:599–602. https://
doi.org/10.1038/nature06154.

8. Suweis S, Simini F, Banavar JR, Maritan A. 2013. Emergence of structural
and dynamical properties of ecological mutualistic networks. Nature
500:449 – 452. https://doi.org/10.1038/nature12438.

9. Röttjers L, Faust K. 2018. Can we predict keystones? Nat Rev Microbiol
17:193. https://doi.org/10.1038/s41579-018-0132-y.

10. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC,
Xu ZZ, Ursell L, Alm EJ, Birmingham A, Cram JA, Fuhrman JA, Raes J, Sun
F, Zhou J, Knight R. 2016. Correlation detection strategies in microbial
data sets vary widely in sensitivity and precision. ISME J 10:1669 –1681.
https://doi.org/10.1038/ismej.2015.235.

11. Guidi L, Tara Oceans Consortium Coordinators, Chaffron S, Bittner L,
Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum JR,
Coelho LP, Espinoza JCI, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis
S, Picheral M, Poulain J, Searson S, Stemmann L, Not F, Hingamp P,
Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach
J, Wincker P, Acinas SG, Bork P, de Vargas C, Iudicone D, Sullivan MB,
Raes J, Karsenti E, Bowler C, Gorsky G. 2016. Plankton networks driving
carbon export in the oligotrophic ocean. Nature 532:465– 470. https://
doi.org/10.1038/nature16942.

12. Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, Müller
CL, Li H, Bonneau RA, Blaser MJ. 2016. Antibiotic perturbation of the
murine gut microbiome enhances the adiposity, insulin resistance, and
liver disease associated with high-fat diet. Genome Med 8:48. https://
doi.org/10.1186/s13073-016-0297-9.

13. Van Dongen S. 2000. A cluster algorithm for graphs. PhD thesis. Univer-
siteit Utrecht, Utrecht, Netherlands.

14. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. 2008. Fast unfolding
of communities in large networks. J Stat Mech 2008:P10008. https://doi
.org/10.1088/1742-5468/2008/10/P10008.

15. Kernighan BW, Lin S. 1970. An efficient heuristic procedure for partition-
ing graphs. The Bell Syst Tech J 49:291–307. https://doi.org/10.1002/j
.1538-7305.1970.tb01770.x.

16. Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/
10.1186/1471-2105-9-559.

17. Gibbons SM, Kearney SM, Smillie CS, Alm EJ. 2017. Two dynamic regimes
in the human gut microbiome. PLoS Comput Biol 13:e1005364. https://
doi.org/10.1371/journal.pcbi.1005364.

18. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. 2011. Marine
natural products. Nat Prod Rep 28:196 –268. https://doi.org/10.1039/
c005001f.

19. Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P,
Hacquard S. 2018. Microbial interkingdom interactions in roots promote

Arabidopsis survival. Cell 175:973–983. https://doi.org/10.1016/j.cell
.2018.10.020.

20. Ren D, Madsen JS, de la Cruz-Perera CI, Bergmark L, Sørensen SJ,
Burmølle M. 2014. High-throughput screening of multispecies biofilm
formation and quantitative PCR-based assessment of individual species
proportions, useful for exploring interspecific bacterial interactions. Mi-
crob Ecol 68:146 –154. https://doi.org/10.1007/s00248-013-0315-z.

21. Oliveira NM, Oliveria NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter
R, Kim W, Foster KR. 2015. Biofilm formation as a response to ecological
competition. PLoS Biol 13:e1002191. https://doi.org/10.1371/journal.pbio
.1002191.

22. Röttjers L, Faust K. 2019. manta—a clustering algorithm for weighted
ecological networks. bioRxiv https://www.biorxiv.org/content/early/2019/
10/17/807511.

23. Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A,
Khamiakova T, Van Sanden S, Lin D, Talloen W, Bijnens L, Göhlmann HWH,
Shkedy Z, Clevert D-A. 2010. FABIA: factor analysis for bicluster acquisition.
Bioinformatics 26:1520 –1527. https://doi.org/10.1093/bioinformatics/
btq227.

24. Brohee S, Van Helden J. 2006. Evaluation of clustering algorithms for
protein-protein interaction networks. BMC Bioinformatics 7:488. https://
doi.org/10.1186/1471-2105-7-488.

25. Wolfe BE, Button JE, Santarelli M, Dutton RJ. 2014. Cheese rind commu-
nities provide tractable systems for in situ and in vitro studies of
microbial diversity. Cell 158:422– 433. https://doi.org/10.1016/j.cell.2014
.05.041.

26. Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy
DJ, Alm EJ, Polz MF. 2018. High resolution time series reveals cohesive
but short-lived communities in coastal plankton. Nat Commun 9:266.
https://doi.org/10.1038/s41467-017-02571-4.

27. Xia LC, Ai D, Cram J, Fuhrman JA, Sun F. 2013. Efficient statistical
significance approximation for local similarity analysis of high-
throughput time series data. Bioinformatics 29:230 –237. https://doi.org/
10.1093/bioinformatics/bts668.

28. Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, Fuhrman
JA, Sun F. 2011. Extended local similarity analysis (eLSA) of microbial
community and other time series data with replicates. BMC Syst Biol
5(Suppl 2):S15. https://doi.org/10.1186/1752-0509-5-S2-S15.

29. Esmailian P, Jalili M. 2015. Community detection in signed networks: the
role of negative ties in different scales. Sci Rep 5:14339. https://doi.org/
10.1038/srep14339.

30. Harrell FE, Jr. 2019. Hmisc: Harrell miscellaneous, r package version 4.2-0.
https://CRAN.R-project.org/package�Hmisc.

31. Hagberg A, Swart P, Chult D. 2008. Exploring network structure, dynam-
ics, and function using NetworkX. Los Alamos National Laboratory
(LANL), Los Alamos, NM.

32. Oliphant TE. 2006. A guide to NumPy, vol 1. Trelgol Publishing, Spanish
Fork, UT.

33. McKinney W. 2010. Data structures for statistical computing in python,
p 51–56. In Proceedings of the 9th Python in Science Conference,
Austin, TX.

34. Jones E, Oliphant T, Peterson P. SciPy: open source scientific tools for
Python 2001–. http://www.scipy.org/. Accessed 6 November 2019.

35. Csardi G, Nepusz T. 2006. The igraph software package for complex
network research. InterJournal Complex Systems:1695. http://igraph.org.

36. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS One
8:e61217. https://doi.org/10.1371/journal.pone.0061217.

37. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D,
Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E,
Wagner H. 2019 vegan: community ecology package, r package version
2.5-5. https://CRAN.R-project.org/package�vegan.

38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: ma-
chine learning in Python. J Machine Learning Res 12:2825–2830.

39. Pan V. 1984. How can we speed up matrix multiplication? SIAM Rev
26:393– 415. https://doi.org/10.1137/1026076.

40. Dongarra JJ, Du Croz J, Hammarling S, Hanson RJ. 1988. An extended set
of FORTRAN basic linear algebra subprograms. ACM Trans Math Softw
14:1–17. https://doi.org/10.1145/42288.42291.

Röttjers and Faust

January/February 2020 Volume 5 Issue 1 e00903-19 msystems.asm.org 14

https://doi.org/10.1126/science.aad3503
https://doi.org/10.1126/science.aad3503
https://doi.org/10.1126/science.1205438
https://doi.org/10.1126/science.1205438
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1111/j.1600-0706.2008.16751.x
https://doi.org/10.1126/science.1188321
https://doi.org/10.1126/science.aad2602
https://doi.org/10.1126/science.aad2602
https://doi.org/10.1038/nature06154
https://doi.org/10.1038/nature06154
https://doi.org/10.1038/nature12438
https://doi.org/10.1038/s41579-018-0132-y
https://doi.org/10.1038/ismej.2015.235
https://doi.org/10.1038/nature16942
https://doi.org/10.1038/nature16942
https://doi.org/10.1186/s13073-016-0297-9
https://doi.org/10.1186/s13073-016-0297-9
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1371/journal.pcbi.1005364
https://doi.org/10.1371/journal.pcbi.1005364
https://doi.org/10.1039/c005001f
https://doi.org/10.1039/c005001f
https://doi.org/10.1016/j.cell.2018.10.020
https://doi.org/10.1016/j.cell.2018.10.020
https://doi.org/10.1007/s00248-013-0315-z
https://doi.org/10.1371/journal.pbio.1002191
https://doi.org/10.1371/journal.pbio.1002191
https://www.biorxiv.org/content/early/2019/10/17/807511
https://www.biorxiv.org/content/early/2019/10/17/807511
https://doi.org/10.1093/bioinformatics/btq227
https://doi.org/10.1093/bioinformatics/btq227
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1016/j.cell.2014.05.041
https://doi.org/10.1016/j.cell.2014.05.041
https://doi.org/10.1038/s41467-017-02571-4
https://doi.org/10.1093/bioinformatics/bts668
https://doi.org/10.1093/bioinformatics/bts668
https://doi.org/10.1186/1752-0509-5-S2-S15
https://doi.org/10.1038/srep14339
https://doi.org/10.1038/srep14339
https://CRAN.R-project.org/package=Hmisc
http://www.scipy.org/
http://igraph.org
https://doi.org/10.1371/journal.pone.0061217
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1137/1026076
https://doi.org/10.1145/42288.42291
https://msystems.asm.org


41. Harary F. 1953. On the notion of balance of a signed graph. The Mich
Math J 2:143–146. https://doi.org/10.1307/mmj/1028989917.

42. Harary F, Kabell JA. 1980. A simple algorithm to detect balance in signed
graphs. Math Soc Sci 1:131–136. https://doi.org/10.1016/0165-4896(80)90010-4.

43. Frantz TL, Carley KM. 2017. Reporting a network’s most-central actor
with a confidence level. Comput Math Organ Theory 23:301–312. https://
doi.org/10.1007/s10588-016-9229-x.

44. Girvan M, Newman ME. 2002. Community structure in social and bio-

logical networks. Proc Natl Acad Sci U S A 99:7821–7826. https://doi.org/
10.1073/pnas.122653799.

45. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza
Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB,
Sanders JG, Shorenstein J, Holste H, Petrus S, Robbins-Pianka A, Brislawn
CJ, Wang M, Rideout JR, Bolyen E, Dillon M, Caporaso JG, Dorrestein PC,
Knight R. 2018. Qiita: rapid, web-enabled microbiome meta-analysis. Nat
Methods 15:796 –798. https://doi.org/10.1038/s41592-018-0141-9.

A Clustering Algorithm for Weighted Networks

January/February 2020 Volume 5 Issue 1 e00903-19 msystems.asm.org 15

https://doi.org/10.1307/mmj/1028989917
https://doi.org/10.1016/0165-4896(80)90010-4
https://doi.org/10.1007/s10588-016-9229-x
https://doi.org/10.1007/s10588-016-9229-x
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1038/s41592-018-0141-9
https://msystems.asm.org

	RESULTS
	manta implements features for clustering weighted and noisy networks. 
	manta equals or outperforms other algorithms on synthetic data sets. 
	manta identifies biologically relevant groups in cheese rinds. 
	manta detects global trends in coastal plankton communities. 

	DISCUSSION
	MATERIALS AND METHODS
	Clustering by graph traversal. 
	Weak assignments and robustness. 
	Synthetic data sets. 
	Clustering algorithms. 
	Cheese rind case study. 
	Longitudinal coastal plankton case study. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

