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ABSTRACT 

Background- Triple-negative breast cancer is a prevalent breast cancer subtype with the lowest 
5-year survival. Several factors contribute to its treatment response, but the inherent molecular and 
cellular tumor heterogeneity are increasingly acknowledged as crucial determinants.  
Methods- Spatial transcriptomic profiling was performed on FFPE tissues from a retrospective, 
treatment-naive group of women with differential prognoses (17 with >15 years survival- good 
prognosis (GPx) and 15 with <3 years survival-poor prognosis (PPx)) using GeoMX® Digital 
Spatial Profiler. Regions of interest were segmented on pan-cytokeratin and analyzed for tumor 
and stromal components, probed using GeoMx human whole transcriptome atlas (WTA) panel. 
Data quality control, normalization, and differential analysis was performed in R using 
GeomxTools and linear mixed models. Additional analyses including cell-type deconvolution, 
spatial entropy,  functional enrichment, TF-target / ligand-receptor analysis and convolution neural 
networks were employed to identify significant gene signatures contributing to differential 
prognosis. 
Results- Here we report on the spatial and molecular heterogeneity underlying differential 
prognosis. We observe that the state of the epithelia and its microenvironment (TME) are 
transcriptionally distinct between the two groups. Invasive epithelia in GPx show a significant 
increase in immune transcripts with the TME exhibiting increased immune cell presence (via IF), 
while in PPx they are more metabolically and translationally active, with the TME being more 
mesenchymal/fibrotic. Specifically, pre-cancerous epithelia in PPx display a prescience of 
aggressiveness as evidenced by increased EMT-signaling. We identify distinct epithelial gene 
signatures for PPx and GPx, that can, with high accuracy, classify samples at the time of diagnosis 
and likely inform therapy.   
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Conclusions- To the best of our knowledge, this is the first study to leverage spatial 
transcriptomics for an in-depth delineation of the cellular and molecular underpinnings of 
differential prognosis in TNBC.  Our study highlights the potential of spatial transcriptomics to 
not only uncover the molecular drivers of differential prognosis in TNBC but also to pave the way 
for precision diagnostics and tailored therapeutic strategies, transforming the clinical landscape for 
this aggressive breast cancer subtype. 
 
INTRODUCTION 

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer (BC) subtype, 
characterized by <1% expression of estrogen and progesterone receptors (ER and PR) and wild-
type expression of HER2/neu. While TNBC generally carries a poor prognosis[1], not all TNBCs 
are fatal. Treatment efficacy, prognosis, and subsequent survival are increasingly acknowledged 
to be affected by interactions of the tumor cells with its surrounding cellular milieu (tumor 
microenvironment, TME)[2,3]. High-throughput studies over the past decade have revealed the 
molecular and cellular heterogeneity of TNBC with implications for therapy[4–7]. Primarily based 
on bulk gene expression data, these studies highlight inter-patient heterogeneity and tumor 
immunogenicity but offer limited insights into specific interactions within the tumor ecosystem 
including molecular interactions between the malignant cells, stromal components (e.g., 
fibroblasts, adipocytes, pericytes, immune cells), vasculature, or the influence of environmental 
factors like hypoxia, stress, or extent of immune infiltration. Recent advancements in single-cell 
and spatial technologies address the limitations of bulk profiling technologies and offer increased 
granularity of the complex multidimensional interactions in tissue[8–16]. In particular, high-
throughput spatial transcriptomic (ST) technologies such as GeoMX® Digital Spatial Profiler 
(DSP), spotted ST arrays, and Visium 10X allows researchers to uniquely characterize the 
molecular and cellular basis of these complex interactions while conserving the tissue architecture 
(context specificity), in a high-throughput manner[13–15,17]. Though the use of ST in 
deconvoluting TNBC is in its infancy, studies have begun to provide novel insights. For instance, 
Wang et al[13] in their preprint, leverage previously published Lehmann molecular classification 
to highlight intra-tumoral spatial heterogeneity in 92 TNBC samples using spotted ST arrays. They 
show the differential contribution of the tumor and TME to the molecular subtypes and identify 
the presence of 14 major combinations of the molecular subtypes (9 major “ecotypes”) in TNBC. 
Using Visium 10X, Bassiouni et al[14] resolve the transcriptomic state in a racially diverse TNBC 
cohort (28 samples, 14 women) and reveal consistent patterns of spatial exclusion and dependency 
in TNBC, with hypoxia and immune expression distinct across races. These studies provide a 
broad understanding of the cellular architecture of the TNBC tumor ecosystem while leveraging 
previously published molecular classifications to provide insights into the molecular 
underpinnings of the spatially resolved sections. In contrast to the approaches outlined above, we 
propose using spatial transcriptomics to identify regions of interest (ROIs) with epithelial cells in 
distinct pathological states and establish functional states for these epithelia and their surrounding 
TME. By applying it to a retrospective group of treatment-naïve women with differential 
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prognoses, we seek to gain deeper insights into the tumor transcriptional landscape informing 
prognoses and survival. Further, we hypothesize that the aggressive biology that dictates 
subsequent survival and response to therapy in TNBC is, to some extent, hardwired into the 
genome and can be detected in the transcriptional state of the cellular landscape. This study, to our 
knowledge, represents the first attempt to systematically resolve the spatial landscape and 
molecular underpinnings of TNBC with differential prognoses.  
In this study, samples from two retrospective treatment-naïve groups with 17 good prognosis 
women with >15 yr. overall survival (henceforth referred to as GPx samples), and 15 poor 
prognosis women with <3 yr. overall survival (PPx) were acquired at the time of diagnosis and 
analyzed using GeoMX® DSP. We capture over 700 ROIs across different spatial regions of the 
tumor, with varying immune infiltration patterns and tumor epithelia in diverse pathological states 
along the continuum of tumorigenesis. We further segment the ROIs on cytokeratin 15 (CK15) to 
independently investigate the epithelia and surrounding cellular milieu. We develop and adopt a 
unique annotation schema to consistently categorize the ROIs (Extended Data Fig 1a) on the 
histomorphology and design our downstream analysis. Our results show that the epithelia are 
transcriptionally distinct between the GPx and PPx groups - GPx (invasive) epithelia show a 
significant increase in immune transcript expression, while PPx (invasive) epithelia are more 
metabolically and translationally active, indicative of rapid disease progression. PPx epithelia 
show a transcriptionally prominent transition from pre-invasive states to invasiveness with 
activation of pathways associated with tumor progression, alluding to the prescience of 
aggressiveness in the PPx pre-invasive epithelia. Our analyses further emphasize that the cellular 
composition of the TME is distinct in GPx and PPx women, with GPx exhibiting an increased 
immune cell presence and the PPx displaying a more mesenchymal-/fibrotic and presence of 
exhausted CD8 T cells in their TME. We finally learn (using deep learning) a distinct epithelial 
multi-gene signature that can, with high accuracy classify samples as GPx or PPx, at the time of 
diagnosis and inform therapy (Fig. 1a).   

RESULTS 

Study design and development of a ROI annotation strategy 

Utilizing GeoMX® DSP we spatially profiled the cellular heterogeneity in 32 TNBC samples with 
documented differential prognoses (retrospective).  TNBC samples were defined by <1% protein 
expression of ER and PR by immunohistochemistry (IHC) and no evidence of HER2/neu gene 
overexpression or amplification by combining IHC and FISH. All samples were reviewed by a 
single dedicated pathologist (D.S.) FFPE breast tissues of 17 treatment-naïve women GPx, and 15 
treatment-naïve PPx women were chosen from the Louisiana Tumor Registry (IRB#1169). In GPx, 
8 women self-identified race as Black, and 9 as White, while in PPx 5 women self-identified as 
Black and 10 as White. The samples were H&E stained as well as subject to immunofluorescence 
(IF) imaging using 4 IF antibodies to identify various cell types including DAPI (blue) to identify 
nuclei, CD3 (yellow) for T-cells, CD45 (red) pan-immune cells, and pan-cytokeratin, CK15 
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(green) for epithelial cells (e.g. in Fig. 1b).  Regions of illumination/interest (ROIs, diameter=300 
microns) were selected by pathologist/trained clinician at the tumor interface, within the center of 
the tumor (with or without immune cells), and when available, regions distant from the center and 
edge (isolated foci). Regions with morphologically normal and/or precancerous changes in the 
epithelial cells were also selected as ROIs. GeoMX additionally offers the ability to segment areas 
of illumination/interest (AOIs) within ROIs using fluorescently labeled antibodies to 
independently transcriptionally profile each segmented area. We segmented each ROI on the 
cytokeratin antibody (CK15) to identify epithelial cells within each ROI, henceforth referred to as 
the PanCK+ AOI/segment, and all the negative space captured with the ROI as PanCK- 
AOI/segment representing the surrounding tumor milieu. Exemplar ROIs with varying immune 
infiltration, and pathological epithelial states, taken from different regions of the excisions are 
shown in Fig. 1c.   

We identified a total of 717 regions of interest (ROIs, 345 PPx and 372 GPx) and captured a total 
of 1424 AOIs (737 GPx and 687 PPx, Fig. 1d) from the 32 samples, with uniform distribution of 
segments across samples (Fig. S1a). To meaningfully, consistently and systematically document 
and categorize the ROIs within the slides and across the samples, we developed and adopted a 
unique annotation schema and used this in our downstream analysis. Each of the 717 ROIs were 
annotated using the S-E-R-P-L-D-N annotation schema. Briefly, each ROI was annotated by a 
pathologist/clinician from IF images, with the following descriptors: Sample (S), Region (R), 
Epithelial type (E), Immune cell localization (L), Immune cell population (P), Immune cell 
distribution (D) and Immune cell number (N) as detailed in Supplementary Table 1. These 
descriptors allowed us to uniquely classify each ROI for downstream algorithmic processing.  We 
probed the 717 ROIs/1424 AOIs using GeoMX Whole Transcriptomic Atlas (GeoMX Hu 
WTA™), containing 18815 probes. The 1424 DCC files generated were subsequently processed 
using the GeomxTools[18] (see Methods for details). Probe and gene QC (see Methods) of the 
1424 AOIs resulted in a filtered data object containing 10150 genes across 1151 AOIs (604 GPx 
and 547 PPx, Fig. 1e, Extended Data Fig 1b).  Extended Data Figs. 1c and d summarize the 
distribution of ROIs pre- and post- QC, from different regions of the slide (center, edge and isolated 
foci), as well as AOIs with differing epithelial morphology (Invasive I, and others such as A, D, J, 
N, and O). Specifically, given their distribution, we only emphasize ROIs that contain epithelial 
cells that exhibit atypia (A); invasiveness/transformed (I) and appear normal (adjoining areas of 
atypia/invasiveness (J)) to delineate the state of the tumor ecosystem and interactions with the 
surrounding TME.  

Most of the ROIs from GPx and PPx samples, post-processing, showed separation between the 
segments (AOIs), indicative of differences in the underlying biology of the cellular landscape 
captured by segmenting, (Fig. 1f). Clustering of the pooled signal from each ROI (average 
expression across PanCK+ and PanCK- AOIs) captured the inter-patient and intra-tumoral 
heterogeneity of the TNBC set (Fig. S1e). To better dissect this heterogeneity, we characterized 
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the molecular underpinnings and state of the tumor and its TME as captured by the PanCK- and 
PanCK+ segments and the interactions that exist across them described in the following sections.  
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Figure 1. Study design and processing: a. Schematic of the study design and processing is presented. 17 good prognosis (GPx) 
and 15 poor prognosis (PPx) TNBC samples were selected, and H&E stained, with regions of interest (ROIs, purple dots show in 
IF images) carefully selected using a standardized approach. 4 channels/antibody stains were utilized to visualize the cells in IF 
(PanCK+ green, CD3+ yellow, CD45+ red, DAPI blue). Selected ROIs were subject to GeoMX profiling, and the .DCC files 
subsequently generated was QC-ed and processed using GeomxTools. Q3 normalized data was utilized for downstream processing 
and analysis, unless otherwise stated. b. Exemplar H&E slide with the IF imaging c. Exemplar ROIs on the slide in b are shown 
here. ROIs were selected by pathologist/trained clinician at the tumor interface, within the center of the tumor (with or without 
immune cells), and if available, regions distant from the center and edge (isolated foci). If available, regions with morphologically 
normal and/or precancerous changes (PanCK+), and with varying immune infiltration patterns (CD3+, Cd45+) regions were also 
chosen for ROIs. d. Barplot showing the distribution of post processed AOIs captured from different annotated regions of the slides 
) e. Barplot summarizing the distribution of the post processed AOIs, showing a fairly equal number of PanCK+ and PanCK- 
segments (604 GPx and 547 PPx AOIs)f. UMAP of AOIs from all the GPx and PPx samples post processing, showing fair 
separation between the segments, indicative of difference in underlying biology of the cellular landscape captured by segmenting, 
across a majority of the ROIs in both GPx and PPx. 
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Deconvoluting the cell-type repertoire of the tumor microenvironment in good and 
poor prognosis TNBC 

Spatial segmentation of each ROI on PanCK captured the non-epithelial cell milieu in the PanCK- 
region, including stromal cells and the tumor-infiltrating lymphocytes (TILs), representative of the 
TME in our TNBC samples. Specifically, the 313 GPx and 272 PPx PanCK- AOIs captured 
showed varying levels of immune infiltration as detected using the CD3+ (yellow channel) and 
CD45+ (red channel) via immunofluorescence imaging. Intensity-based immune quantification 
(red channel) showed a significant difference between GPx and PPx(p<0.05, albeit the yellow 
channel being statistically non-significant) (Fig. 2a, b). Recent research has suggested a differential 
immune cell distribution between tumor edge and center may influence tumor 
aggressiveness[34]and prognosis in other cancers. We observed prominent transcriptional 
dysregulation in the TME between AOIs from center to edge in both GPx (albeit not statistically 
significant, Fig. S2a) and PPx (Fig. 2c, Supplementary Table 2). In PPx, however, the TME of 
AOIs from the center (vs edge) showed a distinct increase (adj p <0.05) in genes associated with 
metabolic and cellular stress and remodeling including ENO1, CYC1, ATP5F1C, HSPA1B, and 
AHSA1. Increased expression of genes associated with tumor survival and immune evasion was 
seen at the edge (vs center) including genes such as NR3C1, BCL2, and AP3BP1. We observed 
no statistically (fdr<0.05) significant difference between the TME of GPx and PPx, chosen at 
different regions of the tumor slide- Center, edge and isolated foci (Fig. S2b). A comparison of the 
genes expressed in the PanCK- segments irrespective of the spatial region between GPx and PPx 
(M-A plot, Fig. 2c) however showed a higher relative expression in GPx-TME for genes involved 
in immune response such as B2M, CD74, immunoglobulins and HLA-DRB1; while PPx-TME 
showed increased expression of genes associated with abnormal cell morphology and EMT 
including PTBP1, COL1A1, COL1A2, COL6A2, FLNA, MYH9, and VIM. 

To gain quantitative insights into the differential contribution of various cell types to the TME in 
GPx and PPx TNBC, we utilized SpatialDecon[35] v1.1. As outlined in Methods, we first 
generated a custom reference profile matrix of TNBC (see Methods for details), for use in 
SpatialDecon. Utilizing this, we estimated the abundances of 7 major cell types (T-cells, B- cells, 
plasmablasts, myeloid, mesenchymal cells (perivascular-like (PVLs) and fibroblasts) and 
endothelial cells) for both GPx and PPx samples (Fig. 2d). Correlation of the deconvoluted T-cell 
proportions with the proportion of T-cells captured via IF (CD3+ channel intensities in GPx and 
PPx (average r2~0.7, Fig. 2e, see Methods) showed good concordance. A visual inspection of the 
abundances (Fig. 2d) highlighted: 1. the presence of a richer immune repertoire (T, B, and 
plasmablasts) within GPx, and a richer myeloid cell presence, in AOIs that showed immune 
infiltration; 2. higher mesenchymal content (fibroblast and PVL) within PPx. Based on the analysis 
of quantile distributions (IQR and range) of cell type frequencies we found that GPx AOIs exhibit 
a slightly more varied and richer immune presence (myeloid cells, T, B, and plasmablasts), 
consistent with the visual summary (Fig. S2c, Supplementary Table 3). A similar analysis of PPx 
AOIs likewise showed a stronger and more varied mesenchymal presence (PVL+Fibroblasts) 
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compared to GPx.  Our group had previously subtyped 31 of the 32 patients profiled here[7] into 
three distinct groups (CC1- increased immune infiltration; CC2- immune desert and CC3- 
increased fatty acid/nuclear receptor signaling) using bulk-expression measurements Interestingly, 
a higher proportion of patients in the CC2 and CC3 subgroups were identified within our PPx 

(~66% of the samples). Furthermore, utilizing the spatial deconvolution calculated above, we 

Figure 2.  Immune deconvolution of the tumor microenvironment in good (GPx) and poor prognosis (PPx). a. and b. 
Quantification of CD45 and CD3 channel intensities in the PanCK- segments. c. Differentially expressed genes captured in the 
comparison of AOIs from center (C) to edge (E) from the PanCK- segments in PPx. Gene names are highlighted when p.adj < 
0.05. d. log –fold change (M) to average expression (A) of GPx vs PPx PanCK- AOIs. The top 100 genes are highlighted in red, 
with the top 30 named on the plot. PPx shows a more distinct increase in expression of genes that are actively involved in EMT 
including PTMA, VIM, PTBP1 etc. e. The normalized frequency of immune cell type deconvoluted in 313 GPx (top panel) and 272 
PPx (bottom panel) PanCK- AOIs generated using SpatialDecon and a custom reference profile matrix. We estimated the 
abundance of 7 major immune cell types (T-cells, B- cells, plasmablasts, myeloid, PVLs and fibroblast (mesenchymal cell types) 
and endothelial cells). f. Correlation between the CD3+ channel intensity captured and T cell deconvolution in the PanCK- 
segments, captured in the GPx (red) and PPx (blue) samples. g. Sample level estimation of deconvoluted cell frequencies for GPx, 
with the names corresponding the subtype identified in our earlier study. h. Similarly, for PPx. The red box highlights the reduced 
presence on T-cells by deconvolution in women classified as CC2.  
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averaged frequencies across all AOIs for each patient in GPx (Fig. 2g) and PPx (Fig. 2f) (see 
Methods for details). We observed that PPx women subtyped into the CC2 subgroup showed a 
distinct lack of T-cells in the TME, consistent with the definition of CC2 (red box, Fig. 2f). GPx 
had a higher proportion of samples belonging to the CC1 subtype (~64%), which we have 
previously shown to correlate with better prognosis. Given the differential T-cell distribution 
between the prognostic groups, we examined the nature of the T-cell enriched AOIs in the 
following section. 

GPx and PPx TNBC exhibit distinctly different cell states in the TME with significant 
immune infiltration 

 

Recent research suggests that only a small portion of the TILs exist in a tumor-reactive state, 
implying that a majority of TILs are quiescent and not functional[36]. We asked if there was a 
difference in the functional state of the TILs and surrounding stroma, within ROIs with significant 
T-cell infiltration identified by deconvolution, across GPx and PPx, irrespective of the epithelial 
state captured within the AOI (A, J, or I). To control for the intra-patient heterogeneity, we chose 
patient samples that showed greater than a third of their AOIs with a significant proportion of T-
cells (>0.75 quantiles) confirmed via IF, resulting in 61 AOIs from 5GPx women (Fig. S2c) and 
40 AOIs from 3 PPx women (Fig. S2d) and, henceforth referred to as the Tenr subsets. To 

 Figure 3. Establishing the transcriptional states of immune cells in the T-enr subset a. SPI spatial partial information (SPI) 
(measure of spatial entropy) calculated for CD3+ vs PanCK+ channels in GPx-Tenr (red) and PPx-Tenr (blue).  b. The 
differentially expressed genes identified by comparing the expression of GPx and PPx PanCK- AOIs. c. Normalized distribution of 
cell states identified using EcoTyper in AOIs that were enriched for immune (T) cell infiltration within GPx and h. within PPx. d. 
A table summarizing the cell states that are preferentially increased within GPx-Tenr and PPx-Tenr as captured in c.  e. A chord 
diagram highlighting the top 50 unique ligand-receptor (L-R) interactions (at corr>0.25, q<0.05) identified using BulkSignalR, 
within the TME of the GPx- Tenr (left) and PPx- Tenr (right), respectively. 
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investigate the spatial organization of the immune cells in these Tenr subsets across GPx and PPx, 
we performed a spatial entropy analysis on immunofluorescent images of these regions. We 
calculated the spatial partial information (SPI), a measure of how much spatial organization can 
explain the distribution of staining. In the GPx-Tenr subset, CD3+ staining showed significantly 
higher SPI with PanCK+ staining at distances of ~28 and 70µm (Fig. 3a). The distance here 
signifies the average pairwise distance from the distribution profile. A higher SPI implies that the 
distribution of T-cells is more dependent on tumor cell organization. We see a higher SPI in GPx-
Tenr than PPx-Tenr implying increased interaction of T-cells with tumor cells in the GPx-Tenr subset.  

Differential analysis of genes expressed in the PanCK- segments of GPx-Tenr w.r.t PPx-Tenr (at a 
restrictive threshold of adj p <0.05, see Methods), showed significant upregulation of genes such 
as CD37, MAPK3, MARS1 and GID8 in PPx, that have been previously shown to correlate with 
poor prognosis (Fig. 3b). However, these measurements (and results) provide a unique challenge 
to discretizing the “transcriptomic state” of the various deconvoluted immune cell types, as the 
measurements are made on tens to hundreds of nuclei and across cell types within the PanCK- 
segments. To overcome this challenge, we adopted a manifold approach to characterizing the 
transcriptional states for the deconvoluted cell types in GPx and PPx.  We first leveraged and 
adapted a recently published machine learning framework called EcoTyper[26], which defines 
distinct functional cell states for various cell types in carcinomas, using publicly available bulk 
expression data (see Methods). Using EcoTyper, and the gene expression measured within the 
PanCK- segments, we identified that a majority of the cell types exist in similar cell states within 
both GPx and PPx (Fig. 3c, See Methods). For instance, most of the fibroblasts exist in state S05, 
while B cells exist in naïve (S01) and activated (S02 and S05) states. Notably, however, there are 
certain cell states more pronounced within PPx-Tenr (tabulated in Fig. 3d). For instance, fibroblasts 
in PPx-Tenr showed increased presence of myofibroblast-like (S01), CAF1 (S03), and pro-
migratory states (S08).  A higher proportion of AOIs were found to be in the CD8 T-exhausted 
state (S03) within PPx- Tenr. Additionally, we observed a significant difference in the average 
expression of cell-state markers (see Methods) for several of these unique states for instance, CD8 
T cells in S03 in PPx had increased expression compared to AOIs in S03 within GPx (Fig. S2e).  
Next, utilizing BulkSignalR[27] we identified 123 and 69 ligand-receptor (L-R) interactions (at 
corr>0.25, q<0.05, see Methods) that are uniquely exhibited in the TME of the GPx- Tenr and PPx- 
Tenr, respectively (Fig. 3e, Supplementary Table 4). Cell types that were most correlated with each 
LR-Interactions based on the deconvoluted abundances were also computed. Specifically, several 
of the L-R interactions uniquely identified within the PPx-Tenr stroma such as COL1A1-CD44,  
MMP9-CD44, and SPP1-ITGAV (Fig. 3e) are known to correlate with poor prognosis, a more 
mesenchymal tumor characterized by aggressive biology[37–39] of tumors, consistent with 
EcoTyper results. 

Characterizing the epithelial cell states in good prognosis and poor prognosis TNBC 

The PanCK+ segments captured via GeoMX DSP allowed us unprecedented insights into the state 
of the epithelial cells within GPx and PPx. Broad characterization of the cell states was first 
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performed using single-sample GSEA[40] (ssGSEA, see Methods) on 291 GPx and 275 PPx 
epithelial AOIs (PanCK+) (Fig. S3). ssGSEA results highlighted a prominent increase in 
mechanisms associated with proliferation, DNA repair and metabolism within the invasive 
epithelia, in both GPx and PPx (Fig. S3). The AOIs with non-invasive epithelia in both subsets 
were more prominently associated with signaling cascades involved in EMT including WNT β-
catenin, Notch, and KRAS signaling. We also observed that a majority of the AOIs with tumor 
cells (or invasive epithelia (I)) clustered distinctly from AOIs with other epithelial types, in both 
GPx and PPx, irrespective of the region. 

To improve our signal-to-noise ratio and emphasize molecular mechanisms that are significantly 
differential between GPx and PPx epithelia, we utilized non-negative matrix factorization[41] (see 
Methods) to reduce the number of features. 1712 consensus features (across 291 GPx PanCK+ 
AOIs and 1677 consensus features across 275 PPx PanCK+ AOIs see Methods, Supplementary 
Table 5) were identified and used for all further downstream analyses of the epithelial state. In the 
following sections, we sought to answer three broad biological questions about the epithelial cell 
state. 1. Does the tumor cell state dictate prognosis and can we define a transcriptional program 
underlying annotated epithelial states? 2. Is there a prescience of aggressive biology in pre-
invasive states? 3. Can we identify a distinct tumor epithelial cell signature underlying each 
prognostic group?  
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A distinct transcriptional profile underlies invasive tumor epithelia with differential 
prognosis  

Epithelial tumors are characterized by rapid growth and differentiation and exist in varying states 
across the tumor. We hypothesize that the trajectory followed by epithelial cells from a non-
invasive state to an invasive state differs in groups with differential prognosis, and subsequently 
proscribe prognosis.  

As a first step, we assessed if the state of the tumor cell (invasive epithelia) is informed by the 
spatial location of the chosen ROIs (center or edge) of the tumor (Fig. 4a, Fig. S4a). A comparison 
of tumor cells (AOIs) from the center of the tumor to those at the edge of the tumor showed no 
statistically significant differences (at fdr<0.05) in either GPx or PPx patients (Fig.  4b). These 
indicated that the transcriptional state of the tumor epithelia (I) is independent of the spatial 
context. Next, we identified transcriptional programs underlying the invasive (tumor) epithelial 
state by comparing them with normal adjacent epithelia in both GPx and PPx (Fig. 4c, see 
Methods). A significant upregulation of genes (FDR <0.05) was observed in invasive epithelia, 
irrespective of prognosis, and included several histones such as H3C15, H4C15, H1-5, H2AC19, 
H2AZ1, H3C7; genes associated with cytoskeletal stability and cell cycle control including 
TMSB10, STMN1, CDKN2A were also highly differentially regulated (Fig. 4c, Supplementary 
Table 6). A closer inspection of the upregulated DEGs in the invasive epithelia of PPx and GPx 
(PPx-I and GPx-I), showed a large degree of overlap (191, Fig. 4d), with the overlapping genes 
being enriched for proliferation (G2M checkpoint, MYC targets, E2F targets, mTORC1 signaling, 
Fig. S4b). This finding is suggestive of a highly dynamic cell state of invasive epithelia compared 
to its normal-adjacent counterparts.   

Interestingly, however, DEGs uniquely dysregulated within each prognostic group, compared to 
their normal adjacent showed activation of distinct programs. Notably, uniquely differentially 
expressed genes in the GPx invasive epithelia (155/346) were identified to belong to a tightly 
connected network of interacting genes (PPI enrichment adj p <10-16, Fig. 4e, Fig. S4c) associated 
with immune signaling, antigen processing and presentation (APC), and cellular adhesion 

Figure 4.  Characterizing the tumor cell state. a. Distribution of AOIs with invasive epithelia that were captured in the center 
(C), edge (E) and isolated foci (F) of the tumor samples in GPx and PPx. b. A comparison of consensus gene features in tumor 
cells (AOIs with invasive epithelia) from center of the tumor to those at the edge of the tumor showed no statistically significant 
differences (at FDR<0.05) in either GPx or PPx patients. c. Differential gene expression identified significant transcriptional 
dysregulation in invasive epithelia compared to normal-adjacent epithelia from GPx (204 AOIs, left) and PPx (184 AOIs, right). 
d. A Venn highlighting the overlap in genes upregulated within the invasive epithelia from GPx (GPx-I) and PPx (PPx-I). e. 
Protein-protein interaction network generated using the uniquely dysregulated genes GPx-I (155/346) form a tightly connected 
network of interacting genes PPI enrichment adj p <10-16) associated with immune signaling, antigen processing and 
presentation (APC), and cellular adhesion including genes such as MX1, IFI6, CTSB/D, HSP90AA1, PSMB1, PSMC4, PSMC2, 
ANXA2/5. f. Box plot of the mean expression of 54 immune genes identified within the PPI shows a significant increase in GPx-
I AOIs compared to the PPx-I AOIs. g. Mean expression of the recently published optimized immune response signature (oIRS) 
in GPx-I and PPx-I, shows a statistically significant preferential increase in the tumor epithelia of GPx-I compared to PPx-I h. 
A PPI of uniquely upregulated genes in PPx-I showed evidence for extensive metabolic reprogramming and chromatin 
remodeling including genes such as MKI67, NDUFAB1, NDUFS6, HSPA9, AKT2, PFKP, PRDG2, MDH1/2, ATP5F1C, CTPS1, 
LDHA (mitochondrial and cellular metabolism, fdr<0.001) and AURKB, KIF2C, KIF1C, H2As, TPX2 (chromatin 
remodeling/organization, fdr<0.001 
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including genes such as MX1, IFI6, CTSB/D, HSP90AA1, PSMB1, PSMC4, PSMC2, ANXA2/5. 
Transcription factors (TFs) such as API1, FOS, and STAT3 were identified as TFs (using 
DecoupleR[31]) driving this response of the upregulated DEGs identified uniquely in GPx-I (Fig. 
S4d). STAT3 has been previously reported to correlate with favorable prognosis[42]. Furthermore, 
the 54 immune transcripts identified within this module showed significantly higher expression in 
GPx-I compared to PPx-I epithelia (Fig. 4f, Supplementary Table 7).  These results are exciting in 
light of the recent research that has indicated immune mimicry of tumor epithelial cells is 
widespread in tumors and is portrayed as a feature distinct to oncogenic transformation[42,43]. 
Utilizing the recently published optimized immune response signature (oIRS, Supplementary 
Table 7) of tumor cells[42], we further observed a preferential increase of oIRS in the tumor 
epithelia of  GPx-I compared to PPx-I (Fig. 4g).  Several components also involved in APC were 
uniquely increased in GPx-I. APC has been previously suggested to be an independent prognostic 
factor in BC[42]. A similar analysis of the uniquely upregulated genes in PPx-I showed evidence 
for extensive metabolic reprogramming and chromatin remodeling including genes such as 
MKI67, NDUFAB1, NDUFS6, HSPA9, AKT2, PFKP, PRDG2, MDH1/2, ATP5F1C, CTPS1, 
LDHA (mitochondrial and cellular metabolism, fdr<0.001) and AURKB, KIF2C, KIF1C, H2As, 
TPX2 (chromatin remodeling/organization, fdr<0.001) (Fig. 4h, Fig. S4e). Transcription Factor 
(TF)-target enrichment analysis of the uniquely upregulated DEGs showed increased activity of 
TFs across a majority of the AOIs, such as HIF1A, MYC and AR that are known to be crucial 
determinants of oxidative, glycolytic and lipid metabolism[44–46] (Fig. S4f).  

Pre-invasive epithelia show evidence of aggressive biology in poor prognosis TNBC 

Based on our earlier observation that the tumor epithelial (invasive) cell state is different between 
groups that display differential prognosis, we hypothesized that the aggressive biology associated 
with poor prognosis TNBC is more apparent in the pre-invasive epithelial state of the PPx samples. 
To test this hypothesis, we compared the transcriptional landscape of the pre-invasive state (A) to 
invasive epithelia within both groups (PPx and GPx). We observed that PPx exhibits a more 
dominant transcriptional regulation in transitioning from atypia to invasive epithelia (567 DEGs, 
fdr<0.05, Fig. 5a right), compared to GPx. Consistent with our hypothesis, we observed that the 
134 genes upregulated in PPx-atypia (PPx-A) were largely associated with EMT (loss of baso-
apical polarity), regulation of cell migration, cell motility and cell-cell adhesion (Supplementary 
Table 8, Fig. 5b). Increased expression of chemokines was observed in the atypia of PPx, including 
CXCL12, CXCL14 and CXCR2. PPx-A also shows an increased presence of KRT15 and KRT34 
transcripts that have been suggested to correlate with an invasive phenotype in certain epithelial 
tumors with poor prognosis[47]. Evidence in the literature points to complement activation in 
tumor initiation and the role of tumor cells in modulating complement activation within the tumor 
microenvironment (TME)[48]. We noted that the expression of several upstream regulators in the 
classical complement cascade including C1QA/B/C, C1R, C1S, C2, C3, and C4B was significantly 
reduced in the transition from PPx-A to PPx-I (Fig. 5c). In contrast, they were notably higher in 
PPx-A compared to GPx-A (Fig. 5d, Fig. S5.  To better characterize the role of complement in the 
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interactions between tumor cells and the TME in GPx-A and PPx-A, we performed L-R analysis 
on PanCK+ and PanCK- in ROIs with atypic epithelia using BulkSignalR (see Methods). We 
identified 115 L-R interactions unique to GPx-A and 140 interactions unique to PPx-A (Fig. 5e, 
Supplementary Table 9). We noted that both groups showed distinct C3-associated interactions 
(correlated in epithelia)- PPx-A showed C3-CD81 and C3-LRP1 binding. Expression of CD81 (on 
B-cells and exosomes secreted by CAFs) and LRP1 (expressed on epithelial cells and fibroblasts) 
have both been previously associated with EMT and poor prognosis[49–51]. C3-CD81 and C3-
LRP1 interactions captured here could indicate anaphylatoxin-mediated priming of precancerous 
epithelia into tumor cells capable of increased migration. In contrast, GPx-A was enriched for C3-
ITGAX, likely indicative of an anti-tumorigenic opsonization event39.  

Identification of an epithelial gene signature underlying differential prognosis 

Results presented in the sections above outline a distinct transition along the spectrum of epithelial 
states (J, A, I) in tumorigenesis. We further sought to identify a universal epithelial signature that 
is agnostic to cell state but dictates prognosis. To this extent, we re-ran NMF on the entire set of 
PanCK+ AOIs (566 AOIs, 291 GPx, and 275 PPx) and identified 1722 consensus features. We 
employed a deep-learning approach inspired by a previously published study[53], to identify an 
epithelial signature containing 235 and 236 genes that are essential to accurately label GPx and 
PPx epithelia (Supplementary Table 10). Briefly, the CNN developed within this study consisted 
of two distinct towers, with each tower, incorporating a Convolutional Neural Network (CNN) 
layer, followed by a LeakReLU activation function and a Max Pool layer with a kernel size of (2, 
2) (Fig. 5f). The two pooled outputs were then flattened and concatenated before being fed into 
fully connected layers, initially with 128 nodes and ultimately narrowing down to 2 nodes, 
representing the model's output “prognosis”. The model was trained using an Adagrad optimizer 
with a learning rate set at 0.001 and a Binary Cross-Entropy (BCE) loss function for a duration of 
200 epochs. We generated discrete saliency maps for both good prognosis and poor prognosis to 
discern the most influential features. We next extracted genes that had a weightage of greater than 
0.5, to ensure the importance of features in determining prognosis. The genes were then 
consolidated into a ranked list using Borda counts (see Methods). This process was repeated 100 
times to ensure robustness and reliability. Results were only used from each newly trained model 
if its accuracy and precision on the test case were greater than an average of 90%. Finally, we 
compiled these ranked lists from each iteration into a comprehensive aggregated list, again using 
the Borda counts to establish a definitive ranking of features over these multiple iterations and 
represent the features that were most often used by CNN to predict the labels. A rank comparison 
of the two gene lists (see Methods) highlighted features/genes that were discriminatory (more 
dissimilarly ranked between the two lists) and were associated largely with a MYC-centric cellular 
stress response (red) and cell cycle control (purple) (Fig. S6) and included genes such as several 
histones H2BC11/17, H2AC13/19, MYC, YWHAZ, and CALR that have been previously shown 
to correlate with survival.  
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DISCUSSION 

The reciprocal interaction between the tumor and the microenvironment forms the basis for the 
observed intra-tumoral heterogeneity, impacting metastasis, prognoses and survival, and response 
to therapy in cancers[54]. Spatial transcriptomic profiling technologies have begun to offer 
unprecedented insights into characterizing this reciprocal interaction. To map the digital landscape 
of TNBC across tumor tissue from good and poor prognosis patient samples, we use the GeoMX 
spatial profiler. Further, given that the tumor landscape contains epithelial and stromal cells 

Figure 5. Characterizing the pre-invasive epithelial states and establishing a prognostic tumor cell signature a. Differential 
expression analysis comparing the atypic to the invasive epithelia. PPx samples show a more dominant dysregulation of genes 
along this transition. b. Hallmark gene set enrichment of the genes identified as being upregulated in the atypia compared to 
invasive epithelia of PPX. c. Boxplots showing significantly higher expression of genes (mean expression) involved in the 
complement cascade within PPx-A compared to GPx-A AOIs. d.  Boxplots showing significant increase in expression of genes in 
the complement cascade within AOIs with pre-invasive epithelial compared to AOIs with invasive epithelia (PPx-I) e. The L-R 
diagram highlighting the top 50 unique interactions captured within GPx and PPx atypia (with enrichment for epithelial cell types 
(black)). f. A schematic representation of the CNN model used for identification of epithelial gene signatures discriminatory of 
GPx and PPx to (235 and 236 genes respectively) that are outlined in Supplementary table XX.  
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(constituting the TME) in a spatially heterogeneous distribution, here, we developed a novel 
ontological strategy to spatially annotate the cancer and TME in a biologically meaningful manner. 
This offers the unique feature of probing invasive and tumor-adjacent atypical epithelia toward 
understanding the causal mechanistic origins of tumor progression and prognosis. As we reported 
above, this spatial deconvolution enables us to traverse the tumor landscape along the spectrum of 
tumorigenesis delineating specific interactions of epithelial and surrounding stromal cells.  

We sought to address whether the heterogeneity in the TME could aid in TNBC risk stratification. 
Despite the variability in the number of nuclei captured within each AOI in our digital landscape 
across samples, our analysis shows the increased presence of mesenchymal cell types (fibroblasts 
and PVLs) in PPx. Cell state deconvolution identified an increased presence of fibroblast states 
associated with poor survival (pro-migratory, myofibroblast, and CAF1). The presence of 
myofibroblasts is known to correlate with loss of epithelial differentiation, poor overall survival, 
and myeloid cell recruitment in various cancer types [55–57]. TNBC is widely recognized to 
exhibit increased immunogenicity compared to other BC subtypes[58]. CD8 T cells in several PPx-
Tenr AOIs were captured to exist in an exhausted state, alluding to the role of immune exhaustion 
contributing to poorer prognosis[59]. A fibrotic TME was recently suggested to impede antitumor 
immunity by minimizing CD8+ T infiltration as well as mechano-metabolic reprogramming of 
TAMs in the TME[60] impacting subsequent prognosis. Furthermore, relative to measurements 
made in GPx, the presence of the states and ligand-receptor pairs and functional cell states 
routinely correlated with poor prognosis were evident in PanCK- segments of PPx samples. 
Although we observed no statistically significant difference in the transcriptional state of the TME 
between GPx and PPx TNBC, from different parts of the tumor tissue, the TME in PPx exhibited 
a distinct transcriptional profile depending on the locations within the tumor—center or edge—
highlighting spatially contextual differences in metabolic activity and immune evasion strategies. 

Phenotypic plasticity of tumor is largely dictated by the reciprocity of interactions and the 
environmental cues, between the TME and tumor epithelia and serve as a crucial determinant in 
tumor progression. This plasticity endows tumor epithelia with an ability to tans-differentiate, and 
de-differentiate (to a precursor or stem-cell-like state) and exhibits an EMT phenotype. Recent 
research in cancer highlights that this plasticity extends to the ability of epithelial cells to “mimic” 
other cell types[43,61]. In particular, “immune mimicry” of epithelial cells is suggested to facilitate 
the formation of a tumor immunosuppressive environment in pancreatic cancer and is an important 
feature of oncogenic transformation[62]. Furthermore, Donati et al[17] recently showed that in 
post-neoadjuvant chemotherapy TNBC patients with complete response to therapy spatial 
transcriptomics revealed an increased presence of immune activation markers in the PanCK+ 
regions of tumors. In this study, we generated a meta-gene signature to capture a reduced feature 
space from the epithelia of GPx and PPx. Utilizing this reduced feature space, we identified 
immune mimicry as a hallmark of invasive epithelia in treatment-naive GPx samples. 
Concomitantly, an increased immune presence was identified by both by transcript and spatial 
image quantification, within the TME of GPx samples. These findings are in concordance with 
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recent research that has indicated an increased presence of TILs to correlate with better prognosis 
and therapeutic response[58,63]. Given our findings and extant research, we hypothesize that a 
preferential increase of immune transcripts in the invasive tumor epithelia is what primes the tumor 
towards a more immune-conducive TME and a better response to immunotherapy in GPx. We 
believe that this idea extends the notion of an “impressionable epithelium“ and “dynamic 
reciprocity”  indicative of the plasticity of epithelial cells in response to their surrounding 
milieu[64]  

We examined the role of TME in dictating aggressive biology previously described as the “field 
effect hypothesis” [65] . The pre-invasive epithelia in PPx showed evidence of  aggressive biology 
that included the increased expression of EMT-associated gene cascades and the presence of 
chemokines including CXCL14 (compared to invasive); expression of CXCL14  has been 
previously suggested to facilitate paracrine signaling between the tumor epithelia and TME to 
facilitate tumor aggressiveness in DCIS[66]. Differential early complement activation and 
signaling in PPx- compared to GPx-atypical epithelial cells (A). This may suggest an earlier and 
more dominant mesenchymal transition for the tumor cells within the PPx cohort, informing 
aggressiveness and outcomes. Whether women with PPx TNBC can benefit from C3-directed 
therapeutics warrants further research. Further, analysis of PPx epithelia showed evidence of high 
metabolic turnover. Whether this high metabolic turnover in tumor epithelia is a cause or 
consequence of aggressive biology linked to poor prognosis warrants further analysis. Taken 
together, our analysis provides evidence of aggressive biology in PPx (but not GPx) non-cancerous 
epithelial cells. Further prospective studies are warranted to test whether expression of EMT, 
chemokines, and drivers of metabolic turnover, can be used to risk-stratify screen-detected pre-
cancerous breast lesions.  

Differential analysis of GPx vs PPx for all PanCK+ segments showed no statistically significant 
difference. To be able to predict the prognostic state which is agnostic to the epithelial state (J, A, 
I), we utilized a deep learning approach, we obtained a ranked list of genes capable of predicting 
the prognostic state (235 GPx and 236 PPx. The distinct ranking of several genes as identified 
using deep learning alludes to their differential interactions in the two groups and influence on 
subsequent prognosis. The features we identified are involved in MYC-centric cellular stress 
response; the latter has been previously implicated as a crucial determinant of tumor progression 
and outcomes[67,68]. Our results emphasize the complex and distinct transcriptional programs 
associated with epithelial state changes.  Most interestingly, our findings of markers and 
mechanisms in atypia which posit poor prognosis combined with the detailed spatial dissection of 
the interactions between the tumor and the TME, provide a mechanistic basis for subsequent 
prognosis. Our findings have the potential to bolster and inform therapeutic considerations in 
women receiving treatment for localized TNBC. 
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MATERIALS AND METHODS 

GeoMX Digital Spatial Profiler  

Spatial transcriptomic profiling was performed using GeoMx-DSPTM (DSP; Nanostring 
Technologies). Pre-treatment formalin-fixed paraffin-embedded (FFPE) were cut into 10 
concurrent 5-mm sections. The first 5 mm section was stained with hematoxylin and eosin (H&E). 
The second slice was hybridized with the GeoMx Probe Mix for NGS readout (human whole 
transcriptome Atlas (GeoMx Hu WTA panel, Cat. #: 121401102, Nanostring Technologies) panel 
as per manufacturer’s protocol. The GeoMx Hu WTA panel includes 18000+ genes with several 
key genes involved in cancer cell biology and the tumor microenvironment. Slides were stained 
with GeoMx Solid Tumor TME Morphology Kit (Cat. #: 121300310, Nanostring Technologies) 
and GeoMx Nuclear Stain Morphology kit (Cat. #: 121300303, Nanostring Technologies) 
according to the manufacturer’s protocol. Regions of interest (ROI) were selected (diameter of 300 
microns, minimum of 3 replicates representative of the tumor edge (including adjacent immune 
cells), tumor interior, and adjacent non-cancerous tissue. Pan  cytokeratin (PanCK) was used to 
segment each ROI defining specific areas of illumination (AOI) and distinguishing the tumor 
(PanCK+) from the stromal (PanCK–) component. Stromal areas were further analyzed using the 
pan-immune marker CD45 and the pan-T-cell marker CD3. Segmentation was conducted on two 
classes of AOIs within each ROI: PanCK- and PanCK+. For each AOI, probes were collected by 
the machine and transferred to a PCR plate for library prep using Seq Code primers (GeoMx Seq 
Code Pack, Cat. #:121400205-121400206, Nanostring Technologies). Libraries from each AOI 
were pooled according to their dimension, purified by AMPure XP beads (A63880 Beckman 
Coulter) clean up, and resuspended in a volume of elution buffer proportional to the number of 
pooled AOIs. Libraries were assessed using an Agilent Bioanalyzer, then diluted to 1.6 pmol/L 
and sequenced (paired-end 2 x27) on Illumina NextSeq2000, with a coverage of 100 reads. FastQ 
files were uploaded to BaseSpace Illumina and converted into DCC files by GeoMxNGSPipeline 
software and utilized for all downstream processing. 

GeoMX Data QC and Processing  

GeomxTools[18] was used for quality control (QC) and downstream analysis of the DCC files in 
R. All samples were pooled prior to QC. QC was performed in accordance with GeomxTools 
developer recommendations (min Nuclei = 40, min Area = 1000, LOQ= 2). Gene and sample 
filtering were chosen to be at 5% at which a reasonable number of AOIs and probes were retained.  
Samples that were marked as PTS, were extracted and re-processed independently to allow for 
time series analysis. In this case, the segment filtering threshold was set at 2%, while gene filtering 
thresholds were still maintained at 5%. The counts were normalized using Q3 normalization as 
recommended by GeoMx after gene filtering and transformed into log values for downstream 
analysis, when necessary(log_q). The comparison of interest dictated whether p-values or adjusted 
p-values were chosen for thresholding and identifying differentially expressed genes.  Differential 
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analysis was performed using a linear mixed model. Comparisons of interest once again dictated 
whether an LMM was performed with a random slope (across slides) or with a random slope and 
intercept (within slide).  

Differential analysis using Linear Mixed Models 

The differential analysis presented here was performed using the linear mixed models (LMM) as 
prescribed by the GeomxTools vignette[18]. LMM allows users to account for the subsampling 
per tissue; in other words, adjusting for the fact that the multiple regions of interest captured in a 
slide/ tissue section are not independent observations. As indicated in the vignette of the 
GeomxTools two LMM models are possible when performing differential analysis, (i) Within-
slide comparison, with a random slope: A within-slide comparison calls for comparisons of regions 
of interest within a slide, with each slide present in the sample set serving as a replicate. For 
example, in instances where we wish to assess if there exists a difference in invasive epithelia 
identified at the center of the tumor to the edge of the tumors, we use a within-slide analysis. In 
this example, we would consider only slides that have captured invasive epithelia from both center 
and edge. Similarly, we utilized this approach to also compare Invasive vs normal-adjacent 
epithelia and invasive vs atypia in both prognostic groups(ii) Across slide comparison, without a 
random slope. For instance, when we wish to compare all invasive epithelia coming from two 
distinct population cohorts say GPx and PPx. Differential analysis was performed using the entire 
feature space (10150) or the NMF reduced feature space as indicated in the manuscript. 

Image intensity and spatial entropy analysis 

Images of each ROI and each PanCK segmented AOI region were obtained from the GeoMx DSP 
instrument using the “ROI Report” extraction. All images were first segmented to obtain only the 
portion inside the ROI region. The four-color channels were extracted, and an intensity filter was 
applied to remove the pixels in the lowest 10th percentile for each color channel. For the immune 
cell intensity analysis, the color channels within each ROI region were analyzed for the PanCK- 
AOI only. For each color channel, the intensity signal was computed by dividing the fraction of 
pass-filter pixels for the specified color by the total pass-filter pixels of all colors in the PanCK- 
AOI. Spatial entropy analysis was performed using the full ROI image. Using the intensity-filtered 
color pixels, both univariate and bivariate entropy measures were computed. For univariate 
entropy, we performed Batty’s spatial entropy to assess the region heterogeneity of each color 
channel in the ROI[19]. For bivariate entropy, we used different pairs of color channels and 
constructed a marked point pattern dataset for each color pair to assess the spatial relationship 
between the immune cells (yellow and red channels) vs epithelial cells (green channel). Spatial 
entropy was assessed using Altieri’s spatial entropy which was implemented in R using the 
SpatEntropy package[20]. We first used Leibovici's implementation of Shannon’s relative spatial 
entropy to filter out ROIs where color distributions were not explained by their spatial co-
occurrences (ROIs with 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍) ≥  .5 were removed). For the ROIs that passed the spatial 
entropy filter, we then used Altieri’s spatial entropy with distances of 5,10,50,100,250 and 500 
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pixels which were chosen so that the distance steps would span from cell-cell interactions to half 
the diameter of the ROI. The spatial partial information calculated on each distance step showed a 
maximum value between 5-50 pixels which corresponds to the distance of ~1 cell diameter or a 
cell’s nearest neighbors. The primary measure used to quantify the spatial dependence of the color 
pairs was the spatial mutual information, 𝑀𝑀𝑀𝑀(𝑍𝑍,𝑊𝑊). 
Spatial entropy was assessed using the immunofluorescent image of each ROI by calculating the 
entropy for two bivariate distributions: CD3 vs PanCK staining and CD45 vs PanCK staining. For 
each bivariate distribution, both global and scale-dependent measures of entropy were calculated. 
The global measures, which assessed the entire ROI, included Shannon’s relative Z entropy and 
spatial mutual information; however, these measures are often insufficient to detect dependencies 
that only occur at specific length scales. Scale measures, which are assessed at different length 
scales within the spatial distribution, were calculated at pixel lengths of 5, 10, 50, 100, 250, and 
500 and were chosen to span distances from cell neighbors (~15µm) to the radius of the ROIs 
(~150µm). We used Altieri’s spatial entropy to produce both spatial mutual information and scale 
metrics from which we used the spatial partial information to assess the dependence of the two 
channels[21]. For each immunofluorescent ROI image, the relevant channels were extracted, and 
an intensity filter was applied as previously described. The pixel locations from the two channels 
being assessed were converted to a point pattern dataset and the entropy measures were calculated 
using the relevant functions from the R SpatEntropy package[20]. To compare the spatial entropy 
metrics between different sample classifications, a two-sided T-test was performed, and the FDR 
p-value was assessed for significance at the 0.05 level.  

Non-negative matrix factorization (NMF) analysis  

Non-negative matrix factorization (NMF) is a powerful dimensionality reduction and clustering 
technique and has proven particularly useful for identifying underlying patterns and structures in 
high-dimensional non-negative gene expression data. In this study, we applied NMF using the 
NMF library in R[22], on log_q data generated from PanCK+ segments in GPx and PPx (to 
mitigate the influence of extreme values and provide a more stable representation of the underlying 
biology).To ensure the robustness of our NMF model, we assessed its stability using a consensus 
matrix approach. Specifically, we set the number of runs (nrun) to 5 and tested ranks ranging from 
2 to 10. This process was iterated 20 times with different random seeds. The best rank for each 
seed was determined based on metrics such as cophenetic correlation, dispersion, and silhouette 
score, ensuring a comprehensive evaluation of model performance. Subsequently, the selected best 
rank for each random seed was utilized to run the NMF model for 100 iterations (nrun = 100), 
allowing for further refinement and convergence of the factorization process. We extracted the 
metagenes using the "extractFeature" function with the method parameter set to "combine" within 
the NMF library. These metagenes represent a compact and interpretable representation of the 
original features, capturing the consensus patterns across multiple runs and random seeds. Finally, 
the union of all 20 seed runs was utilized as the reduced feature space, referred to as “consensus 
features” for downstream analysis. These consensus features encapsulate the most relevant and 
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stable biological signals present in the dataset, enabling effective interpretation and subsequent 
analyses. 

Spatial cell-type deconvolution using SpatialDecon, and a TNBC-specific reference 
matrix 

The reference matrix readily available for deconvolution of the TME within SpatialDecon[22]  
v1.1(called SafeTME) is largely derived from the immune and stromal cells derived from PBMCs 
and flow-sorted tumor cells, we chose to develop a TNBC-specific deconvolution matrix using the 
“create_profile_matrix” function of the SpatialDecon package. This function requires a cell * gene 
count matrix, along with the cell annotations as data input. To achieve this, we downloaded the 
scRNAseq data from a recently published study specific to breast cancers[11] (downloaded from 
https://singlecell.broadinstitute.org/single_cell/study/SCP1039/a-single-cell-and-spatially-
resolved-atlas-of-human-breast-cancers#study-download) containing 100064 cells. From this, we 
extracted all single cells from all TNBC (42512 cells). Since we were specifically interested in 
generating a reference matrix for deconvoluting the PanCK- segments of the ROIs, we excluded 
epithelial cells (cancer and normal) bringing down the # of single cells used from this study to 
30719. As provided in the supplementary of the original study, we retained the cellType_major 
and cellType_minor information across 30719 cells. We focused on 7 major types as captured by 
the cellType_major information, including B-cells, T-cells, Endothelial, Plasmablasts, 
perivascular-like (PVL) (with increased expression of MCAM/CD146, ACTA2 and PDGFRB), 
Myeloid, and CAFs (renamed as Fibroblast/Mesenchymal)) to drive the generation of our 
reference matrix. As previously described[23], we further processed and filtered these ~30K cells 
using Seurat[24] v4.3.0.1, resulting in a filtered data matrix with 11951 features x 26451 cells. The 
TNBC specific reference profile matrix using the “create_profile_matrix” command 
(minCellNum=10, scalingFactor=1 and minGenes=100) in SpatialDecon v1.1, with the expression 
of 1066/11951 genes identified as breast cancer-specific serving as input. This reduced gene list 
was obtained by amalgamating the genes in the safeTME matrix, the genes expressed in breast 
TME as published in Navin et al[25], and 135 breast-specific genes as published in the Human 
Protein Atlas (https://www.proteinatlas.org/humanproteome/tissue/breast), belonging to the 7 
major cell types. SpatialDecon v1.1 was subsequently also utilized to generate the spatial 
deconvolution of the TME using the “RunSpatialDecon” function and the reference matrix 
generated above as profile matrix. Proportions of cell counts as well as the abundance estimates 
were extracted and plotted, as outlined in the vignette. 

EcoTyper  

EcoTyper was implemented using their source code available at [ 
https://github.com/digitalcytometry/EcoTyper accessed Jan 2nd, 2024]. TPM transformed filtered 
probe data (before Q3 normalization) for each segment and served as input to EcoTyper. The cell 
states were computed using the ecotyper_recovery_bulk.R script, following their vignettes. Given 
the nature of the GeoMX data, we further multiplied the cell state abundances determined by 
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EcoTyper, with the cell type abundances for each of the overlapping cell types to get a final cell 
state abundance for each AOI. AOIs were assigned to the cell state if the state exceeded the 80th 
quantile value of the final cell state abundance computed for each cell type. The description of the 
cell states was obtained from supplementary table 4 of the original publication[26], and the set of 
all cell state markers used for generating the violin plots, was obtained from the authors of the 
original publication (personal communication). 

BulkSignalR 

BulkSignalR[27] was utilized to infer the ligand-receptor interactions (LRI) in the TME of the 
Tenr subset. BulkSignalR utilizes a curated database of 3249 ligands, receptors, their associated 
pathways and downstream target genes as the background from which to make the inferences. For 
the L-R interactions captured in the TME, Q3-normalized data from all 10150 features across 61 
GPx Tenr AOIs and 40 PPx Tenr was utilized in this analysis (set. Seed(123), min.count = 0 and 
prop = 0). For the L-R interactions described in atypia, we used Q3-normalized data from all 10150 
features, in the ROIs with atypic epithelia. We included LRI pathways with a minimum of 4 
downstream target genes present in our gene list (min.positive = 4). BulkSignalR requires null 
distributions of Spearman correlation coefficients between a ligand and receptor (L-R) and 
receptor and its target genes (R-T). The Gaussian kernel-based empirical model was identified as 
the appropriate statistical model for L-R and R-T correlations in both GPx and PPx. When inferring 
significant LRI, those with L-R correlation > 0.25 and association with a pathway with q < 0.05 
were included in the final list for GPx and PPx. Pathway significance was calculated as a 
combination of L-R and R-T correlation significance, and the most significant pathway for each 
unique L-R was used.  

Enrichment and TF target analysis 

ssGSEA was applied to expression data from each AOI, separately for the PanCK+ and PanCK- 
segments, using the Hallmark gene set from MSigDB using the GenePattern software[28]. 
Additionally, all enrichment presented in this manuscript were performed and plotted using either 
clusterProfiler[29] or enrichR[30]. TF target analysis was performed using DecoupleR[31] . 
String-db v12 was utilized to identify protein-protein interactions (medium confidence) in gene 
sets of interest. All the networks were then exported to Cystoscape and visualized in 
Cystoscape[32]. Enrichment of the String PPI was performed within Cystoscape using GO_BP, 
Wiki pathways, and Reactome pathways categories. The enrichment reported was identified with 
a fdr<10-4 or better.  

Convolution neural networks  

NMF-reduced gene expression data from pooled GPx and PPx AOIs was utilized to identify a gene 
signature defining the epithelial state for each prognostic group, using convolution neural networks 
[previously published]. We split the data into distinct subsets, consisting of training, validation, 
and testing sets using a stratified splitting strategy. The use of such a strategy guaranteed a 
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balanced representation of GPx and PPx classes in each group. Specifically, we allocated 10% of 
the data for testing, 18% for validation, and reserved the remaining 72% for training. Furthermore, 
to ensure reproducibility, we incorporated a random seed mechanism during the allocation of data, 
ranging from 1 to 500, facilitating consistent data partitioning across iterations. Once the data was 
appropriately partitioned, we reshaped each sample’s original 1D structure to 2D. We instantiated 
our CNN with this restructured data to allow for the use of traditional 2D CNN layers. The Borda 
count method was utilized for ranking genes/features as obtained from our saliency maps. Borda 
count is a ranked polling method that takes the position of each element and assigns a value for its 
corresponding position. Elements lower in ranking receive fewer “points” and are ranked less 
highly in the aggregate ranking. We assessed the concordance between the two ranked lists 
generated, utilizing the aggregateRanks function (method= “Stuart”) available via the 
RobustRankAggreg[33] v1.2.1 package in R. Genes with a score of 0.05 were identified as 
similarly ranked, while genes with a score >0.5 were identified as being most dissimilar between 
the two gene lists  
List of Supplementary Materials 

Data file S1- Containing supplementary tables S1-S10 

Fig S1-S6 Supplementary figures 

REFERENCES 

1. National Cancer Institute. SEER*Explorer: An interactive website for SEER cancer statistics 
[Internet]. Surveillance Research Program, National Cancer Institute. Available from: 
https://seer.cancer.gov/statistics-network/explorer/ 

2. Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the rosetta stone of therapy 
resistance. Cancer cell. 2020;37:471–84.  

3. Zagami P, Carey LA. Triple negative breast cancer: Pitfalls and progress. NPJ breast cancer. 
2022;8:95.  

4. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification 
of human triple-negative breast cancer subtypes and preclinical models for selection of targeted 
therapies. The Journal of clinical investigation. 2011;121:2750–67.  

5. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of 
triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy 
selection. PloS one. 2016;11:e0157368.  

6. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. 
Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast 
cancer. Clinical Cancer Research. 2015;21:1688–98.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

7. Zahra Mesrizadeh, Kavitha Mukund, Jovanny Zabaleta, Luis Del Valle, Jerneja Tomsic, Susan 
Neuhausen, et al. A novel subtyping method for TNBC with implications for prognosis and 
therapy. bioRxiv. 2024;  

8. Pal B, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, et al. A single‐cell RNA expression 
atlas of normal, preneoplastic and tumorigenic states in the human breast. The EMBO journal. 
2021;40:e107333.  

9. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling 
subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. 
Nature communications. 2018;9:3588.  

10. Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, et al. Spatially distinct 
tumor immune microenvironments stratify triple-negative breast cancers. The Journal of clinical 
investigation. 2019;129:1785–800.  

11. Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A single-cell 
and spatially resolved atlas of human breast cancers. Nature genetics. 2021;53:1334–47.  

12. Wang XQ, Danenberg E, Huang C-S, Egle D, Callari M, Bermejo B, et al. Spatial predictors 
of immunotherapy response in triple-negative breast cancer. Nature. 2023;621:868–76.  

13. Wang X, Venet D, Lifrange F, Larsimont D, Rediti M, Stenbeck L, et al. Spatial 
transcriptomics reveals substantial heterogeneity in triple negative breast cancer with potential 
clinical implications. 2024;  

14. Bassiouni R, Idowu MO, Gibbs LD, Robila V, Grizzard PJ, Webb MG, et al. Spatial 
transcriptomic analysis of a diverse patient cohort reveals a conserved architecture in triple-
negative breast cancer. Cancer research. 2023;83:34–48.  

15. Shamis SAK, Savioli F, Ammar A, Al-Badran SS, Hatthakarnkul P, Leslie H, et al. Spatial 
transcriptomic analysis of tumour with high and low CAIX expression in TNBC tissue samples 
using GeoMxTM RNA assay. Histology and Histopathology: Cellular and Molecular Biology. 
2023;  

16. Lehmann BD, Colaprico A, Silva TC, Chen J, An H, Ban Y, et al. Multi-omics analysis 
identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nature 
communications. 2021;12:6276.  

17. Donati B, Reggiani F, Torricelli F, Santandrea G, Rossi T, Bisagni A, et al. Spatial 
distribution of immune cells drives resistance to neoadjuvant chemotherapy in triple-negative 
breast cancer. Cancer Immunology Research. 2024;12:120–34.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

18. Nanostring-Biostats/GeomxTools [Internet]. NanoString Technologies, Inc.; 2024 [cited 
2024 Jul 18]. Available from: https://github.com/Nanostring-Biostats/GeomxTools 

19. Batty M. Entropy in spatial aggregation. Geographical Analysis. 1976;8:1–21.  

20. Altieri L, Cocchi D, Roli G. Spatial entropy for biodiversity and environmental data: The R-
package SpatEntropy. Environmental Modelling & Software. 2021;144:105149.  

21. Altieri L, Cocchi D, Roli G. The use of spatial information in entropy measures. arXiv 
preprint arXiv:170306001. 2017;  

22. Griswold M, Danaher P. SpatialDecon: Deconvolution of mixed cells from spatial and/or 
bulk gene expression data. [Internet]. 2024 [cited 2024 Jul 19]. Available from: 
https://bioconductor.org/packages/release/bioc/html/SpatialDecon.html 

23. Mukund K, Nayak P, Ashokkumar C, Rao S, Almeda J, Betancourt-Garcia MM, et al. 
Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: 
A Mechanistic Landscape. Frontiers in Immunology. 2021;12:3928.  

24. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 
Comprehensive integration of single-cell data. cell. 2019;177:1888–902.  

25. Kumar T, Nee K, Wei R, He S, Nguyen QH, Bai S, et al. A spatially resolved single-cell 
genomic atlas of the adult human breast. Nature. 2023;620:181–91.  

26. Luca BA, Steen CB, Matusiak M, Azizi A, Varma S, Zhu C, et al. Atlas of clinically distinct 
cell states and ecosystems across human solid tumors. Cell. 2021;184:5482–96.  

27. Villemin J-P, Bassaganyas L, Pourquier D, Boissiere F, Cabello-Aguilar S, Crapez E, et al. 
Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with 
BulkSignalR. Nucleic Acids Research. 2023;51:4726–44.  

28. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nature 
genetics. 2006;38:500–1.  

29. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological 
Themes Among Gene Clusters. OMICS. 2012;16:284–7.  

30. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a 
comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 
2016;44:W90–7.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

31. Badia-i-Mompel P, Vélez Santiago J, Braunger J, Geiss C, Dimitrov D, Müller-Dott S, et al. 
decoupleR: ensemble of computational methods to infer biological activities from omics data. 
Bioinformatics Advances. 2022;2:vbac016.  

32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a 
software environment for integrated models of biomolecular interaction networks. Genome 
research. 2003;13:2498.  

33. Kolde R, Laur S. RobustRankAggreg: Methods for Robust Rank Aggregation [Internet]. 
2022 [cited 2024 Jul 19]. Available from: https://cran.r-
project.org/web/packages/RobustRankAggreg/index.html 

34. Matsuoka S, Eguchi T, Iwaya M, Ide S, Mishima S, Takeda T, et al. P2. 12-02 Immune-Cell 
Distribution Between Tumor Edge and Center Affects Lung Cancer Aggressiveness-Multiplex 
Immunofluorescence. Journal of Thoracic Oncology. 2022;17:S150–1.  

35. Danaher P, Kim Y, Nelson B, Griswold M, Yang Z, Piazza E, et al. Advances in mixed cell 
deconvolution enable quantification of cell types in spatial transcriptomic data. Nature 
communications. 2022;13:385.  

36. Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MA, et al. Low and 
variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nature medicine. 
2019;25:89–94.  

37. Zhang C, Wu M, Zhang L, Shang L-R, Fang J-H, Zhuang S-M. Fibrotic microenvironment 
promotes the metastatic seeding of tumor cells via activating the fibronectin 1/secreted 
phosphoprotein 1-integrin signaling. Oncotarget. 2016;7:45702.  

38. Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides 
a mechanism for CD44-mediated tumor invasion. Genes & development. 1999;13:35–48.  

39. Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, et al. Cancer‐associated fibroblast‐
derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to 
sorafenib and lenvatinib. Cancer Communications. 2023;43:455–79.  

40. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA 
interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–
12.  

41. Wang Y-X, Zhang Y-J. Nonnegative matrix factorization: A comprehensive review. IEEE 
Transactions on knowledge and data engineering. 2012;25:1336–53.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

42. Gao R, He B, Huang Q, Wang Z, Yan M, Lam EW-F, et al. Cancer cell immune mimicry 
delineates onco-immunologic modulation. Iscience. 2021;24.  

43. Gong R, Huang Y, Wang X, Chen X, Tian Z, Ren H. Epithelial cells mimic immune cells: a 
novel path toward tumor immunotherapy. Cancer Biology & Medicine. 2021;18:937.  

44. de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in 
breast cancer. The Journal of clinical investigation. 2020;130:5074–87.  

45. Casciano JC, Perry C, Cohen-Nowak AJ, Miller KD, Vande Voorde J, Zhang Q, et al. MYC 
regulates fatty acid metabolism through a multigenic program in claudin-low triple negative 
breast cancer. British journal of cancer. 2020;122:868–84.  

46. Raths F, Karimzadeh M, Ing N, Martinez A, Yang Y, Qu Y, et al. The molecular 
consequences of androgen activity in the human breast. Cell genomics. 2023;3.  

47. Yang H, Li A, Li A, Zhao F, Zhang T. Upregulated keratin 15 links to the occurrence of 
lymphovascular invasion, stromal cervical invasion as well as unfavorable survival profile in 
endometrial cancer patients. Medicine. 2022;101:e29686.  

48. Thurman JM, Laskowski J, Nemenoff RA. Complement and cancer—A dysfunctional 
relationship? Antibodies. 2020;9:61.  

49. Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, et al. 
Contribution of the low-density lipoprotein receptor family to breast cancer progression. 
Frontiers in oncology. 2020;10:882.  

50. Vences-Catalán F, Rajapaksa R, Kuo C-C, Miller CL, Lee A, Ramani VC, et al. Targeting 
the tetraspanin CD81 reduces cancer invasion and metastasis. Proceedings of the National 
Academy of Sciences. 2021;118:e2018961118.  

51. Kagiali ZCU, Sanal E, Karayel Ö, Polat AN, Saatci Ö, Ersan PG, et al. Systems-level 
Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies 
DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer*[S]. Molecular & Cellular 
Proteomics. 2019;18:1756–71.  

52. Pio R, Corrales L, Lambris JD. The role of complement in tumor growth. Tumor 
Microenvironment and Cellular Stress: Signaling, Metabolism, Imaging, and Therapeutic 
Targets. 2014;229–62.  

53. Mostavi M, Chiu Y-C, Huang Y, Chen Y. Convolutional neural network models for cancer 
type prediction based on gene expression. BMC medical genomics. 2020;13:1–13.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

54. Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, 
metastasis and response to therapy. Nature cancer. 2023;4:1063–82.  

55. Papait A, Romoli J, Stefani FR, Chiodelli P, Montresor MC, Agoni L, et al. Fight the cancer, 
hit the CAF! Cancers. 2022;14:3570.  

56. Liu L, Liu L, Yao HH, Zhu ZQ, Ning ZL, Huang Q. Stromal myofibroblasts are associated 
with poor prognosis in solid cancers: a meta-analysis of published studies. PloS one. 
2016;11:e0159947.  

57. Li B, Pei G, Yao J, Ding Q, Jia P, Zhao Z. Cell-type deconvolution analysis identifies cancer-
associated myofibroblast component as a poor prognostic factor in multiple cancer types. 
Oncogene. 2021;40:4686–94.  

58. Liu Z, Li M, Jiang Z, Wang X. A comprehensive immunologic portrait of triple-negative 
breast cancer. Translational oncology. 2018;11:311–29.  

59. Yeong J, Lim JCT, Lee B, Li H, Ong CCH, Thike AA, et al. Prognostic value of CD8+ PD-
1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. Journal for 
immunotherapy of cancer. 2019;7:1–13.  

60. Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, et al. Tumor-associated 
macrophages restrict CD8+ T cell function through collagen deposition and metabolic 
reprogramming of the breast cancer microenvironment. Nature Cancer. 2024;1–18.  

61. Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera 
LA, Díaz-Chávez J. An overview of vasculogenic mimicry in breast cancer. Frontiers in 
oncology. 2020;10:220.  

62. Houchen CW, Li M. A subset of epithelial cells mimics regulatory T cells and contributes to 
immune evasion during development of pancreatic adenocarcinoma. BMC medicine. 
2020;18:155.  

63. Yam C, Yen E-Y, Chang JT, Bassett Jr RL, Alatrash G, Garber H, et al. Immune phenotype 
and response to neoadjuvant therapy in triple-negative breast cancer. Clinical Cancer Research. 
2021;27:5365–75.  

64. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture 
regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.  

65. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue 
adjacent to breast carcinomas. Science. 1996;274:2057–9.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

66. Schnitt SJ. The transition from ductal carcinoma in situ to invasive breast cancer: the other 
side of the coin. Breast Cancer Research. 2009;11:1–2.  

67. Qu J, Zhao X, Wang J, Liu X, Yan Y, Liu L, et al. MYC overexpression with its prognostic 
and clinicopathological significance in breast cancer. Oncotarget. 2017;8:93998.  

68. Katsuta E, Yan L, Takeshita T, McDonald K-A, Dasgupta S, Opyrchal M, et al. High MYC 
mRNA expression is more clinically relevant than MYC DNA amplification in triple-negative 
breast cancer. International journal of molecular sciences. 2019;21:217.  

Acknowledgements: 

The authors wish to thank Professor Jason Swedlow and Dr. Josh Titlow from the Wellcome Leap 
Foundation for invaluable discussions.  

Funding: 

The research reported here was supported by a grant from the Wellcome Leap Delta Tissue 
Program to S.S and V.S. This work was also partially supported by grants from National 
Institutes for Health to SS, OT2-OD030544, OT2-OD036435, and R01-CA282657. National 
Cancer institute/National Institutes of Health to LM, and AO- P20 CA 233374. 

Author contributions: 

K.M and S.S designed the systems biology analyses, with K.M. performing  majority of analyses 
presented within the paper. D.V analyzed the ligand-receptor interactions and provided support to 
K.M. with the analyses. D.F performed all the necessary processing and analysis of the image files. 
S.A designed and implemented the CNN to classify patient groups. Z.M generated the molecular 
subtyping of TNBC utilized in this study. L.Y, J.T and R.P designed the GeoMX assays and 
generated the data. D.S and V.S were lead pathologists in this study, with V.S identifying and 
annotating all ROIs considered within this study. X.C.W, M-A L.B identified and selected the 
tumors and their respective metadata from the LSU tumor registry. L.M and A.O were involved in 
fine tuning the patient cohort based on prognosis, used in this study. S.S. designed and supervised 
the entire study with support from V.S. K.M. wrote the first draft of the manuscript, with revisions 
by S.S. All authors have read and agreed to the submitted version of the manuscript. 

Competing interests: 

The authors declare no competing interests. 

Data and materials availability: 

The 1440 DCC files generated and utilized in the study are available to reviewers at 
www.tnbcworkbench.org/tnbc_respository.php. Due to the nature of the data, this is currently 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

controlled access and will be made open source after peer review. All other additional material 
necessary to recapitulate the results are provided in the supplementary materials attached. The 
code generated in this study largely follows the open-source vignettes associated with each R/BioC 
library but can be made available upon request. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.10.637503doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637503
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

 

Fig. S1 a. A table 
showing the S-E-R-
L-P-D-N annotation 
schema developed in 
this study. b. Barplot 
showing the 
distribution of total 
AOIs captured pre-
processing (1424 
AOIs - 737 GPx and 
687 PPx) c. the 
distribution of AOIs 
pre-processing (left 
panel) and post-
processing for both 
GPx and PPx 
samples. Each bar 
represents a patient 
sample d. Frequency 
of the AOIs captured 
in the various 
regions (Center-C, 
Edge-E and Isolated 
foci- F) of the tumor 
FFPE slice, pre (left 
panel) and post-
processing (right) 
across both GPx and 
PPx samples. Each 
bar represents a 
patient sample. e. 
Frequency of the 
AOIs captured with 
various epithelial 
types as annotated 
by the pathologist in 
accordance with 
extended figure 1a., 
pre (left panel) and 
post-processing 
(right) across both 
GPx and PPx 
samples. Each bar 
represents a patient 
sample. f. A circle 
dendrogram 
capturing the 
heterogeneity (intra 
and inter-patient) of 
the expression within 
ROIs. Every patient 
is represented by a 
unique color 
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Fig. S2 a. Differential expression captured in the PanCK- segment of GPx, between center and edge AOIs. b. Differential expression 
for GPx vs PPx between AOIs captured in each region (C-center, E-edge and F-isolated foci) of the tissue. c(top and bottom) 
captures the cell type frequencies of the T-cells, B- cells, Plasmablasts, Myeloid cells and mesenchymal (PVL+ fibroblasts) in GPx 
and PPx PanCK- AOIs respectively. d. The abundances of the seven cell types estimated by spatial deconvolution the 61 AOIs from 
5 GPx patients. Each color bar represents a patient. e. The abundances of the seven cell-types estimated by spatial deconvolution 
the 40 AOIs from 3 PPx patients. Each color bar represents a patient f. Average expression of CD8T cell markers in S03 (exhausted 
T) shows a significant (p<0.05) increase in PPx – Tenr AOIs over GPx- Tenr AOIs 
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Fig. S3 ssGSEA on PPx 
and GPx epithelia 
(PanCK+ AOIs) show an 
ssGSEA results 
highlighted a prominent 
increase in mechanisms 
associated with 
proliferation, DNA repair 
and metabolism within the 
invasive epithelia, in both 
GPx and PPx The AOIs 
with non-invasive epithelia 
in both subsets were more 
prominently associated 
with signaling cascades in 
volved in in EMT including 
WNT Beta catenin, Notch, 
and KRAS signaling. 
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Figure S4. a. Frequencies of AOIs with each epithelial type captured in the different regions within GPx and PPx.  b. Enrichment 
(Hallmark gene sets) of the genes upregulated within AOIs within invasive epithelia compared to the normal adjacent in GPx(left) 
and PPx (right panel). c. Enrichment of genes uniquely upregulated in PanCK+ AOIs (left) and TF target enrichment as identified 
by DecoupleR including STAT3, AP1 TFs, and TP63. d. A similar analysis on the DEGs unique in PPx AOIs with invasive epithelia, 
with enrichment of MYC, E2F, HIF1A and NFKB transcription factors 
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Figure S5. Boxplots showing expression(log2) of complement genes in GPx and PPx PanCK+ AOIs with atypia and invasive types. 
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Figure S6. This network represents the protein-protein interactions captured between genes that were identified to be highly dissimilar 
between the two ranked feature lists by our CNN as necessary to predict the labels GPx and PPx. The enrichment of this networks highlights 
that the genes are mostly associated with cellular stress response (red) and cell cycle control/DNA damage repair (purple) centered on MYC 
emphasizing the difference in the interactions that exist in epithelia which may contribute to subsequent prognostication. 
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