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ABSTRACT

Multivariate Mendelian randomization (MVMR) is a statistical technique that uses sets of genetic instru-
ments to estimate the direct causal effects of multiple exposures on an outcome of interest. At genomic
loci with pleiotropic gene regulatory effects, that is, loci where the same genetic variants are associated
to multiple nearby genes, MVMR can potentially be used to predict candidate causal genes. However,
consensus in the field dictates that the genetic instruments in MVMR must be independent (not in linkage
disequilibrium), which is usually not possible when considering a group of candidate genes from the
same locus.

Here we used causal inference theory to show that MVMR with correlated instruments satisfies the
instrumental set condition. This is a classical result by Brito and Pearl (2002) for structural equation
models that guarantees the identifiability of individual causal effects in situations where multiple exposures
collectively, but not individually, separate a set of instrumental variables from an outcome variable.
Extensive simulations confirmed the validity and usefulness of these theoretical results even at modest
sample sizes (n ≳ 500 - 1000). Importantly, the causal effect estimates remain unbiased and their variance
small when instruments are highly correlated.

We applied MVMR with correlated instrumental variable sets at genome-wide significant loci for coronary
artery disease (CAD) risk using expression Quantitative Trait Loci (eQTL) data from seven vascular
and metabolic tissues in the STARNET study. Our method predicts causal genes at twelve loci, each
associated with multiple colocated genes in multiple tissues. We confirm causal roles for PHACTR1 and
ADAMTS7 in arterial tissues, among others. However, the extensive degree of regulatory pleiotropy
across tissues and the limited number of causal variants in each locus still require that MVMR is run on a
tissue-by-tissue basis, and testing all gene-tissue pairs with cis-eQTL associations at a given locus in a
single model to predict causal gene-tissue combinations remains infeasible.

Our results show that within tissues, MVMR with dependent, as opposed to independent, sets of
instrumental variables significantly expands the scope for predicting causal genes in disease risk loci with
pleiotropic regulatory effects. However, considering risk loci with regulatory pleiotropy that also spans
across tissues remains an unsolved problem.

INTRODUCTION
Mendelian randomization (MR) is a statistical technique that uses genetic instruments to estimate causal
effects between complex traits and diseases [1–3]. It is based on the fact that genotypes are independently
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assorted and randomly distributed in a population by Mendel’s laws, and not affected by environmental or
genetic confounders that affect both traits (commonly called the “exposure” and the “outcome” trait for
the putative causal and affected trait, respectively). If it can be assumed that a genetic locus affects the
outcome only through the exposure, then the causal effect of the exposure on the outcome can be derived
from their relative associations to the genetic locus, which acts as an instrumental variable [4].

Traditionally MR is used to study phenotypic traits where genetic effect sizes are small and horizontal
pleiotropy can never be fully excluded, that is, alternative causal paths may exist between the genetic
instruments and the outcome trait independent of the exposure trait. Hence much of the methodological
development in MR has sought to address these limitations [5, 6].

More recently, MR has been applied to estimate causal effects of molecular traits such as mRNA or
protein abundances on phenotypic traits [7–10]. While incurring a possible multiple testing burden due to
the high number of mRNA or protein measurements that can be made in a single omics experiment, using
molecular exposure traits in MR offers potential advantages. This is due to genetic effects on molecular
abundances being much larger than those for phenotypic traits, with greater than two-fold allelic effect
sizes [11] on gene expression not being uncommon [12].

Moreover, fundamental molecular biological principles strongly limit the potential for horizontal
pleiotropy. Indeed, most genetic variants associated to mRNA and protein abundances (and phenotypic
traits) are located in non-coding regions of the genome and there are no known mechanisms by which such
variants could affect outcome traits other than through affecting transcription and translation of nearby
genes, typically considered to be at most a distance of 1 Mbp away [13]. Hence, by limiting the selection
of genetic instruments to those in the genomic vicinity of the gene whose mRNA or protein product is
used as the exposure in an MR analysis, the risk of horizontal pleiotropy can be reduced significantly.

However, analyses of large transcriptomic datasets have shown that regulatory pleiotropy, where the
same genetic variants are associated to multiple nearby genes, is common. For instance, it has been found
that around 10% of non-redundant cis-expression quantitative trait loci (cis-eQTLs; single nucleotide
polymorphisms (SNPs) associated with the expression of genes within the same genomic locus) were
linked to the expression of multiple nearby genes [14]. This covered cases where a true cis-regulatory
DNA region is shared between genes as well as cases where genes have distinct regulatory elements
that are in high linkage disequilibrium (LD) with one another. More recently, analyses by the GTEx
Consortium of RNA abundances across 49 human tissues showed that a median of 57% of variants per
tissue were associated with more than one gene in the same locus, typically co-occurring across tissues
[12].

Hence, to account for this widespread regulatory pleiotropy, all MR analyses using molecular abun-
dances must employ multivariable MR (MVMR) methods, where all gene products in a genomic locus of
interest are treated simultaneously as a set of potential causes for an outcome of interest.

As with single-exposure MR, MVMR was first developed for phenotypic exposure traits [15–18].
MVMR requires a set of instrumental variable SNPs, at least as many as the number of exposures that are
associated with the exposure and outcome variables, and not affecting the outcome other than through
the set of exposure variables. MVMR can then estimate the direct causal effect of each exposure on the
outcome using a 2-stage least squares method in the single-sample, individual-level data setting, or a
“regression of regression coefficients” method in the two-sample summary data setting [15–17]. Recently,
MVMR was applied to transcriptomic and genome-wide association study (GWAS) data in the two-sample
setting, in a first attempt to overcome the challenge of regulatory pleiotropy when analyzing mRNA
abundances to identify causal disease genes, in a procedure called transcriptome-wide MR (TWMR) [19].

However, the precise conditions to ensure validity of MVMR remain somewhat ambiguous, in
particular with regards to the presence of linkage disequilibrium (correlations) between the SNPs in
the set of instrumental variables. For instance, Burgess et al. state that estimates from the 2-stage least
squares method in the individual-level data setting are valid even if the genetic variants are in LD [15], but
require uncorrelated instruments in their proof of equivalence with the regression method in the summary
data setting [16]. McDaid et al.[20] show that the 2-stage least squares estimates can be obtained from
univariate summary data even if the genetic variants are in LD, albeit at the cost of no longer being
expressed as a “regression of regression coefficients”. Nevertheless, despite their formula for the causal
effect estimates being valid for correlated instruments, McDaid et al.[20] still follow common practice in
MVMR to select only instruments spread far apart on the genome to eliminate any LD between them.
Similarly, Porcu et al.[10], whose TWMR method is based on the analytic results of McDaid et al.[20],
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only use variants with low mutual LD (r2 ≤ 0.1) in their analysis of loci with regulatory pleiotropy.
Moreover, all simulations reported in the literature to test MVMR methods in a controlled situation use
independently sampled instruments [15–17, 19].

Here we clarify and strengthen the theoretical underpinnings of MVMR with correlated instrumental
variables, supported by realistic simulations, to identify causal genes at genomic loci with pleiotropic gene
regulatory effects. If we restrict to genetic instruments in the same locus to exclude horizontal pleiotropy,
then inclusion of correlated instruments becomes a necessity.

The basis of our approach is Wright’s method of path coefficients [21, 22] and its generalization into
the graph structural causal inference theory by Pearl and colleagues [23]. Accordingly, we distinguish
between identification and estimation of causal effects. Causal identification refers to the question whether
causal effects can be expressed in terms of the true (but unknown) joint distribution of the variables in a
causal graph. Causal estimation refers to the problem of estimating the identified causal effects from a
finite number of observational samples from the joint distribution.

For the identification problem, we show that the MVMR causal graph with correlated instruments
belongs to a class of causal graphs previously studied in the AI literature [24]. Specifically, we show that
any set of non-redundant causal variants of the same size as the set of exposure traits, regardless of their
mutual LD levels and regardless of any interactions between the exposures, satisfies Brito and Pearl’s
[24] “instrumental set” condition, allowing identification of the causal effects of each exposure on the
outcome. In particular, the causal effects can be expressed as the coefficients of the linear regression of
the instrument-outcome covariances on the instrument-exposure covariances, thereby showing correctness
of the “regression of regression coefficients” method in all settings.

For the estimation problem, we expand the instrument set to the overcomplete set of all genetic
variants in the locus of interest. We assume that this set contains at least as many causal variants as
the number of exposures, and analyze a class of methods called the Generalized Method of Moments
(GMM) [25]. As shown by Hansen [25], every previously suggested instrumental variables estimator, in
linear or nonlinear models, with cross-section, time series, or panel data, as well as system estimation of
linear equations can be cast as a GMM estimator. GMM is therefore viewed as a unifying framework for
estimation in causal inference problems.

We show that for the exactly determined MVMR problem with correlated instruments (equal number
of instruments and exposures), replacing the true covariances by their finite-sample estimates is the
optimal GMM estimator. For the overdetermined system, a weighted version that corresponds exactly
to the two-stage least squares solution is optimal. In particular, the solution of McDaid et al.[20] of the
two-stage least squares problem in terms of summary statistics is shown to be the finite-sample GMM
estimator of the “regression of regression coefficients” solution to the causal identification problem.

To support our theoretical results, we conducted extensive simulations with correlated instruments
mimicking real LD from the human genome. We further applied our MVMR method with correlated
instrumental variable sets to transcriptomics data from seven vascular and metabolic tissues in 600
coronary artery disease (CAD) cases undergoing surgery from the STARNET study [26] to predict causal
genes and tissues at 19 genome-wide significant CAD risk loci with regulatory pleiotropy.

MATERIALS AND METHODS
The method of path coefficients
Causal effect identification consists of expressing the effect of an intervention of one variable on the
marginal distribution of one or more other variables using knowledge of the underlying causal diagram
and joint distribution of all variables under consideration [23]. A causal diagram is a directed acyclic
graph (DAG) of directed edges between variables where a causal relationship is known or hypothesized,
augmented with bidirected edges between variables known or hypothesized to be affected by unmodelled
confounding factors (Fig. 1); bidirected edges can be represented equivalently by two directed edges
originating from a common latent factor.

A special class of causal models are those where the causal diagram is assumed to define a linear
structural equation model (SEM) [27], that is, a system of linear equations among a set of variables
{X1, . . . ,Xp} of the form

Xi = ∑
j

ci jX j +Ui.
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The Ui are error or disturbance terms representing unobserved background factors which are assumed
to have mean zero and a variance/covariance matrix [Ψi j] = Cov(Ui,U j). It is often assumed that the
error terms are normally distributed, but, as already pointed out by Wright [22], this is not necessary –
the results below hold for any error distribution. Every non-zero coefficient ci j corresponds to a directed
edge X j → Xi in the causal diagram, that is, ci j is the direct causal effect of X j on Xi, and every non-zero
element Ψi j corresponds to a bidirected edge Xi ↔ X j. The SEM structure implies that the variables
{X1, . . . ,Xp} have mean zero and covariance matrix

Σ = (I −C)−1
Ψ(I −CT )−1

where C is the matrix of coefficients ci j, CT is its transpose, and I is the identity matrix. Causal
identification in linear SEMs consists of solving for the non-zero ci j (and Ψi j) in terms of the covariance
matrix Σ.

The method of path coefficients is a result derived by Sewall Wright [21, 22, 27], which expresses
the covariance between any pair of variables in a linear SEM as a polynomial in the parameters (causal
coefficients and error covariances) of the model:

σXY = ∑
p

T (p) (1)

where the summation ranges over unblocked paths p connecting X and Y , and T (p) is the product of the
parameters (ci j or Ψi j) of the edges along p. A path in a graph is a sequence of edges such that each pair
of consecutive edges share a common node and each node appears only once along the path. A path is
unblocked if it does not contain a collider, that is, a pair of consecutive edges pointing at the common
node. Two nodes are called d-separated if there are no unblocked paths between them. Eq. (1) is valid for
standardized variables that are normalized to have zero mean and unit standard deviation; if this is not the
case, a modified rule can be applied where each T (p) is multiplied by the variance of the variable that
acts as the “root” for path p [27].

Instrumental sets
Fix a variable Y in a linear SEM, and assume we have the equation

Y = c1X1 + · · ·+ cKXK +UY

in our SEM. Brito and Pearl [24] derived a sufficient graphical condition for identifiying the paramaters
c1, . . . ,cK by application of Wright’s rule (1), of which we present a simplified version. The set of
variables {E1, . . . ,EK} is said to be an “instrumental set” relative to {X1, . . . ,XK} if there exist pairs
(E1, p1), . . . ,(EK , pK) such that for each i the following three conditions hold.

1. Ei is a non-descendant of Y and pi is an unblocked path between Ei and Y including edge Xi → Y .

2. Ei is d-separated from Y in G , the graph obtained after removing the edges X1 → Y , . . . , Xk → Y
from the original graph G .

3. For j > i, the variable E j does not appear in path pi, and if paths pi and p j have a common
variable V , then both pi[V ∼Y ] and p j[E j ∼V ] point to V , where pi[V ∼Y ] and p j[E j ∼V ] denote
truncations of pi and p j from V and until V , respectively.

If {E1, . . . ,EK} is an instrumental set relative to {X1, . . . ,XK}, then the parameters of the edges X1 → Y ,
. . . , XK → Y are identifiable and can be computed by a set of linear equations [24].

Causal effect identification in MVMR with correlated instruments
We assume genes X1, . . . ,XK are colocated in the same genomic locus and have a potential causal effect
on a phenotypic trait Y associated to the locus. We assume there exist K causal variants in the locus such
that each gene has at least one causal variant (causal variants may be shared between genes). The variants
are correlated by LD, the exposures Xi can be connected by causal relations or unmodelled latent factors,
and likewise there can be latent factors affecting the exposures Xi and outcome Y . Randomization of
genotypes ensures that there are no unmodelled correlations between the E j and Xi. An example causal
diagram for K = 2 is shown in Fig. 1B.
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We now show that {E1, . . . ,EK} is an instrumental set relative to {X1, . . . ,XK}. By relabelling, we may
assume that there exists an edge Ei → Xi in the causal diagram. Define the paths pi = {Ei → Xi,Xi → Y}.
Since Ei is d-separated from Y in the diagram where all edges X j → Y are removed, it follows that
the set {(E1, p1), . . . ,(EK , pK)} satisfies the three instrumental set conditions (see above) and the causal
parameters ci are identifiable. We apply Wright’s rule (eq. (1)), following the general proof of Brito and
Pearl [24]. By eq. (1),

σEiY = ∑
p

T (p) (2)

where the sum is over unblocked paths p. It is clear that any path that starts in Ei, ends in Y , and includes
a bidirected edge X j ↔ Y must be blocked by a collider V → X j ↔ Y , where V can be either a variant or
another gene. Hence no such paths enter the sum in eq. (2). In other words, all unblocked paths must end
with an edge X j →Y contributing a factor c j to T (p). Collecting all paths by their final edge, the sum can
be decomposed as

σEiY = ∑
j

c j ∑
p′ : Ei∼X j

T (p′)

where the inner sum now extends over the subset of paths from Ei to X j obtained by truncating the
unblocked paths from Ei to Y which have X j as their penultimate node. Since the truncation of an
unblocked path is also necessarily unblocked, each p′ is an unblocked path from Ei to X j. Vice versa,
every unblocked path from Ei to X j can be extended to an unblocked paths from Ei to Y by adding the
edge X j → Y . Hence, the sum over p′ is the sum over all unblocked paths from Ei to X j, By another
application of Wright’s rule (1),

∑
p′ : Ei∼X j

T (p′) = σEiX j ,

and hence

σEiY = ∑
j

c jσEiX j .

In matrix-vector notation, we obtain:

ΣEX c = ΣEY ,

where c = (c1, . . . ,cK)
T is the vector of causal effects, and ΣEX and ΣEY are the matrix and vector of

covariances [σEiX j ] and (σEKY , . . . ,σE1Y )
T , respectively.

Since ΣEX is not a symmetric matrix, we cannot assume that an inverse exists, but we can always
write the solution to the linear set of equations using a generalized left inverse:

c = (ΣT
EX ΣEX )

−1
Σ

T
EX ΣEY , (3)

that is, find the least squares solution. These equations are valid for standardized variables.

The generalized method of moments for causal effect estimation in MVMR with correlated
instruments
To estimate the causal effects from observational data, we consider multiple finite-sample approximations
to the above equations. For finite-sample estimation, the number of instruments can be greater than the
number of exposures, that is, we assume we have N observations of the random variables {E1. . . . ,EL},
{X1. . . . ,XK}, and Y , with L ≥ K. We use lower-case letters to denote sample values, e.g. eil denotes the
value of El in observation i. We use the notation ei·, e.l , and e·· to represent the vector of sample values
for all L instruments in observation i, the vector of all N observations of instrument l, and the N ×L
matrix of all observations for all instruments, respectively, and similarly for xi·, x·k, and x··. We assume
the observations for all variables are standardized to mean zero and unit standard deviation.

The generalized method of moments (GMM) [25] is based on moment functions that depend on
observable random variables and unknown parameters, and that have zero expectation in the population
when evaluated at the true parameters:

E[g(wi,c)] = 0 (4)
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where g denotes the moment function, wi is a vector of samples of random variables in observation i, and
c is a vector of unknown parameters. The moment function g can be linear or nonlinear.

Assuming a linear MVMR SEM as before, the natural moment functions are of the form

g([eil ,xi·,yi],c) = eil(yi − xT
i· c), (5)

that is, we consider one moment equation per instrument. From the structural equation for Y in the
assumed SEM (see above and Fig. 1), it follows that Y −XTC =UY , the residual error on Y , and since
all instruments El are assumed independent of UY (no bidirected arrows between El and Y ), that is,
Cov(El ,UY ) = E(ElUY ) = 0, it follows immediately that the moment conditions are satisfied:

E[eil(yi − xT
i· c)] = 0

Replacing the expectation E with the empirical mean over the observations results in L equations in K
unknowns (c1, . . . ,cK) which can be written in matrix-vector notation as

1
N

N

∑
i=1

eil(yi − xT
i· c) = eT

.l (y− x..c) = 0 (6)

If the number of instruments equals the number of unknowns, L = K, this system can be solved exactly,
and by the standardization of all variables, the solution reduces to the least-squares estimator ĉLS,

ĉLS = (Σ̂T
EX Σ̂EX )

−1
Σ̂

T
EX Σ̂EY , (7)

which is also obtained by replacing the true covariances in the instrumental variable formula (3) by their
empirical estimates.

If the model is overdetermined, L > K, then in general there is no unique solution to (6), because not
all L sample moments will hold exactly. While the least-squares estimator provides one approximate
solution to the overdetermined system, Hansen [25] proposed an alternative solution, based on bringing
the sample moments as close to zero as possible by minimizing the quadratic form[

1
N

N

∑
i=1

g([eil ,xi·,yi],c)

]T

·∆ ·

[
1
N

N

∑
i=1

g([eil ,xi·,yi],c)

]
(8)

with respect to the parameters c, where ∆ is a positive definite L×L weighting matrix, and the quantity
between the large square brackets is understood to be the L-vector of moment functions. It can be shown
that this yields a consistent estimator ĉGMM(∆) of c, under certain regularity conditions. Again using the
standardization of all variables, the cost function can be written as(

Σ̂EY − Σ̂EX c
)
·∆ ·

(
Σ̂EY − Σ̂EX c

)
,

with solution

ĉGMM(∆) =
(
Σ̂

T
EX ∆Σ̂EX

)−1
Σ̂

T
EX ∆Σ̂EY (9)

When ∆ = I, the identity matrix, we again obtain the least-squares estimator, ĉGMM(I) = ĉLS.
While all choices of ∆ lead to a consistent estimator, in finite samples different ∆-matrices will lead

to different point estimates. Hansen Hansen [28] showed that the GMM estimator with the smallest
asymptotic variance is obtained by taking ∆ equal to the inverse of the variance-covariance matrix of the
moment functions (5). If the errors are homoskedastic, Var(Uyi) = Var(yi − xT

i· c) = σ2, we have

∆ = σ
−2

Σ̂
−1
EE ,

and obtain the estimator

ĉGMM =
(
Σ̂

T
EX Σ̂

−1
EE Σ̂EX

)−1
Σ̂

T
EX Σ̂

−1
EE Σ̂EY . (10)

We will refer to this estimator as the GMM estimator. Note that this estimator is equivalent to the two-stage
least squares estimator.
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Simulations with randomly generated instrument correlations
We simulated data from idealized models corresponding to the causal diagrams in Figure 1 where all
variables were assumed to be normally distributed.

For the diagrams with a single exposure (Fig. 1A,D), we set the true causal effect cX = 0.3. In the
case of one instrument (Fig. 1A) we varied the instrument strength a between 0.1 (weak instrument),
0.5 (mediocre instrument), and 0.8 (strong instrument). In the case of multiple instruments (Fig. 1D),
we simulated ten instruments with randomly sampled instrument strengths, either all strong (effect sizes
greater than 0.4) or all weak (effect sizes smaller than 0.15).

For the diagrams with multiple exposures and correlated instruments (Fig. 1B,C,E,F), we set the true
causal effects cX1 = 0.2 and cX2 = 0.6 in all simulations.

To test the effect of instrument correlation we simulated data with two instruments (Fig. 1B) where
the pairwise correlation of the instruments varied between 0.01, 0.3, 0.7 and 0.9. The matrix A = [ai j] of
instrument effect sizes, where ai j is the direct causal effect of Ei on X j, was generated randomly such that
its determinant was greater than 0.5 and there were no weak instruments (ai j greater than 0.3).

To test the effect of weak instruments, we simulated data with two instruments (Fig. 1B) with
randomly generated non-zero pairwise correlation of the instruments and randomly generated matrix of
instrument effect sizes A with determinant either less than 0.2 or greater than 0.5.

To test robustness of the causal effect estimates, we simulated data with two instruments and two
exposures (Fig. 1B), with randomly generated non-zero pairwise correlation between the instruments,
randomly generated matrix of instrument effect sizes A with determinant greater than 0.5, and true causal
effects of the exposures on the outcome equal to cX1 = 0.2 and cX2 = 0.6, but estimated causal effects for
each exposure separately under the (false) hypothesis that the data was generated from Fig. 1A.

Simulations with instrument correlations derived from real LD matrices
For more realistic simulations, we simulated data with continuous normally distributed genotype, exposure
and outcome variables in such a way that the summary statistics from the simulated data match summary
statistics at real GWAS loci for coronary artery disease (CAD). We used eQTL summary statistics
from GTEx [12] and CAD GWAS summary summary statistics from the CARDIoGRAMplusC4D
meta-analysis [29].

For a given locus of interest with cis-eQTLs E1, . . . ,EL for genes X1, . . . ,XK , with LD matrix ΣE (size
L×L), matrix of eQTL summary statistics A (size L×K), and vector of CAD GWAS summary statistics
ΣEY (size L×1), we simulated data as follows.

For the instruments, we sampled data from the multivariate normal distribution

E ∼ N (0,ΣE),

For the instrument effect sizes, we made the simplifying assumption that all eQTLs are causal for all
genes, and set the vector a of instrument effect sizes to

a = (ΣT
EEΣEE)

−1
Σ

T
EEσEX , (11)

and sample X1, . . . ,XK from the conditional distribution

X j | E1, . . . ,EK ∼ N (∑
i

aiEi,σ
2),

with σ2 = 1.
Finally, we set the causal effect c of X on the outcome Y equal to the value obtained from eq. (3) with

the real ΣEY , and sampled outcome data from

Y | X ∼ N (cX ,σ2),

with σ2 = 1.
We note that sampling genotype values as binomial variables (representing the number of alternative

alleles) is not practical in our situation, because the variables must be correlated according to a predefined
LD matrix and the number of such variables (L) can be large.

We used the procedure above to create the following simulated datasets.
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For the diagram with multiple instruments and a single exposure (Fig. 1D), we considered gene
expression of MRPS6 in blood, which has L = 10 significant eQTLs in GTEx and is the only gene (K = 1)
with eQTLs in this locus (centred on chr 15:35,602,268). The causal effect c, in this case, had the value
c = 0.64.

For the diagrams with multiple exposures and correlated instruments (Fig. 1B,E), we used gene
expression of NBEAL and FAM117B (K = 2) in Aorta as exposures, which share 52 eQTLs, and no
other eQTL associations are present in this locus (centred on chr 2: 203029276) in this tissue. Since the
determinant of the LD-matrix was very small, we pruned for the most significant CAD instruments by
ordering the SNPs based on their significance in the GWAS study and iteratively removing SNPs with
lower significance which were in high LD with the more significant SNPs until a minimum threshold
for the determinant of the covariance matrix was reached. We compared the situations where we keep
only L = 2 (LD threshold of 0.6), L = 7 (LD threshold of 0.89), and L = 15 instruments (LD threshold of
0.96). Causal effects of the genes on the outcome variable Y were calculated to be cNBEAL = 0.24 and
cFAM117B =−0.08 when seven instruments were used, and the same values were also used in the other
simulations.

For robustness analysis, we repeated the same simulation procedure using gene expression of MRAS
and ESYT3 in the Aorta tissue of STARNET as exposures, which share L = 5 eQTLs in their locus
(centred on chr 3:138121920), with simulated causal causal effects cMRAS = 0.208 and cESY T 3 =−0.294
on the outcome variable Y .

Comparison to other MVMR methods
We compared the least squares (eq. (7)) and GMM (eq. (10)) estimators to two other multi-variable MR
methods: Transcriptome-Wide MR (TWMR) [19] and the MVMR package [30].

The least squares and GMM estimators can also be applied in the univariate MR setting. In this setting
we performed a comparison to all available methods in the MR-Base package, namely, Inverse Variance
weighted (IVW), Weigted Median (WM), Maximum Likelihood (MaxLik), MR-Egger (Egger). We also
included (TWMR) in the comparison.

In the course of our analysis we identified the presence of a “regularization” term in the TWMR
source code that was hard-coded to a specific value, presumably related to the sample size of the
use-case from their paper [10]. More precisely, for the weight matrix used in the GMM estimator,
H = ((XT E) · (ET E)−1 · (ET X))−1, they used shrinkage of the form

Hshrunk = (1−α)H +αI

Here α is 1√
N

where N = 3781 and I is the identity matrix. Results reported here used the published
version of TWMR including this hard-coded term.

Prediction of causal genes and tissues at GWAS loci for coronary artery disease
We used eQTL summary statistics from the Stockholm-Tartu Atherosclerosis Reverse Network Engi-
neering Task (STARNET) study, a genetics-of-gene expression study of tissue samples from blood,
atherosclerotic-lesion-free internal mammary artery (MAM), atherosclerotic aortic root (AOR), subcuta-
neous fat (SF), visceral abdominal fat (VAF), skeletal muscle (SKLM), and liver (LIV) obtained during
open thorax surgery of 600 coronary artery disease (CAD) patients [26]. eQTL summary statistics from
matching tissues in GTEx [12] were used for replication analyses.

We used coronary artery disease (CAD) as the outcome trait and used summary statistics from the
CARDIoGRAMplusC4D genome-wide association meta-analysis (GWAMA) study [29]. Summary
statistics specific to the European population were extracted using the TwoSampleMR package [31] (study
IDs ebi-a-GCST003116).

To identify lead SNPs for genome-wide significant GWAS loci with regulatory effects in a given
tissue, we first created tissue-specific outcome data with GWAS summary statistics for all SNPs with
non-zero (FDR < 5%) eQTL effect in the STARNET summary statistics for the tissue of interest. We
filtered these eQTLs by their p-values, retaining only those with p-values below 5×10−8 in the GWAS
study.

We iterated through these eQTLs, sorted by GWAS p-value, such that for the first iteration, the first
eQTL would be the first lead SNP. We collected all eQTLs within a 0.5Mb radius and with LD greater
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than 0.0 with the lead SNP, and then removed the lead SNP as well as its collection of linked eQTLs from
the list, repeating the procedure with the next lead SNP.

For each lead SNP and its collection of linked eQTLs, we first removed SNPs in perfect LD with the
lead SNP and then treated the remaining eQTLs as instrumental variables in one causal diagram. We
gathered information on genes associated with these eQTLs either in a specific tissue, or across all tissues,
depending on the application, to complete the diagram.

In replication analyses using GTEx, the same procedure was implemented independently for the same
GWAS loci in matching tissues, using all cis-eQTL associations in GTEx (which may differ from the
cis-eQTL associations in STARNET in the same locus). Hence, replications in GTEx represent the best
possible causal effect estimation in GTEx and are not biased by the exposure gene sets used in STARNET.

Since in the GWAS study, the log-odds ratio was used as the unit, that is, logistic regression was
performed of the dichotomous outcome trait on SNP genotype, the β -value for a SNP is the increase in
log-odds of the outcome. Hence in our models, the predicted causal effect of a gene X on the outcome Y
(CAD) is to be interpreted as the effect of X on the log-odds ratio of Y .

Code availability
Code for reproducing the results of this paper and for performing MVMR with correlated instrumental
variable sets more generally is available at https://github.com/mariyam-khan/Causal_
genes_GWAS_loci_CAD. Results reported in this paper used version 1.0.0 of the code, which has
been archived at https://doi.org/10.5281/zenodo.10091331. Supplementary Information
consisting of input datasets and MVMR results have been deposited in https://dataverse.no/
dataset.xhtml?persistentId=doi:10.18710/VM0WKQ.

RESULTS
Causal effect identification and estimation in MVMR with correlated instruments
To analyze the problem of MVMR with correlated instruments, we consider causal diagrams where one or
more genes Xi are colocated in the same genomic locus and have a potential causal effect on a phenotypic
trait Y associated to the same locus. We assume that there exist at least as many causal variants in the locus
as there are potential causal genes, such that each gene has at least one causal variant (causal variants may
be shared between genes).

If there is only one gene in the locus, we have the classical instrumental variable graph that underpins
standard (univariate) MR (Fig. 1A). Application of the method of path coefficients (see Methods) shows
immediately that the causal effect c of the exposure gene X on the outcome Y is given by the usual
instrumental variable formula c = σEY/σEX , where E is a causal variant (or a variant in LD with a causal
one) for X and σEY and σEX are the covariances between E and X , and E and Y , respectively.

In the case of regulatory pleiotropy, there will be multiple putative causal genes in the same locus, and
we obtain an MVMR causal graph with correlated instruments (Fig. 1B). Using analytical results derived
by Brito and Pearl [24], it can be shown that the variants {E1, . . . ,EK} in this graph form an instrumental
set relative to the exposures (genes) {X1, . . . ,XK} (see Methods), which permits identification of the direct
causal effects c = (c1, . . . ,cK)

T associated to the edges X1 → Y , . . . , XK → Y in the underlying linear
structural equation model (SEM). Application of the method of path coefficients shows that the vector c
of causal effects satisfies the system of equations (see Methods for details)

ΣEX c = ΣEY , (12)

with solution

c = (ΣT
EX ΣEX )

−1
Σ

T
EX ΣEY , (13)

where ΣEX and ΣEY are the matrix and vector of covariances [σEiX j ] and (σE1Y , . . . ,σEKY )
T , respectively.

We note the similarity between eqs. (12)–(13) and the standard instrumental variable solution for univariate
MR.

Eqs. (12)–(13) describe the causal effects as the coefficients in a linear relation between univariate
covariances, and this relation is exact in the infinite sample limit, regardless of LD levels between the
instruments. Furthermore, eqs. (12) and (13) remain valid if the number of genetic variants is greater than
the number of candidate genes, regardless whether the additional variants are causal or not (Fig. 1D,E) –
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the linear system is then merely overdetermined. However, if the number of true causal variants is less
than the number of exposures (Fig. 1C,F), adding genetic instruments that are only in LD with the causal
variants does not help. In this case, the variants violate the third instrumental set condition (see Methods),
and eq. (12) is easily seen to be underdetermined.

The covariances in eqs. (12)–(13) are the true covariances of the random variables Ei, X j, and Y .
To estimate the causal effects from observational data, we need finite-sample approximations to these
equations. The most straightforward estimates ĉ are obtained by replacing the true covariances by their
empirical estimates. We refer to this solution as ĉLS, the least squares (LS) estimator, that is,

ĉLS = (Σ̂T
EX Σ̂EX )

−1
Σ̂

T
EX Σ̂EY .

Since the empirical covariances can be obtained from univariate regressions, the least-squares estimator is
also called the “regression of regression coefficients” method.

The least-squares estimator belongs to a more general family of estimators obtained by the generalized
method of moments (GMM; see Methods for details), which can be written as

ĉGMM(∆) = (Σ̂T
EX ∆Σ̂EX )

−1
Σ̂

T
EX ∆Σ̂EY

where ∆ is any square invertible matrix with dimensions equal to the number of instrumental variables. If
∆ is the identity matrix (or if Σ̂EX is invertible), we recover the least-squares estimator. The estimator
ĉGMM(∆) is consistent for all choices of ∆. With homoskedastic errors, the estimator with theoretically
minimal variance is obtained by taking ∆ = Σ̂

−1
EE , the inverse of the empirical covariance matrix of the

instruments, that is, the inverse of the LD matrix of the variants (see Methods for details). We will refer to
this estimator as the GMM estimator ĉGMM:

ĉGMM = (Σ̂T
EX Σ̂

−1
EE Σ̂EX )

−1
Σ̂

T
EX Σ̂

−1
EE Σ̂EY .

We observe that the GMM estimator is identical to the two-stage least squares estimator of McDaid et al.
[20] and Porcu et al. [10].

Therefore, both the least squares, regression of regression coefficients estimator and the two-stage
least squares estimator are consistent estimators for the MVMR instrumental variable formula (13), and
both belong to a more general family of GMM estimators.

Causal effect estimation from simulated data
To test the accuracy of the least-squares (LS) and GMM estimators we performed simulations under a wide
range of scenarios. In a first set of experiments, we considered exactly determined systems with normally
distributed variables, where the LS and GMM estimators are identical (see Methods). As predicted by
theory, the LS/GMM estimator is consistent with variance decreasing with increasing sample size in all
simulations (Fig. 2). In the literature, no simulations of MVMR with correlated instruments have been
reported. We observed, perhaps surprisingly, very limited effect of increased instrument correlation on
the variance of the causal effect estimates for pairwise correlations between 0.1 and 0.7, and even at
correlation 0.9, the variance is only twice as large as at correlation 0.1 (Fig. 2B,C).

We further tested the effect of weak instruments, that is, instruments with weak effects on the
exposures (see Methods for details). As expected, weak instruments increase the variance in the causal
effect estimates, more strongly at small sample sizes (n = 500− 1,000) (Fig. 2D,E). In general, the
increase in variance due to weak instruments is not greater in the MVMR setting than in standard,
univariate MR (Supp. Fig. S1B,D).

Finally, we tested the effect of missing exposures in the model, by applying univariate MR to data
simulated from a model with two correlated exposures. Unsurprisingly, in this case the effect estimates
are highly biased (Fig. 2G,H). In contrast, when only true instruments (causal variants) are missing from
the estimation in the over-determined case, effect estimates remain unbiased with only a mild increase in
variance (Supp. Fig. S1G).

In our next set of experiments, we compared the LS and GMM estimators in both exactly determined
and overdetermined systems, using more realistic correlation matrices taken from real LD values and eQTL
and GWAS summary statistics at real loci in the human genome (Fig. 3; see Methods for details). While
both estimators are guaranteed to be consistent, the GMM estimator is the estimator with theoretically
lowest variance (see Methods). However, across thousands of simulations with multiple sample sizes
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and for models of varying degree of overdetermination, we did not observe any differences in variance
between the LS and GMM estimators (Fig. 3B,C).

We also compared the LS and GMM estimators to estimators from TWMR [10], TwoSampleMR
(function mv multiple for multivariable MR analysis) [31] and the MVMR R package [30]. In theory, the
two-stage least squares estimators used in the TWMR and MVMR R packages should be identical to our
GMM estimator. This is indeed what we observe for the MVMR R package (Fig. 3D,E,G,H). However,
for TWMR we observe systematically that its estimate is not consistent, that is, the average estimated
effect over 1,000 independent simulations with the same parameter settings is not equal to the true causal
effect (Fig. 3D,E,G,H). Inspection of the TWMR source code revealed the presence of a “regularization”
term that was hard-coded to a specific value, related to the sample size of the use-case from their paper
[10] (see Methods for details). After removing this term, the TWMR estimates again coincided with our
GMM estimator (data not shown).

Finally, in line with the previous set of experiments, we did not observe any reduction in variance of
the GMM or MVMR R package estimators compared to the LS estimator, although the GMM estimator
exhibits faster convergence to the true causal effect. However, we also observed that the LS estimator
demonstrated greater robustness (less increase in variance) to high LD values, which are typical of SNPs
colocated in the same genomic locus.

Prediction of causal genes at GWAS loci for coronary artery disease
To test our method on real-world data, we predicted causal genes at genome-wide significant loci for
coronary artery disease (CAD) from the CARDIOGRAMC4D meta-analysis study [32] using eQTL
data from seven vascular and metabolic tissues from the STARNET study [26] (see Methods for details).
Results are presented for the least squares estimator; the GMM estimates are predominantly consistent
and are provided in the Supplementary Information.

First, to get an understanding for the range of causal effect sizes one can expect for true causal
genes, we identified 17 genome-wide significant CAD loci which had an effect on expression of a single
candidate gene in a single tissue, that is, where no cis-regulatory pleiotropy is present and we can plausibly
hypothesize that the true causal gene is known (Fig. 4A, Supplementary Information). These genes
included well characterized genes such as PCSK9, a risk gene for low-density lipoprotein cholesterol
levels and CAD [33], whose visceral adipose (VAF)-specific association to CAD risk SNPs in STARNET
was previously confirmed in independent data [26], and GUCY1A3, whose expression correlates with
risk of atherosclerosis [34]. The absolute predicted causal effects on the standardized scale for these 17
genes ranged from 0.099 (PCSK9 in VAF) to 0.34 (GSTM3 in mammary artery (MAM)). We therefore
considered an absolute causal effect size greater than or equal to 0.1 to be an appropriate threshold to
define causal genes.

We confirmed the validity of this threshold using seven genome-wide significant CAD loci which had
an effect on expression of a single candidate gene in at least two tissues in the STARNET data, that is,
loci where we can plausibly hypothesize that the true causal gene, but not the tissue, is known. We used
standard, univariate MR on a tissue-by-tissue basis and found that in all seven cases, the candidate gene
had a predicted absolute causal effect size greater than 0.1 in at least one tissue (Fig. 4B, Supplementary
Information). These genes included CDKN2B, located in one of the most robust genetic markers for type
2 diabetes, CAD, and myocardial infaction [35]. GWAS SNPs in the CDKN2B locus were associated with
expression of CDKN2B in aorta (AOR), subcutaneous fat (SF), and blood, with predicted causal effects
c =−0.75, −0.55, and 0.5, respectively.

Having found a reasonable threshold to define causal genes for CAD, we analyzed 12 genome-wide
significant CAD GWAS loci which had an effect on expression of multiple nearby genes in one or more
tissues. Similar to Porcu et al. [10], we applied MVMR on a tissue-by-tissue basis using all genes with
cis-eQTL associations in a locus in a given tissue as potential exposures in a causal diagram (cf. Fig.
1B,E). We note that at only two of the 12 loci, it was possible to reduce the SNPs to a set of independent
instruments using the LD threshold (r2 ≤ 0.1) used by Porcu et al. [10], while still retaining at least as
many instruments as exposures. Hence an approach using correlated instrument sets is essential.

In total, 35 candidate causal genes with cis-eQTL associations were located in the 12 CAD GWAS loci
with pleiotropic gene regulatory effects, of which 24 had a predicted absolute causal effect size greater
than 0.1 in at least one tissue (Fig. 4D, Supplementary Information). To analyze these causal genes more
systematically, we compared the predicted causal effects from MVMR against the predicted causal effects
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from standard MR (Fig. 4E) and regulatory trait concordance (RTC) scores [36] computed by Franzén
et al. [26] (Fig. 4F), two univariate methods that ignore the pleiotropic gene regulatory effects. We also
conducted a replication analysis for loci with cis-associations in matching tissues in both STARNET and
GTEx (Fig. 4G, see Methods for details).

We observed a general trend where predicted causal genes using MVMR (predicted causal effect
|b| ≥ 0.1) were also predicted to be causal (using the same threshold) using univariate MR, had high
RTC values, and had concordant effect sizes between STARNET and GTEx (Fig. 4E-H). However
several genes with high univariate MR effects and high RTC values were not causal according to MVMR,
suggesting that MVMR can indeed correct for likely false predictions from MR or colocalization analyses
due to regulatory pleiotropy.

A clear example of a CAD GWAS locus where MVMR and MR give contrasting results is a locus
centred around chr 6:12,901,441. In STARNET, the locus has cis-associations with the expression of
PHACTR1, GFOD1, TBC1D7, RP1-257A7.4, and RP1-257A7.5 in MAM (Fig. 5A). In univariate MR
analyses these genes have predicted causal effects ranging from 0.15 for PHACTR1 to 0.31 for GFOD1,
and a previous integrative genomics analysis lists all of them as candidate causal genes for this locus
[37]. After pruning nearly identical SNPs (LD r2 ≥ 0.95), 12 instruments (with mutual LD ranging from
r2 = 0.17 to r2 = 0.86) were available for conducting MVMR, resulting in a predicted causal effect of
0.19 for PHACTR1, with all other effects below the threshold of 0.1 in absolute value, suggesting that
PHACTR1 is the only causal gene in arterial tissue at this locus.

Another example is the locus centred around chr 15:79,141,784, where functional studies support a
causal and proatherogenic role for ADAMTS7 [38]. In STARNET, the locus has cis-associations with
the expression of ADAMTS7 in AOR, MAM, and VAF. In both arterial tissues. In all three tissues, the
locus also has cis-associations with the expression of CTSH. After pruning nearly identical SNPs (LD
r2 ≥ 0.86), 9, 25, and 10 instruments (with mutual LD ranging from r2 = 0.03 to r2 = 0.94) were available
for conducting MVMR in AOR, MAM, and VAF respectively. In the arterial tissues, MVMR confirms that
ADAMTS7 is the most likely causal gene (predicted causal effects 0.18 and 0.14 vs. 0.025 and −0.058
for CTSH in AOR and MAM, respectively; Fig. 5B). Replication in GTEx AOR tissue confirmed these
results (predicted causal effects 0.18 and 0.009 for ADAMTS7 and CTSH, respectively). By contrast, in
VAF, both genes are predicted causal with effects in the opposite direction (predicted causal effects −0.18
and 0.25 for ADAMTS7 and CTSH, respectively), the latter due to opposite eQTL effects of the same
variants in VAF vs. AOR and MAM. No eQTL associations with either gene were available in GTEx in
adipose tissue to confirm these results. The overall picture is further complicated by the fact that the locus
also has cis-associations with the expression of CTSH in blood, SKLM, and SF, and with PSM4 in SKLM.
The absence of associations with ADAMTS7 in these tissues implies that the association between the locus
and CAD is automatically attributed to the other genes (Fig. 5B). Given the overwhelming functional
evidence for ADAMTS7 [38], these results probably reaffirm the importance of having all true exposures
included in the model (cf. Fig. 2F-H).

As a final examples we consider the locus centred around chr 2:85,809,989. Previous analyses
found a candidate causal SNP in this locus located in the promoter region of MAT2A, but since the
SNP was associated to expression of multiple genes in this locus, a causal gene could not be predicted
[39]. In STARNET, the locus has cis-associations with the expression of MAT2A in AOR and MAM.
In both tissues, the locus also has cis-associations with the expression of GGCX, and both genes have
previously been listed as candidate causal genes in arterial tissues [37]. After pruning nearly identical
SNPs (LD r2 ≥ 0.95), three instruments (with mutual LD ranging from r2 = 0.69 to r2 = 0.89) were
available for conducting MVMR. In both AOR and MAM, MVMR suggests MAT2A, and not GGCX is the
causal gene (predicted causal effects −0.23 and −0.33 vs. 0.02 and 0.16 for GGCX in AOR and MAM,
respectively; Fig. 5B). The overall picture is again less clear, since the locus also has cis-associations with
the expression of GGCX and VAMP8 in liver, and with GGCX alone in SF and VAF. Interestingly, in liver,
neither gene is predicted causal (predicted causal effects −0.08 and −0.06; Fig. 5B), while in the adipose
tissues, the entire association between the locus and CAD is automatically attributed to GGCX (predicted
causal effects −0.14 in both tissues; Fig. 5B).

The preceding examples suggest that in fact two distinct forms of regulatory pleiotropy exist. A
GWAS locus can be associated (in cis) to expression levels of multiple genes in the same locus in a
tissue of interest, but can also be associated to one or more genes in multiple tissues. We attempted to
conduct MVMR using all potential exposures (across genes and tissues) in a single model, in order to
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simultaneously predict the causal gene(s) and tissue(s) at loci of interest. However, conclusive results
were often elusive, as both the determinant of the LD-matrix and the instrument strength matrix were very
small, indicating that the number of causal variants in most loci is less than the often large number of
exposures that must be accounted for in such a multi-tissue analysis.

An example of how multi-tissue MVMR can potentially differ from tissue-specific MVMR is given by
the locus centred on chr 19:11,061,315. In STARNET, the locus has cis-associations with the expression of
CARMI in SF and SKLM, and with RGL3 and SMARCA4 in liver. In tissue-specific analyses, CARMI was
causal in SF (c = 0.19) and SKLM (c = 0.18) (univariate MR), while RGL3 (c =−0.19) and SMARCA4
(c =−0.2) were both predicted to be causal in liver (MVMR). Notably, the lead SNP rs35140030 was
shared between CARMI in SF and SKLM, and another SNP in the locus, rs113718993 was shared between
CARMI in SKLM and SMARCA4 in liver. Since these SNPs were shared between tissues, and two
additional instruments were available after pruning nearly identical SNPs (LD r2 ≥ 0.95), we conducted
an additional MVMR analysis where exposures were gene-tissue pairs. This analysis predicted that
(CARM1, SKLM) (c = 0.18) and (RGL3, liver) (c = −0.19) were the causal gene-tissue pairs, while
(CARM1, SF) (c =−0.02) and (SMARCA4, liver) (c =−0.01) were not causal.

DISCUSSION
In this paper we studied if multivariate Mendelizan randomization (MVMR) can be used to identify causal
genes at GWAS loci with pleiotropic gene regulatory effects, that is, GWAS loci associated with gene
expression of more than one candidate gene in the genomic locus of interest. MVMR requires at least as
many genetic instruments as the number of candidate genes included in the model, and the consensus in
the field has been that these instruments must be independent. However, due to high levels of linkage
disequilibrium between genetic variants located in the same genomic locus, it is usually impossible to
identify such independent instrument sets.

Using the method of path coefficients we showed that the MVMR causal diagram with correlated
instruments satisfies the instrumental set condition, a classical result by Brito and Pearl [24] that guarantees
the identifiability of the direct causal effects of all exposures in the model on the outcome variable of
interest. Moreover, the effects solve a regression of (univariate) regression coefficients, and the only
requirement is that the set of instruments consists of (or tags) at least as many causal variants as the
number of candidate genes included in the model. We further showed that the standard two-stage least
squares estimator of the causal effects in MVMR is part of a generalized method of moments (GMM)
family of finite-sample estimators for the theoretical identification equation, as is a least squares estimator
that simply replaces the theoretical univariate regression coefficients by their finite sample estimates,
results which again do not depend on the presence or absence of instrument correlations.

Extensive simulations confirmed the validity and usefulness of these theoretical results even at modest
sample sizes (n ≳ 500-1000). Most surprisingly perhaps was the finding that the variance in causal effect
estimates remained small, even at high correlation values between the instruments. Moreover we saw
no benefit in using the computationally more expensive two-stage least squares estimator instead of the
simpler least squares estimator – both were unbiased and had identical variance in all our simulations.

Application of our method to predict causal genes for CAD using eQTL data from seven vascular
and metabolic tissues in the STARNET study illustrated the importance of being able to apply MVMR
with correlated instrument sets. Out of 36 genome-wide siginificant loci with cis-eQTL associations in
STARNET, only 17 were associated with a single gene in a single tissue, 7 with a single gene in multiple
tissues, and 12 with multiple genes in multiple tissues. A deeper look in the predictions at some of these
loci with widespread regulatory effects showed both the strengths and limitations of applying MVMR in
this context.

A relatively clear case was provided by the PHACTR1 locus, where PHACTR1 was predicted as the
only causal gene in arterial tissue, even though GWAS variants in this locus had cis-eQTL associations
to an additional four genes in the same tissue. The lead GWAS SNP in this locus is located in an intron
of PHACTR1, and PHACTR1 was one of two top candidate causal genes (together with CDKN2B) for
CAD in an integrative genomics analysis that included STARNET data as well as orthogonal evidence
[37]. Functional evidence also supports a causal role for PHACTR1 [40], although recent results suggest
effects of this locus on a distal gene EDN1 may also play a role, and controversy about the true causal
gene remains [41].
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The ADAMTS7 locus provided another important test case. Functional evidence strongly supports a
causal role for ADAMTS7 in CAD [38], and in the arterial tissues where the GWAS SNPs in this locus
were associated with ADAMTS7 expression, our method correctly predicted ADAMTS7 as the causal gene,
and not CTSH, another gene in this locus with cis-eQTL associations in the same tissues. However, in
VAF, both genes were predicted causal, and when the method is applied to tissues where there are no
cis-eQTL associations with ADAMTS7, other genes are predicted as causal genes. This latter result is
consistent with what is seen in simulations: if true exposures are missing from the model, the effect of the
missing exposure is distributed over the available exposures in a manner that ensures consistency of the
univariate instrument-exposure and instrument outcome covariances.

The fact that regulatory pleiotropy can extend over multiple tissues implies that MVMR must be run
strictly speaking by including all gene-tissue pairs with cis-eQTL associations in a given GWAS locus as
exposures in a single, large causal model. However, even though instrument sets can be highly correlated
and the STARNET data contains only seven tissues, it was almost never possible to run such large models,
as the requirement on the number of causal variants included in or tagged by the instrument set still stands.
To overcome this limitation, we see two ways forward.

First, we should not consider MVMR to be a hypothesis-free method that can be run across all
available tissue eQTL data to discover causal genes de novo. Instead prior knowledge of the relevant
tissue and plausible candidate genes must be used to limit both the size of the model and the risk that true
causal genes and gene-tissue combinations are missing from the model. For instance, integrative genomics
analysis pipelines such as the ones developed by Brænne et al. [39] and Hao et al. [37] combine multiple
eQTL and GWAS datasets with functional genome annotation and literature search to compile ranked
lists of the most likely causal genes and tissues for an outcome of interest such as CAD. Using MVMR
as an additional step in such pipelines to resolve causal effects at loci with eQTL effect on prioritized
genes in prioritized tissues can provide additional causal evidence, as illustrated by the PHACTR1 and
ADAMTS7 examples.

Another and more challenging solution would be to expand instrumental variable sets to the required
size for models with a large number of exposures by including variants from outside the locus of interest
(trans-acting variants) in the instrumental variable set. However such variants typically have small effects
and are by definition indirect, such that care must be taken to exclude horizontal pleiotropic effects from
upstream regulatory factors. Most likely, progress in this direction will require whole-network causal
modelling in accordance with the omnigenic model [42].

In summary, through theory, simulation, and application on real-world data, we have shown that
MVMR with correlated instrumental variable sets significantly expands the scope for predicting causal
genes at GWAS loci with pleiotropic regulatory effects, but important challenges remain to account
completely for the extensive degree of regulatory pleiotropy across multiple tissues.
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Figure 1. Causal diagrams for identification (A-C) and estimation (D-F) of causal effects at GWAS
loci with regulatory pleiotropy. (A) The standard instrumental variable graph is only suitable for
modelling the causal effect of gene X on outcome trait Y if X is the only cis-eGene in the locus of the
genome-wide significant variant E for Y . (B) A causal graph for MVMR with regulatory pleiotropy,
where two or more cis-eGenes Xi are found in a genome-wide significant locus for Y ; the causal effects of
each Xi on Y can be identified if there exist at least the same number of causal variants as the number of
cis-eGenes in the GWAS locus, even when they are in LD with each other, because the variants form an
instrumental set. (C) If the number of causal variants is smaller than the number of cis-eGenes and other
variants in the locus are merely associated by LD, the causal effects of Xi on Y are non-identifiable. (D,E)
When estimating causal effects from finite samples, we use an overdetermined set of genetic variants as
instruments, without knowing the number or identity of the causal variants. (F) If the (unknown) number
of causal variants in a locus is smaller than the number of cis-eGenes, causal effects can not be estimated,
a condition that can be tested by analyzing the rank or determinant of the covariance matrix between the
variants and cis-eGenes. Solid arrows represent direct causal effects and dashed (bi)directed arrows
represent non-zero covariances due to unobserved (U) confounders.
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Figure 2. Causal effect estimation on simulated data of exactly determined systems. (A) Causal
diagram for the simulation of two exposures X1 and X2 for an outcome Y , with two shared instruments E1
and E2 with pairwise covariance α and matrix of instrument effect sizes A = [ai j]. (B-E) Distribution of
estimated causal effects for X1 (left; true effect size 0.2) and X2 (right; true effect size 0.6) across 1,000
independently simulated datasets across a range of sample sizes under different simulation scenarios:
testing the effect of instrument covariance for α = 0.01, 0.3, 0.7 and 0.9 (B-C), and of instrument
strength for det(A)> 0.5 and det(A)< 0.2 (D-E) where insets show a zoom along y-axis ranges. (G)
False causal diagram used for inference where one causal exposure is missing. (G-H) Distributions as in
(B-E) assuming the false diagram in (G), that is, performing univariate MR, when in reality, data was
generated from the true diagram in (A). See Methods for simulation details.
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Figure 3. Causal effect estimation and MVMR method comparison on simulated data of
overdetermined systems. (A,D,G) Causal diagrams for the simulation of two exposures X1 and X2 for an
outcome Y , with n ≥ 2 shared instruments E1, . . . ,En with correlation matrices derived from real LD
values and summary statistics for the SNPs and genes in the diagrams. Results reported in each row show
distributions of estimated causal effects across 1,000 independently simulated datasets from the
corresponding diagram on that row. (B,D) Comparison between the least-squares (B) and GMM
estimators (C) for the causal effect of X1, for models with 2, 5, and 12 instruments. E,F Comparison of
the least-squares, TWMR, TwoSampleMR, and the MVMR R package for an exactly determined system
(where least-squares and GMM are identical). H,I Comparison of least-squares, GMM, TWMR,
TwoSampleMR, and the MVMR R package for an overdetermined system. See Methods for simulation
details.
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Figure 4. Predicted causal genes and their tissue-specific effects on CAD at genome-wide
significant CAD loci. (A) Causal effects from univariate MR of genes at 17 CAD GWAS loci with
effects on a single gene in a single tissue. (B) Causal effects from tissue-specific, univariate MR of genes
at seven CAD GWAS loci with cis-regulatory effects on a single gene in multiple tissues. (C) (D) Causal
effects from tissue-specific MVMR with correlated instrumental variable sets of genes at 12 CAD GWAS
loci with cis-regulatory effects on multiple genes in multiple tissues. (E) Scatter plot of tissue-specific
causal effect estimates from MVMR vs. univariate MR. (F) Scatter plot of tissue-specific causal effect
estimates from MVMR vs. CAD regulary trait concordance (RTC) scores. (G) Scatter plot of
tissue-specific causal effect estimates from MVMR in STARNET vs. GTEx.
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Figure 5. Example CAD GWAS loci with pleitropic gene regulatory effects and predicted causal
genes. Each row shows the predicted causal effects from tissue-specific MVMR of genes with cis-eQTL
associations in a CAD GWAS locus of interest across seven vascular and metabolic tissues from the
STARNET study (left) and the genetic architecture and cis-regulatory pleiotropy of the locus. The
heatmaps show the causal effects on the liability on a standardized scale. Only tissues with non-zero
cis-eQTL effects in the STARNET study are included. Values identically zero indicate gene-tissue
combinations not included as exposures in the model (no cis-eQTL association in that tissue). The
LocusZoom plots show for each SNP in the locus the GWAS − log10(p− value) (y-axis) and associated
cis-eQTL genes in MAM (A) or AOR (B, C) (symbol, see legends). (A) Locus centred on chr
6:12,901,44. (B) Locus centred on chr 15:79,141,784. (C) Locus centred on chr 2:85,809,989
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SUPPLEMENTARY FIGURES
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Figure S1. Causal effect estimation on simulated data of one dimensional systems. (A, C) Causal
diagrams for the simulation of one exposure X for an outcome Y , influenced by one instrument E with
variable instrument strengths a (A), or influenced by n ≥ 2 instruments E1, . . . ,En with instrument
strengths ai (C). (B, D) Distribution of estimated causal effects for X (true effect size 0.3), showing
distributions across 1,000 independently simulated datasets across a range of sample sizes under different
simulation scenarios with varying instrument strengths. (G) Distribution of estimated causal effects for X
(true effect size 0.3) assuming the false diagram in (F) for inference when the true diagram that generated
the data is in (E).
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Figure S2. Causal effect estimation on simulated data for underdetermined and overdetermined
systems. (A) Causal diagram for the simulation of two exposures X1 and X2 for an outcome Y , influenced
by three instruments E1,E2,E3 where the number of causal variants is smaller than the number of
cis-eGenes and other variants in the locus are merely associated by LD. (B, C) Distribution of estimated
causal effects for X1 (B, true effect size 0.2) and X2 (C, true effect size 0.6) in the graph from (A). (C)
Causal diagram for the simulation of one exposure X for an outcome Y , with n ≥ 2 shared instruments
E1, . . . ,En where the number of causal variants is greater than the number of cis-eGenes. (E) Distribution
of estimated causal effects for X (true effect size 0.3) from the graph in (D). Panels B, C, and E show
distributions across 1,000 independently simulated datasets across a range of sample sizes.
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Figure S3. Causal effect estimation and univariate MR methods comparison on simulated data of
overdetermined systems. (A) Causal diagram for the simulation of exposure MRPS6 for an outcome
CAD, with 10 shared instruments. (B) Distribution of estimated causal effects for MRPS6 (true effect size
0.64) comparing the estimators Least squares, GMM, TWMR, IVW (Inverse Variance Weighted), WM
(Weighted Median), Maxlik (Maximum Likelihood), and MR-Egger, showing distributions across 1,000
independently simulated datasets across a range of sample sizes using normally distributed instruments
with randomly generated covariances with real LD values from the MRPS6 locus.
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