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We describe an iterative algorithm that converges to the maximum likelihood estimate of the 

position and intensity of a single fluorophore. Our technique efficiently computes and 

achieves the Cramér-Rao Lower Bound, an essential tool for parameter estimation. An 

implementation of the algorithm on graphics processing unit hardware achieves more than 

105 combined fits and Cramér-Rao Lower Bound calculations per second, enabling real-time 

data analysis for super-resolution imaging and other applications.

In many single molecule fluorescence applications, it is often desired to find the position and 

intensity of a single fluorophore as well as to estimate the accuracy and precision of these 

parameters. Where accuracy is a measure of the systematic error or bias and precision is a 

measure of the statistical error of an estimator1. In recent work that uses single-molecule 

localization to generate super-resolution images2-6, single emitters are located and on the 

mosaic of their found positions a two-dimensional Gaussian profile is placed to generate the 

final super-resolution images. The width of the placed Gaussian blob, σ, is given by the 

precision of the fluorophore position localization σ = (σ2
x + σ2

y)1/2 and in these super-

resolution techniques it is therefore necessary to both find the parameters and estimate their 

precision. Reported values are in the range of 20-70 nm. In the application of super-

resolution imaging, it may be required to find the positions of more than 106 fluorophores in 

order to generate one final image of a typical field-of-view of 50 × 50 μm. In many cases, 

background rates of light detection may vary across the field of view and the fluorophore 

emission rate of chemically identical fluorophores can vary due to effects such as uneven 

illumination profile, dipole orientation or different optical path lengths. In this work, we 

describe an iterative routine, implemented on a graphics processing unit (GPU) that 

calculates the Maximum Likelihood Estimate (MLE) for the xy(z)-position, the photon count 

of the fluorophore and the background fluorescence rate (Supplementary Note). We show 

that our approach achieves the Cramér-Rao Lower Bound (CRLB) over a wide range of 
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parameters. The uncertainties of the fitted parameters are found by calculating their 

CRLBs1, and in this sense the estimated σ for building up the super-resolution image is 

optimal. We provide a software tool (www.diplib.org/home22266) that only requires an 

inexpensive graphic card in order for single molecule fitting speed to be sufficient for real-

time data analysis.

Since the speed and precision of single particle localization has long played an important 

role in single particle tracking as well as in other single molecule biophysical techniques that 

rely on fluorescent reporters, others have also considered these issues. Several algorithms 

from the literature for finding particle positions are compared in7, but, without the context of 

a statistical framework. The theoretically best-possible estimation precision of a fluorophore 

position has been derived in8 by using the well established statistical method of finding the 

CRLB in an unbiased parameter estimation problem. They considered many of the effects in 

a real system including background fluorescence, finite camera pixel size, and camera 

readout noise and they recently made a software tool available for estimation 

(www4.utsouthwestern.edu/wardlab). Non-linear least-squares (NLLS) and MLE position 

estimates were compared to the CRLB in9, and it was found that, in general, MLE gives 

better precision than NLLS. The better precision of MLE is in concurrence with our results, 

however in9 they were investigated with assumed known emission and background rates. 

Here we demonstrate a robust, iterative routine that finds the particle position, the intensity 

and the background count rate. We do not consider camera readout noise since for electron 

multiplying (EM)CCD cameras, which are generally used for the fast frame rates desired in 

super-resolution imaging, the readout noise is much less than 1 rms e- when using large EM 

gain. As described further in the Supplementary Note, Supplementary Data and 

Supplementary Figs. 1-4, the method presented is not restricted to 2D imaging with a 

symmetric point spread function (PSF), but can be extended to handle super-resolution 

techniques that encompass astigmatic imaging for z resolution as in10. In this case, the z 

position is also calculated directly (not from intermediate σx, σy fits) and returned with 

CRLB based uncertainties. The results of the iterative algorithm compared to CRLB-based 

theoretical values are shown for a range of background rates and total collected photon 

counts of the PSF (Fig. 1). We show results for σPSF = 1 with the size defined in unitless 

back-projected pixels. The diffraction limit for high NA visible light imaging is > 200 nm 

and σPSF > 90 nm 11. The algorithm both achieves and correctly reports the CRLB 

uncertainties over a wide range of background and fluorophore intensities. Calculated 

precision remains within a few percent of the theoretically achievable value even for less 

than 100 collected photons. We find that in all conditions, when the reported CRLB is less 

than σPSF / 2 (here 0.5), the reported CRLB matches the theoretical position, and the routine 

achieves the CRLB. In typical super-resolution applications this corresponds to < 50 nm. 

Addition of camera readout noise has effectively the same negative influence on the 

parameter estimation as high background. Fortunately, this can be excluded for an EMCCD 

for the reasons mentioned above. Example images of single fluorophores with intensities 

and background rates near the σPSF / 2 value are shown in Supplementary Fig. 5. The 

classical approach to solving the position fitting problem is via NNLS optimization (Fig. 

1b). Here we chose a Levenberg-Marquardt (LM) optimization scheme with analytic and 

computed first derivatives with respect to the optimization parameters. Note that it is 
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common practice to use computed derivatives only. The NNLS optimization clearly 

performs worse in terms of precision than our iterative MLE approach due mainly to the 

incorrect Gaussian-noise model implicitly present in any least-squares based optimization 

scheme. We compare the predicted uncertainty of the fit as in12 (Eq. 14) with the theoretical 

CRLB (Fig. 1c). Strikingly, they are identical for no background fluorescence but for any 

non-zero background and low light conditions the deviation is almost a factor of two. This 

means that in these cases the suggested uncertainty σ used to constitute the super-resolution 

image is estimated at nearly half the CLRB based value (overly optimistic). The formula 

presented in12 has the advantage that it can be readily calculated by hand from measurable 

quantities. However, for a precise estimate, the use of the reported CRLB from our iterative 

algorithm is preferred.

Our iterative update scheme is similar to that described in13. We show, however, that a 

Gaussian approximation for the two-dimensional fluorophore PSF 11 and following 

localization leads to a compact analytical expression that allows for computationally fast 

localization without compromising on the localization precision. Our approach achieves the 

CRLB after a few (~ 10) iterations. It should be noted that the CRLB predicts the correct 

precision only when the model function is correct, and the isotropic Gaussian model may not 

be appropriate when imaging fluorophores with a fixed dipole orientation14, leading to 

anisotropic emission. As described in the Supplementary Data, a ‘rule-of-thumb’ fitting 

region size of 2 × 3σPSF + 1 is used. For z resolution imaging the Gaussian PSF model is 

less reliable due to optical aberrations and the simplified model itself11.

GPU-based computation has the potential to increase floating point calculation speed by a 

factor of 10-100 as compared to a modern CPU if the problem is amenable to a parallel 

processing approach (www.nvidia.com). A generic C-like language interface is available for 

simplified GPU programming (Nvidia CUDA), and a MATLAB (The Mathworks, USA) 

interface has been developed. Operating with a fixed number of iterations complements the 

GPU's single instruction multiple data strategy (SIMD). A GPU implementation of our 

iterative method can perform 105 combined MLE and CRLB calculations per second of the 

four parameter model needed to describe the emittance of a fluorophore (Fig. 2).

The CPU and GPU performance, characterized by the number of combined position fits and 

CRLB calculations performed per second, are shown in Table 1. The slowest GPU tested 

outperforms the CPU by more than one order of magnitude, with the fastest achieving 

2.6·105 fits per second on a 7×7 fitting box size. We attribute this level of performance gain 

over the CPU to the fact that this estimation problem is almost ideal for the GPU SIMD 

architecture. Many iterations are performed on the same data, which are stored in local 

shared memory, and each thread is independent, eliminating synchronization delays. We 

also note that all CPU computation only ran on a single thread. In the right column of Table 

1 the performance of a non-linear, least-squares fit (in C-code) on a CPU is shown for 

reference. It is twice as slow as our iterative algorithm on a CPU. Commonly used 

MATLAB LM optimization only computes about 5 fits/second. Given the readout rate of 

current high-end (EM)CCD cameras (~ 10 Mhz) our GPU implementation performs 

combined fits and uncertainty estimates at a speed sufficient for real-time analysis (see 

Methods).
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To summarize our findings, we have derived an iterative approach for making a maximum 

likelihood estimate of the position and intensity of a single fluorophore as well as the 

background count rate using a two-dimensional Gaussian PSF model and a Poisson noise 

model. The iterative method achieves the minimal possible estimation uncertainty, as given 

by the Cramér-Rao Lower Bound, over a wide range of emission and background rates that 

could be found in single molecule experiments. Implementation of the iterative method on a 

modern graphics processing unit yields more than 105 combined fits and CRLB calculations 

per second, greatly facilitating the analysis of large data sets found in single molecule based 

super-resolution techniques and is suitable for real-time data analysis.

METHODS

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturemethods/.

Methods

GPU Implementation

The iterative method to solve the MLE problem described above is implemented on a GPU 

using NVIDIA's compute unified device architecture (Nvidia CUDA), a C based 

programming language that makes it possible to readily program parallelized algorithms that 

are executed on a GPU. High-end gaming and computing GPU's have a (card dependent) 

large region of global device memory, usually several hundred MBytes. Execution is 

performed on a number (card dependent) of multi-processors. Multi-processors contain eight 

sub-processors and have 16 KBytes local memory that is shared between sub-processors. 

Access to local shared memory is fast, whereas access to the device global memory incurs a 

large performance penalty, and should be avoided when possible. The programming model 

follows the GPU architecture in that parallelized execution is performed by breaking down 

computations into ‘blocks’ and ‘threads’. Each block executes a set of threads using one 

multi-processor. Typically, performance is optimal when multiples of 32 threads (called a 

‘warp’) are scheduled and executed using the 8 sub-processors. However, we found for all 

fit box sizes, the maximum fits/second occurred when the maximum fits/block were used, 

which is limited by the available 16KB shared memory per block. This is likely due to 

compiler optimization and the fact that each fit is independent of all others (no thread 

synchronization is required).

We map our iterative algorithm on this programming model in the following way. A data 

stack consisting of identically sized sub regions, which are centered single emitter images, 

are input to the function. This data is copied from host (CPU) memory to device (GPU) 

main memory. This data set is divided into blocks, which consist of the largest number of 

images that can fit into shared memory. The execution of a block begins by copying the data 

sub-set into local shared memory. Each thread then calculates a complete fit and CRLB 

calculation for one image. The Fisher information matrix is calculated using Supplementary 

Note Eqs. 9 and 11 and the CRLB is calculated using the analytical expression for the 

inverse of a 4 × 4 matrix. The CPU performance was measured by replacing the block/

thread architecture with nested loops which call the same sub-function, and was compiled 
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using Microsoft Visual Studio Express 2008. Images were loaded in MATLAB (The 

Mathworks, USA) as arrays and the C-Code and the CUDA GPU code were called via mex-

files. The CPU was a AMD Phenom II X3 720 @2.8 GHz and only one core was used for 

the C-code.

Synthetic Data Generation and Analysis

The CUDA routine described above operates on a data set consisting of identically sized 

images that contain images of (potential) single molecules. For the analysis of synthetic 

data, a stack is generated using the same finite pixel approximation, including background as 

described in the Supplementary Note. The center coordinate of each simulated emitter is 

randomly shifted within the central pixel to prevent a biased result. After the generation of 

the data stack, the images are corrupted with Poisson noise. This data stack is analyzed by 

the routine, which returns the estimated position, intensity, and background and the CRLB 

calculation for each 2D image in the stack. No camera read noise is added. Camera read 

noise for electron multiplying (EM) CCD cameras, which are generally used for the fast 

frame rates desired in super-resolution imaging, is much less than 1 rms e- with large EM 

gain.

Levenberg-Marquardt Non-Linear Least-Squares Fitting

The standard way of fitting a Gaussian to data is via least-squares fitting. We used 1) an 

existing implementation of MATLAB via the optimization toolbox (lsqcurefit) where we 

enabled the Levenberg-Marquardt option as minimization scheme and 2) an implementation 

from Numerical Recipes in C15. We ran the test on fits with computed Jacobian only and on 

fits where we supplied analytic first derivatives. We used the following limits in the 

stopping criterion: tolerance on the parameters 10−4, tolerance on the function 10−15 and 

maximal 105 function evaluations. The stopping criterion was in all cases determined by the 

accuracy put on the parameters. The MATLAB routine is a lot slower (about two orders of 

magnitude) than the C implementation although it makes automatic use of all available cores 

on the CPU if multi-threading is enabled.

Single Molecule Imaging

Single molecule imaging experiments were performed in an epi-fluorescence microscope 

setup consisting of an inverted microscope (IX71, Olympus America Inc.), 1.45 NA 

objective (U-APO 150x NA 1.45, Olympus America Inc.), 635 nm diode laser (Radius 635, 

Coherent Inc.), and an electron multiplying CCD camera (Luca DL6581-TIL, Andor 

Technologies PLC.). The pixel size is 10 μm. The epi-fluorescence filter setup consisted of a 

dichroic mirror (650 nm, Semrock) and an emission filter (692/40, Semrock). Individual 

Cy5 molecules were immobilized on an amino-silane ((3-Aminopropyl)triethoxysilane, 

Sigma-Aldrich) treated 8-well chambered cover slips (Lab-Tek II, Nunc) via an NHS-ester 

linkage attached to the Cy5 (Cy5 Mono-reactive dye pack, GE Healthcare). An oxygen 

scavenging system16 was used to extend fluorophore lifetimes and quench fluorophore 

triplet states. This was necessary to perform repeated measurements of the same single 

emitter for several frames while acquiring sufficient photons in order to address localization 

accuracy. This is not necessary in a dedicated experiment.
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Data was recorded by the CCD camera at either 10 or 20 frames per second. All data was 

post-processed by 1) subtracting a pixel-dependent camera-offset, which was created by 

averaging 300 dark frames, and 2) multiplying the resulting image by a gain factor to restore 

correct Poisson statistics, as done in17. Single molecules candidates were identified in each 

time frame as regions where the 2-D Gaussian filtered image (σ = σPSF) was greater than 

one standard deviation of this image. Note that due to the speed of the GPU implementation, 

a simple but fast method for identifying candidates is preferred as well as one that errs on 

the side of including regions that do not contain single molecules. Square regions of a 

specified number of pixels that included all identified regions in the time series were 

collected into one stack and input to the GPU routine. The resulting found coordinates were 

used in building trajectories only if they passed the following criterion: 1) Reported 

localization accuracy was less than one fifth σPSF in each dimension, and 2) 1/N Σkln(L(xk|

θ))>-1, where N is the number of pixels, which essentially performs a shape test and can rule 

out obvious cases of two proximate emitters. The remaining coordinates were connected into 

‘trajectories’ using an existing single particle tracking routine18. Only ‘trajectories’ that 

showed little triplet state blinking were used in the final analysis, with a cut-off criterion that 

var(I(t))<2*mean(I(t)) where I(t) is the sum over all pixels in the analyzed region in frame t. 

‘Trajectories’ were adjusted to compensate for microscope stage drift by subtracting a linear 

regression line from each single particle trajectory.

The width of the PSF used in the fitting routine was found by minimizing the mean square 

error between the finite pixel model and the summed projection over a 100 frame time 

series. The σPSF used in further analysis is the average found from analyzing the summed 

projection of 5 different single emitters.

Astigmatic Imaging

The 3D astigmatic imaging was calibrated by imaging 100 nm red ( 690 nm emission) beads 

(FluoSphere, Invitrogen) bound to a the bottom of an 8 well cover slip chamber (Lab-Tek II, 

Nunc). The filter setup used was the same as that used for single molecule Cy5 imaging. We 

imaged using a 60x 1.2 NA water objective. A 500 mm focal length cylindrical lens was 

inserted in the emission beam path just after the first lens of a two color beam splitter 

(OptoSplit II, Cairn Research, UK). A piezoelectric z-stage (Nano-LPS, Mad City Labs) 

translated the focal plane in steps of 50 nm from −0.5 μm to 0.5 μm. At each focal plane, 20 

images of a bead were captured. The fit box size used is again calculated by 2 × 3 × σPSF +1, 

but here σPSF is taken as the maximum value of either σPSFx or σPSFy; in this case giving a 

fit box size of 13 × 13 pixels.

After gain and background correction, the sum of all images from each focal plane were 

used to find σx(z) and σy(z), which were then fit to model of Supplementary Note, Eq. 15. 

The fit is shown in Supplementary Fig. 1. From the calibration the following values for the 

parameters of Supplementary Note, Eq. 15 are found σ0x =1.08, σ0y = 1.01,Ax=−.

0708,Ay=0.164,Bx=−.073,By=.0417,d=0.531,γ=0.389. The depth of field for a high NA 

imaging system is given by DOF = λ/(4n(1 - (1- NA2/n2)1/2 )) ≈ 230 nm22 but here is 

included as a fit parameter.
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Real-time data analysis

Initially, the bottleneck for the build-up of a super resolution image was the switching cycle 

speed for activating only a very small number of particles per image, which resulted in 

imaging times of many hours19. Subsequent speed-ups were achieved by optimizing the 

fluorophores for activation based super resolution, protocol improvements or reduction in 

the number of time frames20-22.

The fundamental relationships between error and acquisition rate (number of activation 

cycles) were investigated in a theoretical study24. The findings are relevant to specific 

chosen or given activation probability. However, to assess the required speed for real-time 

data analysis, we address the problem somewhat differently. We use the field-of-view V, the 

size of the footprint of the PSF P, the frame rate F and the fill factor f of the single emitters 

distribution on the field-of-view. The required fits/second for real-time data analysis are then

We consider two common cases of emCCD cameras for the maximal fill factor of f=1 and a 

PSF of P=7 × 7 pixels: i) V=128 × 128 pixels, F=500 frames/second and ii) V=512 × 512 

pixels, F=30 frames/second. For the first case ~1.7 × 105 fits/second are required, and for 

the second ~1.6 × 105 fits/second respectively; these values are about equal as the total 

readout rate (~10 Mhz) is the limiting factor and is about equal. The PSF footprint can vary 

for different physical CCD camera pixel sizes and magnifications. In any case, the fastest 

GPU (2.6 × 105 fits/second) tested already full fills this requirement for current fluorophores 

and CCD cameras! Of course, a fill factor of f=1 is optimistic; more realistic values are 

0.1-0.5, but dependent on the experimental conditions and can be chosen according to23. 

This means that also the slower (and cheaper) cards already are sufficient in current practice 

for real-time fitting of positions. The significance of the GPU fitting in the context of the 

entire process of segmentation (identifying regions of interest for single molecule fits), 

organizing ROIs, single molecule fitting, and reconstruction, is shown in Supplementary 

Table 1. Segmentation and reconstruction are performed as described in25 with the 

segmentation performed on the GPU. The results show that with even with 106 total fits, 

corresponding to 100 fits per frame, the overall processing could exceed the maximum 

possible frame rate of 500 Hz of available EMCCDs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance comparison on simulated data. a) The localization precision of our iterative 

method is compared to that given by the CRLB. Also shown are the mean uncertainties 

reported from CRLB calculations for every image using the found intensity and background 

rates (constant offset). Calculations are made using a square fitting region of size 2 × 3 

σPSF+ 1 and 10 iterations. b) Fits are performed using non-linear least squares Levenberg-

Marquardt with and without an analytical Jacobian. c) The theoretical uncertainty calculated 

from the four-parameter fit CRLB is compared to the commonly used formula of Ref 12, Eq. 

14 for estimating localization precision. It underestimates the true uncertainty by nearly a 

factor of two for low light conditions and any background rate.
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Figure 2. 
Basic Concept of Single Molecule Localization via GPU Implementation. The input consists 

of multiple (up to millions) pre-selected ROIs arranged in a 3D data set. Smaller data sets 

are arranged and processed in chunks that fill the multi-processor shared memory. Each 

image is analyzed with the same iterative algorithm. The hundreds of sub processors 

available on the GPU give a speed increase due to massive parallel processing. See 

supplementary information for more details.
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