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While improved tumor treatment has significantly reduced the overall mortality rates,
invasive progression including recurrence, therapy resistance and metastasis contributes
to the majority of deaths caused by cancer. Enhancers are essential distal DNA regulatory
elements that control temporal- or spatial-specific gene expression patterns during
development and other biological processes. Genome-wide sequencing has revealed
frequent alterations of enhancers in cancers and reprogramming of distal enhancers has
emerged as one of the important features for tumors. In this review, we will discuss tumor
progression-associated enhancer dynamics, its transcription factor (TF) drivers and how
enhancer reprogramming modulates gene expression during cancer invasive progression.
Additionally, we will explore recent advancements in contemporary technology including
single-cell sequencing, spatial transcriptomics and CUT&RUN, which have permitted
integrated studies of enhancer reprogramming in vivo. Given the essential roles of
enhancer dynamics and its drivers in controlling cancer progression and treatment
outcome, understanding these changes will be paramount in mitigating invasive events
and discovering novel therapeutic targets.
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INTRODUCTION

Cancer is the second leading cause of death in the United States. Over 1.8 million new cases and over
600,000 deaths due to cancer were estimated during 2020 (1). Many patients who are declared
cancer free following initial treatment may still encounter relapse of disease, which is often more
aggressive and frequently results in death. While advancement in treatment has significantly
reduced overall mortality rates, progression of disease associated with therapy resistance and
metastasis still contributes to the majority of deaths caused by cancer. As cells become malignant, it
is imperative they survive and persist, which drives changes in their behavior. Cancer progression is
defined by changes in gene expression by which cancer cells are able to survive, metastasize and
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evade treatment. Cancer progression is marked by the epithelial
to mesenchymal phenotypic transition which drives metastasis
and treatment resistance (2–4).

Despite the development of new therapeutics, the current most
popular option for cancer treatment is chemotherapy. However,
prolonged exposure to chemotherapeutic drugs can lead to drug
resistance, which remains the biggest challenge for achieving cures
in cancer patients. Drug resistance can be intrinsic (due to
individual’s genetic differences) or acquired. Acquired drug
resistance is more common compared to inherent drug resistance.
Drug resistance can occur through different mechanisms, such as
mutations, epigenetic changes, altered gene expression, as well as
aberrant post transcriptional and translational modifications (5).
Most failures of chemotherapy treatment occur during the invasion
and metastasis of cancers related to drug resistance.

Metastasis involves a series of steps including the dissemination
of cancer cells from primary tumors to the bloodstream, seeding at
distant organs and formation ofmacro-metastasis (6). In the initial
phase of metastasis, cancer cells acquire enhanced mobility and
invasiveness, and the extracellular matrix undergoes degeneration.
After entry into the circulation, tumor cells can disseminate
throughout the body and are known as circulating tumor cells
(CTCs) prior to colonization. During the colonization phase,
disseminated tumor cells (DTCs) often maintain an indolent
state, which is characterized by a non-proliferation status, due to
unfavorable host microenvironments with immune surveillance as
a major defense against metastasis. A combination of intrinsic and
extrinsic factors can trigger the exit of the indolent state and
activate a proliferation program. These cellular changes can be
regulated by specific transcription factors (TFs), although the
downstream transcriptional and epigenetic programs governing
this change are unclear.

Gene transcription is regulated through the integrated action
of many cis-regulatory elements, including promoters and
enhancers. Enhancers are localized at greater distances from
the transcription start sites (TSSs) and are essential for
controlling gene expression (7). Enhancers are typically a few
hundred base pairs in length and these small segments of DNA
serve as operational platforms to recruit TFs to regulate
transcription (8). Multiple TFs often function in an integrated
and combinatorial manner on enhancers and the interactions
among the TFs are important for enhancer regulation. Genome-
wide sequencing has revealed frequent alterations of enhancers
in cancers and the reprogramming of enhancers has emerged as
one of the important features for tumor (9). Here, we review our
current understanding of cancer progression-associated
enhancer dynamics and its TF drivers, as well as how we can
target enhancers for cancer intervention.
ENHANCER FUNCTION AND
REGULATION

Features of Transcriptional Enhancers
Enhancers are essential distal DNA regulatory elements that
control temporal- or spatial-specific gene expression patterns
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during development and other biological processes (7, 10).
Because enhancers can function from many base pairs away
from their target, discovering enhancer elements remains
challenging (11). For many decades, enhancers have been
defined predominately based on functional assays, such as
reporter-based assays in transiently transfected cells or
transgenic reporters. These methods often use compact
elements that can function autonomously. However, in vivo
enhancer function is much more complex. It’s feasible to
define a minimal enhancer, the shortest pieces of DNA that
can drive and expression pattern that mimics the endogenous
expression pattern. But to achieve a robust stereotypic gene
expression that can resist variation in natural conditions
requires additional elements besides the minimal enhancer (8).
More recent genomic approaches to identify enhancer elements
are often based on the following: genome-wide analysis of
chromatin accessibility, enrichment of epigenetic markers such
as H3K4me1 and H3K27ac, and cooperative binding of TFs,
coactivators and RNA Polymerase II (RNA Pol II); assessment of
transcriptional potential by global-run on sequencing (GRO-seq)
or cap analysis of gene expression (CAGE); or observation of
chromatin looping and remodeling to identify physical
connections of promoter-regulatory element pairs (12, 13).

Active enhancers are enriched for several chromatin
modifications, including H3K27ac and H3K4me (14).
H3K27ac, which is catalyzed by p300 and CBP, is commonly
used as a marker for active enhancers. A family of MLL
complexes can methylate H3K4, resulting in H3K4me1
enriched on enhancers and H3K4me3 enriched on promoters.
And the ratio of H3K4me1 to H3K4me3 has been used to
identify enhancers over promoters (15–18). However, H3K4
methylation often correlates with transcription activity, with
H3K4me3 associated with highly activated promoters and
H3K4me1 associated with lowly active promoters (19–22).
After enhancers are disengaged or decommissioned H3K4me1
is lost or reduced at enhancers (23). However, in some cases,
enhancers may retain H3K4me1 after inactivation (24–26).
These H3K4me1+H3K27ac- regions are not necessarily
“poised” or “primed” for activation but are sites that are
decommissioned. Therefore, combining multiple approaches
are generally required to annotate active enhancers.

Enhancers are bound by Pol II and are actively transcribed,
generating noncoding enhancer RNAs (eRNA) (27–29). eRNAs
are short transcripts ranged in size from 50 to 2000 nucleotides
and are often transcribed bi-directionally (28). eRNA
transcription has also been suggested to regulate enhancer
marker deposition at de novo enhancers (30). Currently, a
complete definition of eRNA has not been agreed upon, as
most eRNA are bi-direct ional ly transcr ibed, non-
polyadenylated transcripts which remain un-spliced, a more
stable eRNA has also been discovered which is spliced,
polyadenylated and is transcribed unidirectionally (27, 31).
Interestingly, it has been observed that knockdown or
overexpression of eRNA has a direct effect on target gene
expression, suggesting a critical, functional role of eRNA (32).
It has been suggested that eRNA may act as a negative regulator
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of transcription complex assembly (33). While the direct
function of eRNA has yet to be agreed upon, mounting
evidence suggests that eRNA production is directly correlated
to enhancer activity (34). In this way, eRNA may provide the
most effective predictive marker for enhancer activity.

Transcription Factors and
Enhancer Activation
Active, functional enhancers require a number of proteins to
facilitate enhanced transcription of their target genes. These
proteins include specific transcription factors, general
cofactors, and chromatin remodeling factors. To activate gene
expression, the “opening” of specific enhancer binding sites by
pioneer factors is the initial step. This is followed by the binding
of required proteins, like TFs and coregulators. Additional
protein partners are likely recruited and exchanged during
different phases of enhancer priming and activation, making
this process reliant on hundreds of proteins (35, 36). Generally,
transcriptional initiation can be broken into three phases. The
first regulatory layer involves the binding of TFs to the regulatory
DNA of a target gene. The second involves recruitment of the
chromatin-remodeling complex and a histone modifying
complex. Finally, in the third phase, the Mediator complex is
recruited and links the enhancer complex of TF to the promoter
region of the target gene and recruits RNA Pol II to form the
pre-initiation complex (37, 38).

The human genome encodes about 2,600 DNA-binding TFs,
with about 200 TFs being expressed in each cell type (39, 40).
How different TFs cooperate to regulate enhancer networks has
long been an open question. TFs typically consist of one or more
DNA binding domains (DBDs) and one or more activation
domains (ADs). The DBDs are often sequence specific and
bind directly to small, 6-12bp regions of enhancer DNA. This
low sequence specificity suggests that the simple affinity of
individual TFs for DNA cannot be the only mechanism to
control enhancer occupancy and to regulate temporal- or
spatial-specific gene expression. Indeed, enhancer regions often
contain clusters of different TF binding sites, allowing
combinatorial occupancy of different TFs. When these TFs are
expressed in overlapping cells, the combinatorial binding can
achieve discrete and precise transcriptional regulation (8, 41–43).
For example, SMAD3 requires different protein partners to bind
enhancers in different cell types and under different conditions. It
co-occupies enhancers that target genes required for
maintenance of cellular identity with OCT4 in embryonic stem
(ES) cells. Additionally, SMAD3 is recruited by MYOD1 in
myotubes. Interestingly, induced expression of MYOD1 in
mouse ES cells resulted in SMAD3 being redirected to occupy
new sites of MYOD1 binding in the genome (44).
This demonstrates the importance of combinatorial protein-
protein interactions in enhancer function, by illustrating the
ability of one transcription factor to produce different regulatory
effects depending on its binding partners. TFs can also bind to
diverse sets of enhancers at different developmental stages or
conditions. The relative affinity or number of binding sites for
the TFs may contribute to this context-dependent occupancy,
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as they can affect TF occupancy if the TF concentration varies
overtime (40, 45). Alternatively, TF occupancies can depend on
chromatin accessibility, partitioning of TFs to specific cellular
compartments, as well as cooperation with other DNA-binding
proteins (46).

A large amount of genome-wide binding data show that TFs
typically co-bind to “hotspot” regions or cluster to short-range
genomic regions (36, 47–51). Within the past decades, studies
have demonstrated the new concept of super-enhancers (SEs) in
various cell types. SEs are described as clusters of enhancers
spanning >8-10 kb, occupied by DNA-binding TFs at their
cognate binding motifs (52–54). These clustered super-
enhancers regulate key transcription units in stem cells and
exhibit high levels of coactivators. Oncogene drivers regulated
by super-enhancers are also associated with cancers. SEs are
typically identified using the Rank Ordering of Super-enhancer
(ROSE) algorithm by analyzing active enhancer markers
including H3K27ac and mediator complex subunit 1 (MED1)
(53). Besides direct binding to DNA, TFs can be recruited in
trans to either activate or repress specific target genes (55–57).
We have previously identified a new category of ERa TF ‘co-
activators’, termed MegaTrans TFs, which are recruited by ERa
through protein-protein interactions (trans-binding) to active
ERE enhancers as ‘co-activators’ (58, 59). Megatrans complex
can also recruit specific enzymatic machinery to enhancers and is
a signature of the most potent functional enhancers.

The assembly of TFs and co-activators on enhancers has been
recently proposed to be the physical process of liquid-liquid
phase separation (LLPS) (60–63). LLPS is characterized by the
separation of a homogenous solution into two phases of high and
low concentrations (64–66). In contrast to the structured DBD,
ADs of TFs are generally intrinsically disordered in the amino
acid sequences. The transcriptional control at enhancers has the
features of phase separation that are driven by these intrinsically
disordered regions (IDRs). For instance, IDRs of transcriptional
cofactors can form liquid separated condensation at active super
enhancers in embryonic stem cells (61, 63). IDRs of TFs,
cofactors and RNA polymerase II have all been linked to gene
regulation (67–70). Phase separation provides a mechanism by
which TFs recruit diverse proteins to the chromatin to drive
specific gene expression.
ENHANCER DYNAMICS IN CANCER
PROGRESSION

Oncogenic Enhancer Activation
Because dysregulation of transcriptional programs is at the core
of cancer development, naturally enhancers play an
indispensable role in the initiation and progression of many
cancer types (71). Studies have identified over 700 genes in the
human genome which are linked to cancer (72), but many
genetic variants lie outside the coding portion of the genome
and fall in enhancer regions. Genetic variants that target
enhancers and affect cancer development include single-
nucleotide polymorphisms (SNPs), small insertions or
September 2021 | Volume 11 | Article 753051
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deletions (INDELs), large deletions, inversions, and
translocation of existing enhancers (73). In most cases,
germline variants only have weak effects on gene expression
and cancer development, although they often alter the affinity of
TFs to their binding sites. Therefore, cancer development usually
requires additional somatic mutations like large genomic
rearrangements that cause stronger effects on gene
expression (74).

SNPs within the existing enhancers can disturb TF-chromatin
interactions, inactivating enhancers. This then leads to
transcriptional down-regulation of target tumor suppressor
genes and promotes tumorigenesis (75, 76). Alternatively,
SNPs might result in the gain of extra TF binding sites and
thus induce downstream oncogenic gene expression (76). In
some cases, SNPs and INDELs can also generate de novo binding
sites for TFs, resulting in the formation of oncogenic enhancers
that misregulate oncogenes (77–79). For example, heterozygous
somatic mutations that introduce binding motifs for the TF
named MYB are acquired in a subset of T-cell acute
lymphoblastic leukemia (T-ALL) cases. This creates a super-
enhancer upstream to the TAL1 oncogene. MYB binds to this de
novo enhancer and recruits enhancer complex components that
contain CBP, RUNX1, GATA3 and TAL1 to promote a
leukemogenic transcription program (80).

“Enhancer hijacking”, an event of repositioning an enhancer
in a new genomic context, can result from long-range
chromosomal structural alterations, including large deletions,
inversions, and translocations. Enhancer hijacking can activate
oncogenic transcription and promote tumorigenesis (81–83).
One example is that the reallocation of a GATA2 enhancer
element to the ectopic EVI1 site caused by translocations and
inversions leads to concomitant EVI1 and GATA2 deregulation
in leukemia (84). Genetic variants disrupting enhancer-promoter
looping can also contribute to cancer development. CTCF works
together with the cohesion complex to regulate genome topology
and drive enhancer-promoter looping. The CTCF and cohesion-
binding motifs are frequently mutated in cancer cells, leading to
defects in enhancer-promoter looping and aberrant gene
expression (85).

Alterations of signaling pathways are commonly associated
with cancers. Signal-dependent TFs often bind to enhancers to
orchestrate enhancer activity and down-stream gene
transcriptional program in response to specific signals that
control cancer cells growth (73). For instance, NOTCH
signaling activates NOTCH-bound distal enhancers to promote
MYC oncogene expression to promote cell proliferation in B-cell
lymphomas (86). Oncogenic signal pathways can also cause a
genome-wide reorganization of enhancer landscape to promote
malignant transformation. Chronic Ras-Erk signaling activates
RTK and causes dynamic changes in H3K27ac levels at
enhancers, including the ones near GATA4 and PRKCB genes.
These changes result in aberrant gene expression and promote
tumorigenesis (87). Oncogenic signaling can also modulate
enhancer function by recruiting transcriptional machinery.
A previous study reported that, in response to the deregulation
of the Hippo pathway, YAP/TAZ binds to a specific set of
Frontiers in Oncology | www.frontiersin.org 4
enhancers and recruits the mediator complex and CDK9
elongating kinase to modulate transcriptional elongation of
growth-promoting genes (88).

Function of Enhancer Reprogramming in
Cancer Progression
Cancer progression is a process by which cancer cells adjust
themselves to achieve resistance to targeted therapies and lead to
invasion into host tissues resulting in local and metastatic
dissemination. Unlike the deep understanding of the genetic
and epigenetic mechanisms that initiate tumors, the mechanisms
that drive tumor progression, therapy resistance and metastasis
are unclear. Although resistance and metastasis are often studied
separately, they share substantially overlapping mechanisms.
Among them, alteration of epigenetic pathways is an emerging
mechanism of cancer progression. Recent studies have
discovered that enhancer reprogramming promotes the
adaption of cancer cells to intrinsic and extrinsic changes
encountered during tumor progression (73).

ERa-bound enhancers are key elements that regulate gene
expression during breast cancer growth and progression. Estrogen
(E2) and its nuclear receptor ERa are critical for the development of
luminal subtype breast cancer (89). More than 70% of cases of
invasive breast cancer express ERa (ER+) and are treated with
endocrine therapies based on menopausal status (90). While
patients with ER+ breast cancer receive endocrine therapies for 5
years, >30% eventually develop therapeutic resistance and disease
recurrence, a persistent clinical problem (91, 92). ERa influences
genes related to cell growth and endocrine response, primarily
through interaction with distal enhancers (58, 59). Thus, many
commonly prescribed breast cancer treatments target ER, such as
tamoxifen and aromatase inhibitors (93). In ER+ breast cancers,
endocrine resistance and prognosis have been linked to alterations
in the ERa cistrome (94). By characterizing multiple therapy-
resistant breast cancer models, previous studies have shown that
high FOXA1 activity can reprogram ERa-dependent transcriptome
to promote endocrine-resistant cell growth and invasiveness (95).
FOXA1 is a pioneer TF that binds to condensed chromatin to
facilitate subsequent binding of ERa and other TFs (96). More
recently, it has been demonstrated that FOXA1 upregulation in ER
positive breast cancer cells drives global enhancer reprogramming
to activate prometastatic transcriptional programs. FOXA1
overexpression also promotes the formation of super enhancers
that are associated with endocrine resistance (97).

To further understand the mechanisms governing alterations
of ERa cistrome and their roles in breast cancer progression, we
characterized context-specific ERa enhancers and their
associated transcriptional and phenotypic outcomes in
endocrine-sensitive and resistant breast cancers (98). We found
that endocrine resistance is associated with elevated phenotypic
plasticity, with downregulation of luminal/epithelial
differentiation markers and upregulation of basal/mesenchymal
markers. We observed similar gene expression profiles in clinical
breast tumor samples. Using ATAC-seq and ChIP-seq, we
detected genome-wide enhancer gain and loss associated with
the hormone-resistance transition and identified context-specific
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zboril et al. Enhancer Reprogramming and Cancer Progression
enhancers (GAIN and LOSS enhancers) that are associated with
either endocrine-sensitive or resistant cells. This enhancer
reprogramming corresponded to the gene expression changes
detected by RNA-seq and GRO-seq. Motif analyses identified
GATA3 and AP1 motifs as the most enriched ones associated
with LOSS and GAIN enhancers respectively. Remarkably,
GATA3 and JUN are among the BioID identified context-
specific ERa cofactors. We further demonstrated the
cooperative roles of GATA3 and JUN in controlling enhancer
reprogramming and cancer therapy resistance (98).

Similar roles of enhancer reprogramming in promoting
cancer progression have also been reported in pancreatic
ductal adenocarcinoma (PDA). Using an organoid culture
model of PDA that recapitulates the main stages of PDA
tumor progression, the Vakoc group characterized how the
enhancer landscape evolves during PDA progression and
identified alterations in enhancer activity associated with
metastasis (99). They defined a subset of enhancers that are
associated with metastasis using H3K27ac ChIP-seq with
organoids derived from normal ducts, primary tumors and
metastatic lesions. Their epigenetic profiling revealed
prominent gains and losses of enhancer activity associated with
the metastatic transition. They also found that FOXA1
overexpression in PDA cell lines promotes GAIN enhancer
activation and the acquisition of metastatic phenotypes.
However, FOXA1 overexpression in organoids is not sufficient
to drive enhancer reprogramming. It turns out that FOXA1
requires cooperation with GATA5 to promote GAIN enhancer
activation in the organoid culture model (99). Another study
from the same group has demonstrated that TF TP63-driven
enhancer reprogramming promotes aggressive PDA tumor
phenotypes such as enhanced cell motility and invasion (100).

In an independent study of small cell lung cancer (SCLC)
metastasis, TF NFIB overexpression drives metastasis-associated
chromatin opening (101). As elevated chromatin accessibility is
often associated with enhancer activation, it’s very likely that
Frontiers in Oncology | www.frontiersin.org 5
NFIB can induce enhancer reprogramming to promote SCLC
metastasis. Altogether, these studies above lend support to the
notion that differential TF assembly on enhancers can lead to
global enhancer reprogramming that drives transcriptional
transitions and cancer progression (Figure 1). Transcription
factors that are known to regulate enhancer function and
cancer progression are summarized in Table 1.
CANCER TREATMENTS
TARGETING ENHANCERS

Transcriptional dysregulation is a hallmark of cancer cells. As the
growing knowledge of enhancer biology provides us with a more
complete understanding of complex gene regulation, we discover
more potential targets for therapy. Currently, recommended
treatment for most cancer types includes a combination of
surgery, radiation, and chemotherapy (102). Unfortunately,
these options can result in debilitating acute and chronic side
effects and even death (103–105). Because these systemic side
effects are often the result of the lack of specificity of therapeutic
agents, progressive, targeted treatments must be developed to
improve patient care and quality of life during and after
treatment. Developing new techniques to fight cancer must
include finding targets that are specific to cancer cells, easily
influenced or inhibited, and are required by the cancer cells for
growth and survival.

Enhancer’s context-specificity makes them an excellent
specific target for treatment. Many enhancers are tissue/context
dependent and control lineage specific transcriptional programs
(106). While specific enhancer programs can vary between
cancer types, many share similar qualities: specificity to their
cell type, dependence on small molecules that could potentially
be manipulated, as well as their necessity for genetic regulation
perpetuating malignant programming. Furthermore, a number
of contemporary pharmacological treatments targeting
FIGURE 1 | Enhancer reprogramming mediated by context-specific TF-TF interactions promotes lineage plasticity and cancer progression. In response to various
signals, interactions of oncogenic TFs on enhancers might undergo context-specific changes. These changes can architecturally reprogram TF-bound enhancers
through enhancer loss and gain, resulting in transcriptional transitions that promote lineage plasticity and cancer therapy resistance and metastatic progression.
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enhancers have been shown to be effective. Examples of small
molecule inhibitors that have so far been explored target
Bromodomain and Extraterminal (BET) proteins as well as
cyclin dependent kinases.

Histone modification patterns and their crosstalk work
combinatorically with sequence specific binding of transcription-
regulating proteins to orchestrate gene expression (107). Epigenetic
‘readers’ are a collection of proteins that have the ability to
recognize specific post-translational modifications to histones or
DNA (108). Bromodomain-containing 4 (BRD4) is a reader from
the BET family of proteins. It contains two bromodomains, which
recognize acetylated lysine residues of histones at enhancers and
promoters to aid in the recruitment of proteins that facilitate
transcription such as the Mediator complex and RNA Pol II
(109, 110). Considering the central role enhancers play in the
malignant programming of cancer cells, it is unsurprising that
targeting BET inhibition (BETi), or BRD4 inhibition specifically,
would be an attractive avenue of study. Additionally, many cancer
types show dependency on BETmediated transcriptional regulation
(111, 112). Although many candidates for BETi compounds have
been reviewed, one small molecule inhibitor that has been
extensively studied is JQ1. This molecule works by forming a
hydrogen bond with the bromodomain of BRD4, rendering it
unable to detect acetylated lysine residues on histone proteins,
and ablating its ability to recruit transcriptional machinery (113,
114). While there has been some success in the clinical trials of JQ1,
there remain concerns regarding its safety and efficacy (115).
A deeper understanding of the complex mechanism of BET
proteins and their activity regarding enhancer dynamics will be
required for success in utilizing BETi technology to influence gene
regulation in cancer cells.

Transcription is a tightly regulated process, orchestrated by a
plethora of proteins for which there are a number of molecules
with non-redundant functions which are required for effective
gene expression. For example, cyclin-dependent kinases play a
critical role in regulating RNA Pol II activity. Transcription begins
by recruitment of RNA Pol II to the promoter-proximal region, a
region proximal to the core-promoter that facilitates enhancer-
promoter interaction. Here, RNA Pol II begins transcription, but is
paused by Negative Elongation Factor (NELF) and BRD-
sensitivity Inducing Factor (DSIF) roughly 100 nucleotides
Frontiers in Oncology | www.frontiersin.org 6
downstream (116, 117). Pause-release of RNA Pol II is
facilitated by the Positive Transcription Elongation Complex
(P-TEFb), which consists of two subunits: cyclin T1 and CDK9.
P-TEFb phosphorylates components of NELF, DSIF and RNA Pol
II in a process that releases RNA Pol II to begin productive
transcription of mRNA (118). Chemical inhibition of this process
by attenuating CDK9 function has been shown to not only inhibit
transcription of mRNA, but also affect the production of eRNA
and enhancer activity (119, 120). Another example of CDK
inhibitors is THZ1, a covalent inhibitor of CDK7. While the role
of CKD7 is not completely understood, many infer the role of this
TFIIH subunit to involve phosphorylating RNA Pol II as well as
CDK9 to aid in pause-release and beginning of elongation (121).
More recently, additional CDK7 substrates have been identified,
such as CDK12 and CDK13, which implicate this molecule as a
‘master regulator’ of transcription (122). Interestingly, THZ1 and
other CDK7 inhibitors have been shown to downregulate
enhancer associated expression of genes, possibly as a result of
decreased enhancer activation (123–125).

While using transcriptional programming as a target for
pharmacological modulation presents an exciting, and possibly
groundbreaking, avenue for cancer drug development, there
remain challenges to designing effective enhancer-targeting
treatments. Unfortunately, there has been evidence that BET
inhibitor, JQ1, can lead to alternative, compensatory signaling
which overcomes inhibition. Studies show JQ1 treatment alters
transcriptional programming in castration-resistant prostate
cancer such that it becomes BRD4-independent (126).
Additionally, the complexity of genetic regulation by enhancers
presents a barrier to study in itself. A better understanding of
enhancer mediated gene regulation will allow scientists and
clinicians to develop safer and more effective cancer treatments.
RECENT TECHNOLOGY ADVANCEMENTS
FOR STUDYING ENHANCER
DYNAMICS IN VIVO

Technological resolving power is a limiting factor to achieving a
more complete understanding of enhancer dynamics.
TABLE 1 | Summary of known TFs that are involved in enhancer regulation and cancer progression.

Transcription
Factor

Role in Cancer Progression

FOXA1 Pioneer factor capable of reprogramming ERa-dependent transcriptome to promote endocrine-resistance and invasiveness in breast cancer (97).
Overexpression in pancreatic ductal adenocarcinoma (PDA) cells promotes metastatic phenotypes (99).

GATA3 Cooperates with JUN to control enhancer reprogramming and therapy resistance in breast cancer (98).
JUN Cooperates with GATA3 to control enhancer reprogramming and therapy resistance in breast cancer (98).
GATA5 Cooperates with FOXA1 to drive metastatic reprogramming in PDA (99).
NFIB Drives metastasis associated transcriptional programming in small cell lung cancer (SCLC) (101).
MYB Aberrant binding can recruit enhancer complex components to promote an oncogenic transcriptional program in T-lineage acute lymphoblastic

leukemia (T-ALL) (80).
GATA2 Deregulation demonstrated in leukemia (84).
MYC Overexpression has been demonstrated to promote proliferation in B-cell lymphomas, this can be induced by NOTCH-signaling (86).
YAP/TAZ Binds enhancers to recruit modulate growth-promoting genes in human cholangiocarcinoma (88).
TP63 Drives reprogramming to promote enhanced cell motility and invasion in PDA (100).
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Recent developments have allowed for the study of enhancers in
vivo, which will garner a more holistic view of dynamic changes
that happen during development or disease progression.

Cellular heterogeneity is a fundamental feature of cancer and
plays a key role in disease progression and treatment failure
(127). Single-cell sequencing has emerged as a valuable tool to
address intratumor heterogeneity. Single-cell technology initially
focused on single-cell RNA sequencing (scRNA-seq) that can
distinguish transcriptional profiles in individual cells and reveal
previously unknown cell types or cell states in a complex tissue.
Researchers soon realized that many powerful techniques to
analyze mRNA and ncRNA production, protein expression,
chromatin structure, DNA-protein or protein-protein
interactions and more, each of these technologies allows only a
one-dimensional view of genetic regulation and expression, and
that combination of scRNA-seq with other analyses provides
information that is more than the sum of its parts. For instance,
simultaneous resolution of mRNA sequences and chromatin
accessibility information at the single-cell level can be achieved
through Single-Cell Multiome ATAC+Gene Expression assays
(128). This allows the detection of multiple data sets from the
same cell and studying enhancer dynamics in a more
comprehensive way.

In vivo, cancer cells locate in close proximity to normal
tissue cells, blood vessels, tissue-resident and infiltrating
immune cells. The cell-cell interactions within the tumor
microenvironment play essential roles in cancer progression.
Thus, approaches that can tease apart the complex landscape of
tumors will provide insight into cancer biology. Beginning with
tissue sections, 10X Genomics Spatial Transcriptomics protocol
allows for permeabilization of tissue and barcoding of RNA in
specific locations, followed by sequencing. This allows
researchers to resolve changes in gene expression in different
physical locations. This technology has been utilized to
characterize unique interactions between tumor cells and the
microenvironment, which would have otherwise been obscured
by traditional RNA-seq (129). Other emerging approaches to
study cell-cell interactions include, imaging-based mass
spectrometry, CyTOF (cytometry by time-of-flight mass
spectrometry) and imaging-coupled transcriptional profiling
(130, 131).

ChIP-seq has been the predominant method of mapping
protein-DNA interactions. One limitation of ChIP-seq is the
requirement for large numbers of cells, making it challenging to
perform this assay with limited materials, such as tumor tissues.
One alternative strategy for ChIP-seq to map protein-DNA
interactions genome-wide, termed CUT&RUN, was first
reported in 2017 (132). CUT&RUN first attaches unfixed cells
to concanavalin A–coated magnetic beads to allow simple
handling. Then a specific antibody and a fusion protein
composed of protein A and micrococcal nuclease (pA-MN) are
introduced to the cells. pA-MN-mediated DNA cleavage will be
activated by calcium on the DNA bound by the TF (or other
DNA-associated proteins). Cleaved fragments released will
diffuse out of the nuclei and be collected to extract DNA
directly for sequencing. It has been shown that CUT&RUN
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can achieve base-pair resolution of TFs with only 10 million
sequenced reads, reaching a much higher signal-to-noise ratio
than ChIP-seq (133). Overall, CUT&RUN has several advantages
compared to ChIP-seq: 1) lower requirement for cell numbers,
greatly facilitating enhancer mapping in tissues; 2) simple
procedure without chromatin fragmentation or solubilization;
3) low background allowing low sequence depth. Derived from
CUT&RUN, CUT&Tag is designed for efficient epigenomic
profiling of small samples and single cells (134). CUT&Tag
uses a transposome that consists of a hyperactive Tn5
transposase-ProteinA (pA-Tn5) fusion protein loaded with
sequencing adapters. After in situ tethering by TF-specific
antibody and pA-Tn5, Tn5 tagmentation of TF-bound loci
generates fragments ready for PCR enrichment and DNA
sequencing. The entire process from antibody binding to
tagmentation occurs within intact cells. The transposase and
chromatin fragments remain bound together, so fragmented
DNA is retained within each nucleus, facilitating enhancer
analyses at even single-cell level.
CONCLUSIONS AND PERSPECTIVES

Tumor invasive progression remains the major cause of
mortality related to cancer. In addition to genetic alterations,
epigenetic changes play a key role in tumor progression by
promoting molecular and cellular plasticity. Enhancer function
is one of the major drivers in many tumors, as enhancers play a
major role in cell identity maintenance and cell adaption to
environmental changes, and alterations in enhancer activity can
subvert cell fate determination (73, 135). Recent studies have
indicated that reprogramming of enhancer function could lead to
deregulation of gene expression profile and confer cell growth
advantages, promoting cancer progression (97, 99). We also
revealed global enhancer reprogramming mediated by
differential TF assembly on enhancers drives transcriptional
transitions and hormone resistance in breast cancer (98). An
essential future goal is to understand the mechanisms that
govern enhancer reprogramming in tumor initiation and
progression. Enhancer regulation is more than just simple on/
off switches and undergoes progressive and regulated changes
that are essential for spatial-temporal enhancer function. An
emerging mechanism for enhancer regulation is the assembly of
transcription machinery as biomolecular condensates on active
enhancers. Future studies are required to test whether phase
separation of differential TFs on enhancers drives enhancer
reprogramming. TFs represent a compelling and biologically
validated class of protein targets for pharmacologic
intervention in disease, yet their potential remains largely
untapped due to the challenges in targeting protein-protein
and protein-DNA interactions. Recent successes in targeting
protein-protein interactions, including those involving TFs
(136), suggest the feasibility of targeting TFs to prevent
enhancer reprogramming, thus slowing down or stopping
cancer progression.
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