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Traumatic brain injury (TBI) has been referred to as the “silent epidemic” but given its substantial
and recurring impact on global health, it should be renamed to the “silent pandemic”. The COVID-
19 pandemic has majorly impacted biomedical research of TBI; experimental and clinical studies
have either slowed or halted and resources have been reallocated, thus resulting in a “lost year” for
the TBI field. However, the pandemic can serve as an inflection point. The conceptual and technical
lessons that can be learned from COVID-19 and could lead to clearer classification, improved
diagnosis, and potentially improved treatment efficacy of TBI are presented in this paper.

INTRODUCTION

These are very challenging times for all mankind as severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has been infecting the entire global population. There are already lessons learned,
and even more to come after the pandemic ends, with profound effects on virtually every aspect
of our lives, the economy, work, social life, and health care. Major crises, wars, and pandemics
have historically forced humanity to learn, adapt, and come up with solutions by developing
new technologies, business models, and even entire industries. They have also spurred major
advances in biology through better understanding of diseases, identification of pathogens and their
pathomechanisms, and development of novel treatments. The same is happening now during the
COVID-19 pandemic, as the scientific progress is astonishing.

Within less than a year, the pathogen SARS-CoV-2 has been isolated, its genome sequenced,
and the pathomechanism of coronavirus disease 2019 (COVID-19) has been identified (1,
2). Less than a year after China shared the genetic sequence of the virus (January 12,
2020) (2), an astonishing number of vaccine candidates have been in various phases of
development (https://covid-19tracker.milkeninstitute.org; https://www.who.int/publications/m/
item/draft-landscape-of-covid-19-candidate-vaccines). Merely 11 months later, on December 11,
2020, the FDA authorized the first vaccine developed by BioNTech (in partnership with Pfizer)
that showed ∼95% efficacy. Within a year of the outbreak, millions have already been vaccinated
with the BioNTech/Pfizer and Moderna vaccines. This astonishingly rapid progress is due to
many factors, “lessons learned” from previous epidemics, better understanding of human health
and disease processes, clear understanding the pathobiology of COVID-19, identifying targets for
vaccines and for pharmacological and biological treatments and critically by using a revolutionary,
new mRNA-based technology.
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Furthermore, there are hundreds of treatments for COVID-
19 patients in various phases of clinical trials, many of which are
repurposed drugs (https://covid-19tracker.milkeninstitute.org/#
treatment). Among these drugs are antivirals (e.g., Remdesivir),
monoclonal antibody cocktails (e.g., REGN-COV2), and anti-
inflammatory drugs that are either in clinical trial or have
received emergency use authorization (https://clinicaltrials.gov/
ct2/show/NCT04350593 and https://www.pnas.org/content/117/
44/27141 and https://science.sciencemag.org/content/369/6508/
1261 and https://www.eurekalert.org/pub_releases/2020-11/rci-
dnp110420.php).

While the world understandably focuses on the COVID-
19 pandemic, other diseases have not disappeared. TBI affects
∼3 million people, kills ∼50,000, and permanently disables
∼80,000 people in the US alone EVERY year. (https://www.cdc.
gov/traumaticbraininjury/get_the_facts.html’ August 31, 2020).
Worldwide numbers are roughly an order of magnitude higher
and are rapidly rising especially in developing countries (3, 4).
Based on these numbers alone, TBI should be called “silent
pandemic” that occurs year after year!

This Opinion article list some of the lessons that can be
learned from COVID-19 and can be apply some of them in
TBI research. Some of the potential lessons are conceptual, some
are technical.

CONCEPTUAL

Definition
Defining COVID-19 only as an “infection” or even a “viral
infection” would be an oversimplification. Like SARS-CoV-2, the
infectious agent, TBI is not the disease itself. It is only a causative
event that can be either prevented or its consequences mitigated.
TBI causes structural perturbance to the brain and/or damage
at the molecular, cellular, and regional level of varying severity
followed by pathobiological responses that determine the disease
phenotype. It may seem like a matter of semantics but using the
term TBI to describe the disease can lead to an overly simple
thought process. Since there is no drug for treating an “infection”
per se, there is and will be no drug for “treating TBI”.

Spectrum of TBI
SARS-CoV-2 infection causes a spectrum of disease severities
from mild, flu-like symptomatology to severe viral pneumonia
(5). Despite its scariness and harrowing toll, even severe
COVID-19 is a relatively simple disease phenotype compared
to the disease phenotypes caused by TBI. Different types
and intensities of physical forces cause different types and
severities of brain injury that precipitate in varying degrees
of neuropsychological/functional impairments, traditionally
classified as mild, moderate, and severe. The combination of
the initial physical damage and the ensuing pathobiological
responses result in different disease phenotypes that are
characterized by distinct dominant pathologies (6). These
make TBI several orders of magnitude more complex than
COVID-19. So how do we deal with such complexity? As in
the case of infectious diseases where the pathogens as well as
their pathomechanisms are identified, in addition to the type of

primary injury, we must be able to identify the pathobiological
process triggered by the initial injury.

Diagnosis
Images of people with thermal readers, the “gun-looking”
devices, have become familiar scenes during COVID-19. Elevated
body temperature can indicate that an individual has COVID-19
but they could also be suffering from dozens of other infectious
diseases. With respect to TBI, we are currently only “checking
body temperatures.” Injury markers such as ubiquitin carboxy-
terminal hydroxylase 1 (UCH-L1), glial fibrillary acidic protein
(GFAP), and neurofilament light chain (NF-L) are excellent and
sensitive indicators of neuron and glia injury (7) but single
post-injury time point data greatly limit their full diagnostic
potential (8). They however do not provide information about
the underlying pathobiological changes and cannot be used
to identify disease phenotype(s). Like COVID-19 diagnostic
testing, “mechanistic” biochemical markers (e.g., inflammatory,
metabolic) need to be added to the current panel of damage
markers so we can identify the pathobiological responses to
TBI. These biomarkers will be critical for identifying disease
(endo)phenotype(s) (9) and guiding specific, targeted treatments
(10). However, lessons learned from COVID-19 should change
how we use and interpret existing biomarker data (11). COVID-
19 has majorly altered the clinical trial landscape in TBI as
in many other disorders and not only from the logistical and
organizational perspective. The patient population in the post-
COVID-19 era will be different in many ways and will present
new challenges for diagnosis and prognosis in TBI.

Temporal Aspect
Clinical studies have shown that treatment with antivirals (e.g.,
Remdesivir) is only effective during the early phase (7-10 days)
of infection (12, 13) while anti-inflammatory treatments (e.g.,
dexamethasone or anti-IL-6 monoclonals) do more harm than
good during this phase (14, 15). Conversely, anti-inflammatory
treatment can significantly reduce unfavorable outcome and
death at the later phase of the disease. Inflammation is a
key adaptive response to any kind of noxious stimuli in all
multicellular organisms (16–18). Neuroinflammation has been
extensively studied since the 1990s but all experimentally
successful anti-inflammatory treatments have failed in clinical
TBI trials (19). This can be plausibly explained by the
lack of key information regarding the temporal pattern of
the inflammatory process, and its specific components that
cannot be determined by using markers of damage. We
know that there is a neuroinflammatory response to TBI (20)
but the temporal pattern of its different phases, reparative
vs. injurious, and their cellular and humoral components
are currently not well known. It is likely that the many
experimentally successful pharmacological treatments, including
anti-inflammatories, missed their therapeutic windows in clinical
trials, an issue compounded by inter-species differences and
flaws in experimental design. We know that time is a critical
dimension of most disease processes, including TBI, so we must
identify not only the pathobiological responses after TBI but also
their temporal patterns; both are essential for developing specific
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treatments and applying them within their therapeutic window
to successfully mitigate the consequences of TBI.

Systemic Nature of TBI
COVID-19 mainly involves the respiratory system but like most
diseases, it is multi-systemic, it can affect all systems from
gastrointestinal to the CNS (5, 21). Clinical and especially
experimental TBI studies have almost exclusively focused on
the brain, largely ignoring the rest of the body. This is based
on the traditional view of the blood brain barrier (BBB) as
a “brick wall” with binary function: closed or open. There is
already ample evidence about the complexities of BBB function,
from regulating transendothelial transport to real “opening” (22).
Endothelial stress and microvascular injury are emerging as
important, maybe even dominant, (endo)phenotypes across the
TBI spectrum (10, 23). Evenmild TBI can cause endothelial stress
(24) and increase systemic levels of inflammatory molecules,
including interleukin-6 (IL-6) (25). Many (if not most) moderate
and all severe TBI patients suffer additional injuries to internal
organs, muscles, and bones (i.e., polytrauma) (26). Polytrauma
creates hugely complex systemic pathobiological responses (27)
and damage to the cerebral vasculature that enables the cellular
and humoral components of the inflammatory response to access
the brain parenchyma (20, 28). The effect of such abnormal
intracranial chemo- and cytokine milieu on the recovery process
after TBI is not well understood. Importantly, this is a two-way
street as illustrated by, for example, heterotopic ossification: the
conversion of muscle tissue into bone which occurs in a subset
of patients who also sustain TBI in addition to bone fractures
(29). While the exact mechanism is unknown, soluble factors
originating from the injured brain appear to alter the regenerative
process and convert muscle cells into bone (30), illustrating the
crosstalk between various organs affected by physical insults.

Cofactor, Comorbidities
The importance of cofactors, age, biological sex and co-
morbidities have been amply demonstrated in the outcomes of
COVID-19 (31) and are also known in TBI (32–35). However,
the overwhelming majority of experimental studies model TBI in
young male rats ignoring the pediatric and elderly populations,
the fastest growing segment, that together account for up
to ∼80% of all TBI cases (34). TBI causes very different
biological responses in young versus old individuals who typically
have comorbidities and related medications (36–38). History of
COVID-19 can change the individual’s biological background
with major implications from diagnosis to treatment in TBI (11,
39). Biological sex greatly impacts outcome after TBI (32, 40) but
females are currently hugely under-represented in experimental
and clinical studies despite existing knowledge about the effects
of hormones on TBI-induced pathobiological responses such as
inflammation (41).

TECHNICAL

Big Data
From drug and vaccine design (42, 43) to vaccine distribution
(44), Big Data (BD), Artificial Intelligence, and Machine

Learning have been playing a critical role in the fight against
the pandemic (reviewed by) (45). C3.ai (https://c3.ai/products/
c3-ai-covid-19-data-lake/) created a COVID-19 specific “data
lake,” a huge, analysis ready COVID-19 data repository (at no
charge!), while Palantir (https://www.palantir.com/pt_media/
palantir-is-providing-coronavirus-monitoring-to-the-cdc/)
is providing COVID-19 monitoring, contact tracing, vaccine
manufacturing and distribution. The ability to analyze huge
amounts of unformatted and heterogeneous data would be
especially critical for TBI (46–48). The TBI field has already
made the critical first steps into BD by establishing the Federal
Interagency Traumatic Brain Injury Research Informatics System
(FITBIR) (https://fitbir.nih.gov; August 31,2020) using Common
Data Elements (CDE) established for both preclinical and clinical
TBI data (49, 50). Integrating FITBIR with large, biomedical
data lakes that contain data from diseases other than TBI and
all pathological conditions will enable better understanding of
the myriad TBI-induced molecular pathologies. For instance,
the cytokine IL-6 is the same molecule in COVID-19 and in
TBI, with similar downstream signaling pathways and similar
activators. But the importance lies is the context in which this
cytokine is found. Numerous databases containing searchable
data of various aspects of inflammation, anti-inflammatory
molecules, molecular signaling, and disease phenotypes are
available and can be queried for molecular networks using
systems biology approaches (51, 52). BD approaches in TBI
have been hampered by insufficient volumes of data and lack
of data standards (46, 47, 53), but the benefits of using BD can
be transformational in identifying pharmacological and other
therapies for TBI-induced disorders.

Drug Repurposing
One of the great uses of BD approaches to combat COVID-19 is
in identifying drugs that target specific pathobiological processes
triggered by SARS-CoV-2 infection (54). The Lancet lists
ongoing clinical trials (55) and maps the evidence-based network
of COVID-19 trials for the top 15 interventions. Candidate
molecules include nucleotide analogs (Remdesivir) originally
developed to treat Ebola (54), anti-inflammatory steroids
(dexamethasone), monoclonal antibodies (mAb) (Camrelizumab
and Tocilizumab, respectively) developed to treat Hodgkin’s
disease and rheumatoid arthritis (56, 57) as well as traditional
Chinese medicines that activate the body’s own repair and
regenerative capacity (58). It has been recognized that drug
repurposing is the fastest way to identify pharmacotherapies for
TBI-induced pathobiologies (59). Many of the pathobiological
processes induced by the injury have been identified (6) and
much can be learned about the molecular targets using databases
of other disorders. Many of those repurposed drugs have been
successful in experimental studies but failed in clinical trials likely
due to missing the therapeutic windows. Translating therapeutic
windows from rodent to human is another challenge for BD (60).

Novel Therapies
mRNA-based vaccines and mAb-based immunotherapies have
been game changers in the fight against COVID-19. mAb
therapies have also been used to treat CNS disorders including
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multiple sclerosis and Alzheimer’s Disease with varying degrees
of success (61, 62). Altered IL-6 signaling is an important
component of the TBI-induced inflammatory response (63), and
existing mAbs and/or antibody cocktails targeting IL-6 signaling
can be repurposed to mitigate the TBI-induced inflammatory
process (56). Furthermore, a new non-inflammatory mRNA

vaccine has been successful in treating experimental autoimmune
encephalomyelitis (64). Autoimmunity likely plays an important
role in determining long-term outcome after TBI (65–67). The

new mRNA-based therapy appears to control autoreactive T cells
without inducing systemic immune suppression (64), which is
currently a major hurdle in treating autoimmune disorders.

While mAb- and mRNA-based treatments can be exciting
and powerful therapies in treating some of the TBI-induced

pathologies, such precision medicines require similarly precise
knowledge about the identity of their molecular targets and

critically, their therapeutic windows.

Concluding Remarks
Experimental and clinical TBI research has generated vast
amounts of data during the last several decades. Global clinical
frameworks, TEAM TBI, CENTER-TBI, and now the China

registry, provide the foundation for better understanding the
biology of the disease, improving diagnostics, and developing
evidence-based treatments through global collaborations.
Learning from other diseases about their underlying molecular
pathologies and pharmacological targets can greatly improve
our understanding of TBI-induced pathobiological responses
and identifying efficient treatment strategies. “Lessons learned”
from COVID-19, including the importance of the temporal
dimension of TBI-induced disease processes could accelerate
integrating existing and novel data, guide drug repurposing and
the development of novel, high-precision pharmacotherapies.
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