
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11613  | https://doi.org/10.1038/s41598-021-90914-z

www.nature.com/scientificreports

Process modeling of municipal 
solid waste compost ash 
for reactive red 198 dye adsorption 
from wastewater using data driven 
approaches
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Roghayeh Bahadori1*

In the present study, reactive red 198 (RR198) dye removal from aqueous solutions by adsorption 
using municipal solid waste (MSW) compost ash was investigated in batch mode. SEM, XRF, XRD, and 
BET/BJH analyses were used to characterize MSW compost ash. CNHS and organic matter content 
analyses showed a low percentage of carbon and organic matter to be incorporated in MSW compost 
ash. The design of adsorption experiments was performed by Box–Behnken design (BBD), and process 
variables were modeled and optimized using Box–Behnken design-response surface methodology 
(BBD-RSM) and genetic algorithm-artificial neural network (GA-ANN). BBD-RSM approach disclosed 
that a quadratic polynomial model fitted well to the experimental data (F-value = 94.596 and 
 R2 = 0.9436), and ANN suggested a three-layer model with test-R2 = 0.9832, the structure of 4-8-
1, and learning algorithm type of Levenberg–Marquardt backpropagation. The same optimization 
results were suggested by BBD-RSM and GA-ANN approaches so that the optimum conditions for 
RR198 absorption was observed at pH = 3, operating time = 80 min, RR198 = 20 mg  L−1 and MSW 
compost ash dosage = 2 g  L−1. The adsorption behavior was appropriately described by Freundlich 
isotherm, pseudo-second-order kinetic model. Further, the data were found to be better described 
with the nonlinear when compared to the linear form of these equations. Also, the thermodynamic 
study revealed the spontaneous and exothermic nature of the adsorption process. In relation to the 
reuse, a 12.1% reduction in the adsorption efficiency was seen after five successive cycles. The present 
study showed that MSW compost ash as an economical, reusable, and efficient adsorbent would be 
desirable for application in the adsorption process to dye wastewater treatment, and both BBD-RSM 
and GA-ANN approaches are highly potential methods in adsorption modeling and optimization study 
of the adsorption process. The present work also provides preliminary information, which is helpful for 
developing the adsorption process on an industrial scale.

In parallel with rapid population increase and high urbanization and industrialization rate, the concerns related 
to the release of various pollutants to many groundwater resources have grown dramatically around the world 
in the last  decades1. Many industries like paper printing, textile dyeing, and other sectors such as photography, 
pharmaceuticals, food, and cosmetic industries annually generate wastewaters containing a wide variety of syn-
thetic aromatic dyes in large  quantity2. Among different types of water pollutants, synthetic dyes are regarded 
as an important toxic group for humans, the fauna and flora, even at a low level of  exposure3. Therefore, human 
health and environmental problems make the efficient treatment of these types of wastewaters so necessary. So 
far, different processes have been investigated and developed for industrial wastewater treatment. Although 

OPEN

1Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, 
Tehran, Iran. 2Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical 
Sciences, Tehran, Iran. 3Student Research Committee, Department of Environmental Health Engineering, School 
of Public Health, Hamadan University of Medical Health, Hamadan, Iran. 4Petroleum and Chemical Engineering, 
Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam. *email: hdehghani@tums.ac.ir; 
roghayehb@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-90914-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11613  | https://doi.org/10.1038/s41598-021-90914-z

www.nature.com/scientificreports/

biological processes have attracted significant interest as an economical and efficient treatment method, those 
are faced with several problems of the grown death rate of bacteria population exposed to the high toxicity 
wastewaters and hard biodegradability of the dye  wastewaters4. Recently, advanced oxidation processes have 
received great attention as alternative treatments for recalcitrant wastewaters. However, the production of toxic 
by-products remains a major disadvantage of these  methods5. The adsorption process has received wide attention 
for efficient treatment of different water matrices due to its simplicity, economic feasibility, regulatory compli-
ance, public acceptance, and environmentally friendly  procedure6. Availability, cheapness, high efficiency, and 
environmentally friendly user, easy to use, easy operation and non-susceptibility of an adsorbent to pollutants 
can potentially encourage authorities to consider the adsorption process as one of the most deserved treatment 
 technique7. In spite of the abundant application of activated carbon as an efficient adsorbent due to its virtues 
such as superior adsorption capacity, large specific surface area, high production cost and reuse-related drawback 
causes that the environmental researchers make more effort to find new efficient adsorbent without shortcom-
ings coming from activated  carbon8. Composting is an efficient, sustainable, and cheap solid waste management 
approach is used for the biological degradation of biodegradable organic wastes in aerobic  conditions9. In some 
study, fly ash derived from various sources has attracted significant interest as novel adsorbents for the uptake 
of various pollutants from aquatic environments, including date seed  ash10, activated fly  ash11, coal fly  ash12,13, 
fly ash  zeolite14, and municipal solid waste incineration fly  ash15. No study was reported in the literature to 
investigate the adsorptive ability of ash derived from the combustion of municipal solid waste (MSW) compost. 
Therefore, the present study aimed to investigate the adsorptive capability of MSW compost ash for RR198 dye 
in synthetic wastewater. Under the treatment process, the process parameters, namely initial pH of the solution, 
contact time, adsorbent dosage, and initial dye concentration, were modeled and optimized by Box–Behnken 
design-response surface methodology (BBD-RSM) and artificial neural network (GA-ANN). RSM technique 
estimates the possible correlation between the input parameters and dependent parameter, revealing quadratic 
and interactive effects of independent variables on a response, in parallel to the linear effect estimation, and 
reduces the replicate of experiments, and subsequently material cost and consuming  time16. ANN approach is 
a robust mathematical tool for modelling different behaviors, even the complex non-linear relationship. Unlike 
RSM, ANN does not require necessarily any experimental design, so that this approach can be successful to 
model any informal set of the experimental  data17,18. In the following, isotherm, kinetic, and thermodynamic 
characteristics of the RR198 dye absorption onto MSW compost ash, and reusability test of MSW compost ash 
were performed at the optimal condition of the process parameters. The other objectives were to characterize 
MSW compost ash by some analyses such as SEM, XRD, XRF, BET-BJH. Additionally, carbon content and CHNS 
analyses were done for MSW compost ash.

Materials and method
Materials. MSW compost was supplied by the waste management organization of Tehran municipality, Iran. 
RR198 was purchased from Alvan Sabet Company (Hamedan, Iran). The properties of the compost supplied 
were tabulated in Table 1.

All the other chemicals and solvents used in this study were of analytical reagent grade and obtained from 
Merck Company. MSW compost ash was produced by keeping MSW compost under 550 °C temperature for 4 h 
in a furnace. Thereafter, compost ash was sieved below 20 mesh and stored in a bottle for further  application6.

Experimental procedure. All the adsorption experiments were conducted in batch mode in a 500 mL 
sample volume. The effect of independent variables, namely initial pH of the solution, reaction time, MSW 
compost ash loading and initial RR198 concentration at the range and levels presented in Table 1, was inves-
tigated on the efficiency of RR198 uptake by MSW compost ash. Further, RR198 adsorption isotherm, kinetic 
and thermodynamic studies were performed based on experimental data at optimal condition. The initial pH of 
the medium was regulated by 0.1 N NaOH and 0.1 N  H2SO4 solution, and the solution temperature was set by 
incubator shaker for thermodynamic studies. After each experiment, the MSW compost ash was isolated from 
the sample by centrifuging at 10,000 rpm for 15 min. DR 5000 spectrophotometer was employed to determine 

Table 1.  Properties of the MSW compost.

Sample MSW compost

Organic matter content (%) 68.8 ± 0.4

Dry matter content (%) 77.1 ± 0.7

pH 8.14 ± 0.17

Electrical conductivity (mS  cm−1) 2.57 ± 0.4

Respiration index (mg  O2  g−1 OM  h−1) 1.67

Bulk density (kg  L−1) 0.42

Air-filled porosity (%) 59

Nitrogen Kjeldahl (%, dry basis) 1.98 ± 0.13

C/N ratio 16

E. coli (CFU  g−1) < 10
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the remaining concentration of RR198 at a maximum absorptive wavelength of 518  nm19. All the adsorption 
experiments were conducted triplicate, and the results were reported as average values.

Characterization techniques for MSW compost ash. In order to evaluate surface characteristics of 
MSW compost ash, SEM analysis (SEM, HITACHI S-4160, Japan) was used, and XRD analysis was used in order 
to assess crystalline properties of MSW compost ash using an X’Pert Pro diffractometer (Rigaku RINT2200, 
Japan) at scanning range from 10° to 80° at 40 kV with the electron probe current of 30 mA. The chemical 
composition of MSW compost ash was identified using the Philips XRF machine (Philips PW1480 model). 
Specific surface area and pore size distribution of MSW compost ash were analyzed by using BET/BJH analysis 
by Quanta chrome NOVA2000 automatic analyzer. The organic content of the sample was determined based on 
the ASTM D-2974  method20. CHNS-O Thermo Finnigan Elementary Analyzer Flash EA 1112 was employed to 
measure the total content of carbon, hydrogen, nitrogen, and sulphur via combustion of MSW compost ash in 
the presence of  O2. The carbonate content of the sample was quantified by calcimetry in a Bernard  calcimeter21.

Experimental design, modeling, and optimization. In the present work, BBD experimental design 
approach was applied to provide data for process modeling in the range and level of the input parameters tabu-
lated in Table 2. It was done in Design-Expert software.

The BBD-RSM approach was used to determine the relationships between the input variables and adsorp-
tion efficiency of RR198 by fitting the experimental data with a quadratic multivariate mathematical equation 
expressed as:

Here, y is predicted value (%),  a0 the constant-coefficient described as intercept,  ai,  aii,  aij stand for the linear, 
quadratic, and interaction regression coefficient, respectively,  xi and  xj correspond to the actual values of input 
variables, n and e are assigned to the input variable number and model error, respectively. Optimization of the 
input variables to maximize removal efficiency in the BBD-RSM technique was conducted based on a desirable 
function, in which the input factors were set in the fractional range, and the response was  maximized22–24.

ANN approach was also used for modeling RR198 adsorption by MSW compost ash based on the same data-
set. Multi-layered perception (MLP) is the most widely applied and researched neural network model, owing to 
its comparably simple algorithm and clear  architecture24–26. In the present study, the MLP-ANN model consti-
tuted from Levenberg–Marquardt backpropagation training algorithm with three layers consisting of an input 
layer (four neurons), a hidden layer, and an output layer (one neuron), 1000 epochs, 1e−07 min-grad, and 1000 
max-fail was used for process modeling. Tansig and purlin functions were used in the hidden layer and the last 
layer, respectively, as transfer functions. As predictive accuracy and performance of the ANN model are signifi-
cantly affected by the number of hidden neurons, the best number of hidden neurons of the neural network was 
searched by means of empirical testing or trial and error. For this propose, the number of hidden neurons was 
varied from a minimum of 1 to a maximum of 20, and the optimal number was chosen based on the traditional 
measures of mean squared error (MSE) and determination coefficient  (R2), which are determined as follows:

where  zp,i is the predicted value,  zexp,i and  zav show the experimental value and the mean of experimental values, 
and N is the number of experimental runs. The experimental design matrix used in the ANN model was the 
one used in the BBD-RSM model. The dataset was partitioned into three groups in a random manner, including 
training (75%), validation (15%), and test (15%) dataset. The dataset was normalized to 0.1–0.9 range by Eq. (4) 
to minimize the error. It causes that the training happens more  efficiently27:

(1)Y = a0 +
k∑

i=1

ai xi +
k∑

i=1

aii x
2
i +

n∑

i�=1

aijxixj + ε

(2)MSE =
1

N

N∑

i=1

(∣∣zp,i − zexp,i
∣∣)2.

(3)R2 =
∑N

i=1(zp,i − zexp,i)∑N
i=1(zp,i − zav)

(4)yi = 0.1+ 0.8×
xi − xmin

xmax − xmin

Table 2.  Experimental ranges and levels of the process parameters used in the Box–Behnken design.

Variable Symbol − 1 0 + 1

pH X1 3 7 11

Contact time(min) X2 20 50 80

MSW compost ash dosage (g) X3 0.5 1.25 2

RR198 concentration (mg  L−1) X4 20 60 100



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11613  | https://doi.org/10.1038/s41598-021-90914-z

www.nature.com/scientificreports/

Here,  yi stands for the normalized  xi, and  xmin the minimum value of  xi, and  xmax the maximum value of  xi.
The prediction capability of the developed BBD-RSM and ANN models was finally evaluated by MSE and  R2 

statistics. GA approach was used to optimize the ANN model in MATLAB 2013 software. For this purpose, the 
developed model was written in a script file, and the fractional points were considered as the upper and lower 
levels of the independent factors. Finally, the optimization results of the process parameters based on BBD-RSM 
and GA-ANN approaches were compared to each other, and some control experiments were done to assess the 
accuracy of the  results7.

Results and discussion
Characterization of MSW compost ash. Morphology, geometries, and structural properties of MSW 
compost ash samples were analyzed using SEM images with a magnification of ×50,000. Figure 1a shows the 
size distribution, surface morphology and particle shape of MSW compost ash. As can be seen, the synthesized 
sample is porous, coarse, angled and irregular in nature. Also, it is also found that the sample is fabricated from 
micro-nano multi-scale particles. The chemical composition of MSW compost ash was determined by the XRF 
technique. The corresponding result revealed that the most abundant oxide components in the sample structure 
are related to  SiO2 (52.7), CaO (15.9%) and  Al2O3 (7.9%). Also, a small portion of MSW compost ash is pro-
duced from  Fe2O3, MgO,  K2O, and  TiO2. XRD patterns of MSW compost ash are given in Fig. 1b. As expected, 
the spectrum identified the major contribution of  SiO2 (JCPDS Card ID 01-077-1066),  CaCO3 (JCPDS Card ID 
98-005-2151), and a minor contribution of crystalline phases of  Al2O3 and  Fe2O3 (JCPDS Card ID 98-001-6597) 
in the MSW compost ash sample, which is in a consistent with the findings observed in XRF  analysis21. The result 
of the BET surface area of the MSW compost ash powder is displayed in Fig. 1c. The analysis showed a specific 

Figure 1.  SEM (a), XRD (b), BET (c) and BJH analyses for CA.
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surface area of 50.14  m2/g and a total pore volume of 0.214  m3/g for the MSW compost ash sample. BJH test 
was also utilized to identify the pore size distribution of MSW compost ash. The related results, as displayed in 
Fig. 1d, illustrated that the pore size distribution of the material is mesoporous, where pore size mainly falls into 
a range from 2 to 50. The larger pore size can be assigned to intra-aggregate porosity, and the smaller pore size 
can be related to intra-particle porosity.

Table 3 shows the results of CNHS analysis for MSW compost ash. It was found that MSW compost ash 
contains carbon of 4.2%, hydrogen of 0.17%, nitrogen of 0.1%, and sulfur of 0.06%. The total organic matter 
content of MSW compost ash was determined to be about 6.48%, arising from incomplete combustion of the 
MSW compost. Also, the obtained carbonate content was measured to be about 5.61%.

Statistical analysis and model fitting. The constraints of independent variables, experimental removal 
efficiency along with the predicted removal efficiency of RR 198 by the BBD-RSM approach is presented in 
Table 4. Based on the statistical ANOVA analysis (see Table 5), suggested a reduced polynomial quadratic model. 
P-value > 0.05 was the criteria for the removal of some model terms from the developed model. The F-test and 
probability value statistics for the model were found to be 2543 and < 0001, respectively, representing that there 
exists only a 0.01% chance for F-value to be due to noise. It confirms the significance of the developed model. 
The higher values of  R2 (close to 1) justify a strong correlation between the experimental and predicted values. 
The correlation coefficient,  R2 was found to be 0.9755, indicating that only less than 3% of the total variation is 
not explained by the model. The results also show a reasonable agreement between Pred  R2 (0.9436) and the Adj 
 R2 (0.9652), which is quite satisfactory. It validates that the unnecessary variables are not included in the final 

Table 3.  CNHS analysis and carbonate content of MSW compost ash.

Sample Organic matter content (%) Carbonate content (%) %C %H %N %S

CA 6.48 ± 0.14 5.61 ± 74 4.2 ± 0.01 0.17 ± 0.07 0.1 ± 0.009 0.06 ± 0.04

Table 4.  Box–Behnken design matrix and the experimental and response values of RR198 uptake by MSW 
compost ash.

pH Time (min)
Adsorbent dose 
(mg  L−1) RR198 Con.

Experimental removal 
(%)

Predicted value (%) 
(BBD-RSM)

Predicted value (%) 
(GA-ANN)

3 20 0.5 20 65.9 66.45 65.87

11 20 2 100 66.8 66.74 64.92

7 50 1.25 20 70.4 69.64 69.54

3 80 0.5 20 81 79.25 80.96

7 80 1.25 60 67.8 69.63 67.72

7 50 2 60 73 71.21 72.87

11 80 0.5 20 63.8 63.77 64.25

7 50 0.5 60 58 57.54 58.30

3 20 2 100 74.9 72.82 75.04

11 80 0.5 100 62.1 61.27 60.49

7 50 1.25 100 62.3 64.74 61.90

11 20 0.5 20 57.4 55.57 57.38

7 50 1.25 60 65.1 64.38 64.66

11 20 2 20 69.3 69.24 69.30

3 80 2 20 91 92.92 90.62

11 20 0.5 100 52.1 53.07 55.75

11 80 2 20 76 77.44 74.55

3 20 0.5 100 57.4 59.15 57.48

3 50 1.25 60 74.1 73.23 75.71

11 50 1.25 60 59.9 62.45 59.50

3 20 2 20 79.6 80.12 79.58

11 80 2 100 77.1 74.94 70.76

3 80 0.5 100 72.3 71.95 72.20

7 20 1.25 60 58.5 59.13 58.63

3 80 2 100 85.3 85.62 84.82

7 50 1.25 60 63.2 64.38 64.66

7 50 1.25 60 66.9 64.38 64.66

7 50 1.25 60 64.2 64.38 64.66
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model. The lack of fit value was calculated as 0.4961, which was most preferred. It is worthy to note that the value 
greater than 0.05 was not significant relative to the pure  error24. The following mathematical equation expresses 
the developed model:

Diagnostic tools of normal plots were used to further verify the adequacy of the model. Figure 2a displays that 
the residual points are normally distributed around the straight line. Figure 2b shows a randomized distribution 
of residual points around the straight line, and the points do not follow a specific trend. To recognize the most 
effective parameters on the adsorption efficiency, the Pareto effect was calculated as  follows28:

Here, Pi demonstrates the Pareto effect of each term included in the predicted model and  bi shows the regres-
sion coefficients from the regression equation in terms of coded values. Figure 3 indicates that the adsorbent 
dose, initial solution pH, and contact time present the highest impact on the adsorption efficiency, respectively.

The dataset in Table 4 was also modeled using the ANN method. As before stated, the number of hidden 
neurons was varied from 1 to 20 to search for the best number of neurons with the lowest MSE value and high-
est  R2 value. The results showed that 8 hidden neurons present the smallest MSE and highest  R2, which give the 
robust prediction by the ANN model. Accordingly, 4-8-1 topology (Fig. 4) was chosen as the best architecture 
of the ANN model. Figure 5 shows the  R2 values of 0.9820, 0.9973, 0.9832, and 0.9846 for training, validation, 

(5)

Removal efficiency = 74.0519− 4.3443A+ 0.2421B

+ 9.1111C− 0.3244D− 0.0096AB

+ 0.0075AD+ 0.2162 AÂ
2 + 0.0018BÂ

2

(6)Pi(% ) =

[
(b2i )∑
b2i

]
× 100

Table 5.  ANOVA results and determination coefficients for the BBD-RSM model developed for the treatment 
process.

Source Sum of squares Mean square F value
p-value
Prob > F

Model 2225.231 278.1538 94.59664 < 0.0001

A-pH 522.7222 522.7222 177.7713 < 0.0001

B-Time 496.125 496.125 168.7259 < 0.0001

C-Adsorbent dose 840.5 840.5 285.8435 < 0.0001

D-RR198 Con. 108.045 108.045 36.74475 < 0.0001

AB 21.16 21.16 7.196252 0.0147

AD 23.04 23.04 7.835616 0.0114

A^2 40.40358 40.40358 13.74075 0.0015

D^2 26.6438 26.6438 9.061224 0.0072

Residual 55.86798 2.94042

Lack of fit 48.45798 3.028623 1.226163 0.4961

R2 = 0.9755 Adj  R2 = 0.9652 Pred  R2 = 9436

Figure 2.  The normal plot of residual values (a), the diagnostic plot of residuals versus predicted values (b).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11613  | https://doi.org/10.1038/s41598-021-90914-z

www.nature.com/scientificreports/

test, and all data, respectively. These results demonstrate a close correlation and a satisfactory agreement between 
the experimental and predicated removal efficiency so that this model predicts experimental data with very 
high  accuracy24. ANN model predictions are presented in Table 4. ANN model can be expressed as Eq. (7) with 
the weights and biases given in Table 6.

where  Yn presents predicated value,  f0 transfer function (here, tangent sigmoid) associated with output layer,  b0 
bias of output layer,  wk the weights of the output layer,  fh shows transfer function (here, purelin) in the hidden 
layer,  bhk bias associated with the hidden layer,  wik the weights of the hidden layer, and  Xni independent variable.

Prediction precision of the BBD-RSM and ANN developed models are assessed by comparing the  R2 (as cri-
teria for describing the strength and direction of predicated and experimental values) and MSE (revealing error 
distribution and the magnitude of errors) values of the ANN and BBD-RSM model and model.  R2 and MSE were 
calculated as 0.9755 and 0.0791 for the BBD-RSM model and 0.9846 and 0.0259 for the ANN model. Although 
statistical criteria show relatively better values for the ANN model compared with the BBD-RSM model, both 
the models manifested that an excellent prediction ability of experimental data, thus, can be used for modeling 
and recognizing the behavior of the adsorption process.

Univariate optimization of the adsorption process. BBD-RSM and GA-ANN methods were used for 
optimizing the corresponding models in order to explore the levels of the input factors that maximize removal 
efficiency. The optimization results of the second-order polynomial regression model based on the BBD-RSM 
method have been presented in Fig. 6. It can be observed that the highest removal efficiency of 92.92% is obtained 
at solution pH 3, contact time 80 min, adsorbent loading 2 g  L−1, and initial RR198 concentration 20 mg  L−1. 
The developed ANN model was optimized by the GA tool. Figure 7 displays that the generation of solutions at 
around 100 repetitions showed no improvement in the fitness value and consequently was stopped at 250 repeti-
tions. The current best individual plot demonstrates that the optimal levels of the input variables are consistent 
with those obtained from the BBD-RSM method, so that that the maximum removal efficiency (92.9%) has 
been achieved at pH = 3, contact time = 80 min, adsorbent loading = 2 g  L−1, RR198 concentration = 20 mg  L−1. 
The control experiments at the obtained optimum condition were conducted, and the experimental removal 
efficiency was 93.2% (± 1.2). This confirms a promising capability of both the BBD-RSM and GA-ANN methods 
for the optimization of the adsorption parameters.

Influence of parameters. 3D and contour plots were used to display variations of the removal efficiency of 
RR198 by MSW compost ash as a function of the independent variables. Figure 6a shows the effect of the initial 
pH solution on the adsorption capability of the adsorbent. Results revealed that by increasing the initial solution 
pH, RR198 uptake by MSW compost ash starts to drop. The highest adsorption efficiency was obtained at initial 
solution pH of 3. Removal efficiency declined from 92.92 to 77.44% by varying pH from 3 to 11 at the condition 
of contact time = 80, adsorbent loading = 2 g  L−1 and initial RR198 concentration = 20 mg  L−1. This result can be 
associated with producing repulsive electrostatic force of the adsorbent surface with dye molecules in the basic 
condition of the solution and attractive electrostatic force in acidic  conditions29.

The effectiveness of contact time on adsorbent performance is visible in Fig. 7a. It is verified that the adsorbent 
shows higher removal efficiencies at the prolonged contact time. By rising contact time from 20 to 80 min, the 
adsorption efficiency showed a 13% increase at the condition of pH = 3, adsorbent loading = 2 g  L−1, and initial 
RR198 concentration = 20 mg  L−1. Increasing removal efficiency at the higher contact time is likely due to the 
more opportunity and higher chance to collide adsorbent and dye molecules. The rapid RR98 uptake into the 
adsorbent in the early contact time comes from the fact that more adsorbent surface is available for the solute 
to be adsorbed at the earlier contact time, while increased saturation of the adsorbent by dye molecules at the 

(7)Yn = f0

{
b0 +

h∑

k=1

[
wk × fh

(
bhk +

m∑

i=1

(wikXni)

]}

Figure 3.  Pareto chart for adsorption of RR198 on MSE compost ash.
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longer contact time causes that the adsorption rate is enhanced more slowly. A similar observation was reported 
in the  literature8.

Figure 6b exhibits the impact of the adsorbent loading and initial RR198 concentration on adsorption effi-
ciency. As can been seen, removal efficiency is favored by the higher adsorbent dosage. Removal efficiency showed 
an increasing rate from 79.25 to 92.92% with the increase of the adsorbent dose from 0.5 to 2 g  L−1 at the condi-
tion of pH = 3, contact time = 80 g  L−1

, and initial RR198 concentration = 20 mg  L−1. It seems that by enhancing 
adsorbent dosage at the fixed pollutant concentration, a more active surface will be available for adsorption. On 
the contrary, the adsorption capacity was lessened at the higher adsorbent dosage owing to the improved chance 
of the collision between the adsorbate and  adsorbent30.

It is observed in Fig. 6b that at a higher initial RR198 concentration, removal efficiency rises. The results show 
that under e condition of pH = 3, contact time = 80 g  L−1, and adsorbent loading = 2 g  L−1, adsorption efficiency 

Figure 4.  The neural network architecture for a three-layer ANN model with 4-5-1 topology.
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is elevated from 85.62 to 92.92% by reducing initial RR198 concentration from 100 to 20 mg  L−1. This comes 
from the fact that by increasing the initial RR198 concentration at the constant adsorbent dosage, the accessible 
active surface for the adsorption process will be dropped, leading to dropping the removal  efficiency31.

Isotherm studies. Adsorption type, adsorbent surface properties, adsorption capacity, and equilibrium 
relationship between adsorbent and adsorbate can be identified by designing proper adsorption  isotherms32,33. 
For this purpose, linear and nonlinear forms of Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich 

Figure 5.  Regression plots for training, testing, and validation, and all data of the three-layer ANN model.

Table 6.  Obtained weights and biases of the built ANN model for the RR198 adsorption by MSE compost ash.

Input (4)-hidden layer (8)
Hidden layer 
(8)-output (1)

Weights Bias Weight Bias

0.049364 1.8911 1.3882 − 0.85547 0.26853 − 2.7228

0.25515

− 0.83297 1.9481 − 1.2487 1.217 − 0.047469 2.087

− 1.1795 − 2.4692 0.68868 1.3754 − 0.041984 1.1439

1.1868 − 1.468 1.2176 0.95268 0.09805 − 1.3409

− 0.80077 − 2.5144 0.54167 − 0.32138 − 0.1717 0.47525

1.5611 1.6247 1.2859 − 0.82074 − 0.27311 − 0.84014

1.1779 1.7681 − 0.84595 − 1.1771 0.052601 − 0.090767

− 1.9679 1.0206 1.2434 0.86506 0.14268 − 0.53357
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isotherms were taken to evaluate RR198 adsorption onto the MSW compost ash. Langmuir isotherm model 
figures out a monolayer adsorption phenomenon of sorbate onto the adsorbent surface. Assumptions for the 
model include (a) no reaction takes place among sorbate molecules during adsorption, (b) adsorption energy 
is supposed to be constant onto the adsorbent surface, (c) single layer adsorption appears, and (d) maximum 
adsorbed amount is dependent on the saturability of adsorption  layer34. The nonlinear Langmuir adsorption 
model is expressed as follows:

The linear form for Eq. (8) is written as Eq. (9)5:

Here, Ce signifies RR198 dye concentration at equilibrium (mg  L−1), qe is equilibrium adsorption capacity 
(mg  L−1),  qm is the maximum adsorption capacity (mg  g−1),  KL is the Langmuir adsorption constant (L  mg−1). By 
plotting a linear graph between y = 1/qe versus x = 1/Ce, the values of  qmax and  kL are obtained from intercept and 
slope, respectively (Fig. 8a). Also, these parameters were calculated by the nonlinear form of Langmuir isotherm 
(Fig. 9a). The maximum adsorption capacity was obtained to be within the range of 30.96 mg  L−1 to 20.619 by 
changing the solution temperature from 25 to 50 °C, for both nonlinear and linear Langmuir isotherm models. 
The fitness of data with the isotherm model was checked with statistical metrics of  R2, Root means square errors 
(RMSE), and Chi-square  (X2). The RMSE and  X2 are calculated according to Eqs. (10) and (11).

(8)qe =
qmKLCe

1+ KLCe

(9)
1

qe
=

1

qm
+

1

KLqm

(
1

Ce

)

(10)

√√√√ 1

n− 1

n∑

i=1

(
%Ri

pred −%Ri
exp

)2

Figure 6.  3D response surface plot and contour plot of the absorption of RR198 onto MSW compost ash as a 
function of pH versus time (a) and adsorbent dose versus RR198 Con. (b).
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As given in Tables 7 and 8, the value of  R2 at the studied solution temperatures was found higher value, and 
the values of RMSE and  X2 were found to lower values in nonlinear Langmuir isotherm when compared to its 
linear form. The results confirm that nonlinear Langmuir isotherm is superior over linear form to fit equilibrium 
data of the adsorption process.

Freundlich isotherm was originally developed to explain heterogeneous multilayer adsorption. Also, an energy 
reduction is assumed to occur in adsorbing sites and intermolecular reaction among adsorbed molecules for the 
adsorption process, which follows Freundlich  isotherm5. For the Freundlich adsorption model, nonlinear and 
linear forms were expressed as follows:

Kf stands for the Freundlich constant (mg  g−1), presenting adsorption capacity, 1/n describes the exponent of 
non-linearity. n is the Freundlich constants. Overall, n < 1 signifies poor adsorption, n = 1–2 indicates aver-
age adsorptions and n = 2–10 is obtained for good adsorptions. Thealues of n and  kf are obtained by the linear 
graph between log  (Ce) versus log  (qe) or from drawing a nonlinear form of Eq. (13) (Figs. 8b, 9b). The fitness of 
the isotherm model to equilibrium data was evaluated with statistical metrics of  R2, RMSE and  X2. As given in 
Tables 7 and 8, nonlinear Langmuir isotherm had larger  R2 values and lowered RMSE and  X2 values at the studied 
solution temperatures than its linear form. As a result, the linear Freundlich isotherm was found superior over 
the nonlinear form in terms of fitness to equilibrium data.

Temkin adsorption isotherm assumes that the heat of adsorption of all the molecules drops linearly with 
coverage, due to due to adsorbent–adsorbate interactions. The derivation of the Temkin isotherm reveals a linear 
heat loss of sorption rather than logarithmic, as implied in the Freundlich  model34. The nonlinear form of the 
Temkin isotherm model is given  as35:

(11)X2 =
n∑

i=1

(
%Ri

pred −%Ri
exp

)2

%Ri
exp

(12)qe = KfC
1/n
e

(13)Ln qe = Ln Kf +
1

n
LnCe

(14)qe =
RT

bT
lnKTCe.

Figure 7.  Optimization results of the adsorption process using the GA-ANN approach.
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Equation (15) shows the linearized form of Eq. (14).

R is the universal gas constant (8.314 J  mol−1  K−1),  KT shows Temkin itherm constant (L  g−1),  BT is the Temkin 
constant corresponding to the heat of the adsorption (J  mol−1), and T is the temperature in Kelvin. b and  KT 
values are obtained from the slope and intercept of the linear graph of x = ln  (Ce) versus y =  qe (Fig. 8c). These 
parameters were also calculated by a nonlinear form of Temkin isotherm (Fig. 9c). The information related to 
calculated coefficients has been given in Tables 7 and 8. Also, the values of  R2, RMSE, and  X2 to evaluate the 
finesse of linear and nonlinear Temkin isotherm are presented in Tables 7 and 8, respectively. These parameters 
proved that both linear and nonlinear forms of Temkin isotherm appear almost similar fitness values.

In general, Dubinin–Radushkevich isotherm model was developed as an empirical model to predict the physi-
cal or chemical nature of the adsorption process. It shows successful adsorption in liquid-solid heterogeneous 
systems. Dubinin–Radushkevich model than Langmuir is considered more general as constant sorption poten-
tial, and derivation homogenous surface in the isotherm is not assumed. The nonlinear Dubinin–Radushkevich 
isotherm model is written  as36,37.

Equation (17) shows the linearized form of Eq. (16).

where  qm stands for the adsorption capacity (mg  g−1) based on the Dubinin-R monolayer adsorption approach, 
β shows sorption energy, and ε is the Polanyi potential representing the equilibrium concentration. It is calcu-
lated as:

By drawing ln  qe via ε2 , the slope and intercept of the plot give  KD and qs values (Fig. 8d). These parameters 
were also calculated from the nonlinear isotherm form (Fig. 9d). The nonlinear form of the model demonstrates 

(15)qe =
RT

bT
lnKT +

RT

bT
lnCe

(16)qe = qmexp
βε2

(17)lnqe = lnqs − KDε
2

(18)ε = RTln

(
1+

(
1

Ce

))

Figure 8.  Linear isotherm models for RR 198 adsorption by MSW compost ash.
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a more accurate fitness value than the linear form, according to  R2, RMSE, and  X2 parameters (Tables 7, 8). 
Dubinin–Radushkevich isotherm shows a successful application for the determination of the physical or chemical 
nature of sorption. For this purpose, Equation (19) is used to calculate the parameter of E.

Figure 9.  Nonlinear isotherm models for RR 198 uptake by MSW compost ash.

Table 7.  Information of linear isotherm models for RR 198 adsorption onto MSW compost ash.

Tem

Linear Langmuir isotherm Linear Freundlich isotherm

KL (L  mg−1) qm (mg  g−1
) R2 RMSE X2 n (L  g−1) KF (mg  g−1) R2 RMSE X2

25 0.105 30.960 0.944 0.877 0.399 1.684 3.837 0.9975 0.382 0.050

30 0.086 26.110 0.963 0.706 0.355 1.812 3.122 0.999 0.195 0.015

35 0.063 26.525 0.949 0.699 0.334 1.720 2.499 0.9987 0.173 0.017

40 0.052 21.978 0.987 0.369 0.069 1.730 1.871 0.9911 0.393 0.096

45 0.046 20.921 0.985 0.390 0.088 1.746 1.696 0.9987 0.199 0.021

50 0.040 20.619 0.983 0.394 0.107 1.706 1.479 0.9988 0.173 0.013

Tem.

Linear Temkin isotherm Linear Dubinin–Radushkevich

B1 KT (L  g−1) R2 RMSE X2 qs KD R2 RMSE X2

25 6.225 1.267 0.9426 1.366 0.938 15.445 0.0001 0.8112 3.235 5.112

30 5.369 0.993 0.9548 1.062 0.655 13.999 0.0001 0.8046 2.893 4.927

35 5.413 0.727 0.9474 1.091 0.687 13.414 0.0001 0.8041 2.842 4.797

40 4.797 0.524 0.9824 0.522 0.166 12.130 0.0002 0.8595 1.931 2.075

45 4.523 0.475 0.9792 0.529 0.182 11.419 0.0002 0.8524 1.822 1.891

50 4.421 0.413 0.9756 0.546 0.223 10.860 0.0002 0.8393 1.772 2.010
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E < 8 kJ  mol−1 indicates physical adsorption, and the values ranging from 8 to 16 kJ  mol−1 describe chemical 
adsorption. The value of E calculated for the adsorption process based on nonlinear Dubinin–Radushkevich 
isotherm was below 8 kJ  mol−1, suggesting the physical nature of RR198 adsorption onto the MSW compost ash.

As initially stated, the findings related to the different isotherm models fitted to experimental data are given 
in Tables 7 and 8. According to the calculated values of statistical metrics of  R2, RMSE and  X2, the equilibrium 
data are better described by both linear and nonlinear Freundlich isotherm, as compared with Langmuir, Temkin, 
and Dubinin–Radushkevich isotherm models.

Kinetic studies. Kinetic models including pseudo-first-order, pseudo-second-order, and intraparticle dif-
fusion models were applied to explore the best-fitted model to the experimental data. The kinetic study helps 
to describe solute uptake rate, contact time needed for the adsorption process, mechanism of sorption and 
adsorption constant rate, as well as chemical  reactions7. The pseudo-first-order kinetic model was tested to fit 
experimental  data38. The model is typically developed to study liquid/solid adsorption system, indicating that 
penetration depends on adsorption capacity, and variation of adsorption amount as a function of time is pro-
portional to unoccupied sites on the adsorbent surface. The nonlinear and linear forms of pseudo-first-order 
kinetic model are given  as39,40:

qe and  qt show the adsorption capacities at equilibrium and time t (mg  g−1), and  k1 stands for the rate constant 
 (min−1), respectively. ln(qe) and  k1 are the intercept and slope of the linear graph of x = t versus y = ln(qe−qt), 
respectively.  qe and  k1 values are obtained from a linear graph between y = ln

(
qe − qt

)
 and x = t (Fig. 10a). Those 

were also determined from the nonlinear pseudo-first-order kinetic model (Fig. 10d). The information related to 
parameters of linear and nonlinear forms of the pseudo-first-order kinetic model has been represented in Table 9. 
A comparative study between linear and nonlinear forms by statistical metrics of  R2, RMSE, and  X2 indicated 
that the linear form is better suited to explain the experimental data compared to the nonlinear form. Table 9 
shows  R2 = 0.9853, RMSE = 0.193, and  X2 = 0.0245 for linear pseudo-first-order kinetic model and  R2 = 0.9629, 
RMSE = 0.346, and  X2 = 0.148 for its nonlinear form.

Pseudo-second-order kinetic model suggests that adsorption behavior obeys pseudo-second-order reaction 
with the rate-limiting step. In chemical adsorption, the occupancy rate of adsorption sites has a direct relationship 
with the square number of unoccupied  sites38. The nonlinear and linear forms of the kinetic model are written 
as Eqs. (22) and (23),  respectively39,41.

(19)E =
1

√
2KD

(20)Qt = Qe

(
1− e−k1t

)

(21)ln
(
qe − qt

)
= lnqe − K1t

(22)Qt =
k2Q

2
e t

1+ k2Qet

(23)
t

qt
=

1

k2qe2
+

1

qe
t

Table 8.  Information of non-linear isotherm models for RR 198 adsorption onto MSW compost ash.

Tem.

Non-linear Langmuir isotherm Non-linear Freundlich isotherm

KL (L  mg−1) qm (mg  g−1
) R2 RMSE X2 n (L  g−1) KF (mg  g−1) R2 RMSE X2

25 0.105 30.960 0.9854 0.772 0.351 1.652 3.743 0.9955 0.393 0.050

30 0.086 26.110 0.9893 0.616 0.310 1.809 3.118 0.9985 0.196 0.015

35 0.063 26.525 0.9884 0.603 0.289 1.679 2.406 0.9987 0.198 0.017

40 0.052 21.978 0.992 0.361 0.064 1.850 2.099 0.9902 0.459 0.099

45 0.046 20.921 0.9913 0.344 0.072 1.881 1.971 0.9976 0.256 0.065

50 0.040 20.619 0.994 0.307 0.072 1.770 1.632 0.9983 0.319 0.061

Tem.

Non-linear Temkin isotherm Non-linear Dubinin–Radushkevich

B1 KT (L  g−1) R2 RMSE X2 qs KD R2 RMSE X2

25 398.001 1.267 0.9426 1.366 0.938 20.415 0.009 0.9243 2.425 3.634

30 469.242 0.993 0.9548 1.062 0.655 18.170 0.016 0.9242 2.284 3.290

35 473.111 0.727 0.9474 1.091 0.687 17.495 0.024 0.9164 2.229 3.497

40 542.540 0.524 0.9824 0.522 0.166 13.164 0.014 0.8176 1.755 1.725

45 584.562 0.475 0.9792 0.529 0.182 12.273 0.015 0.7961 1.706 1.585

50 594.331 0.401 0.9756 0.555 0.247 11.830 0.019 0.7896 1.666 1.615
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qe and  qt denote the amounts of RR198 adsorbed at equilibrium and time t (mg  g−1), and  k2 is devoted to the 
rate constant (g  mg−1  min−1), respectively.  Qe and  k2 values are determined by a linear graph between y =  tqt and 
x = t (Fig. 10b), and also nonlinear pseudo-second-order kinetic model (Fig. 10d). The linear and nonlinear 
parameters of the kinetic model are shown in Table 9. Error functions of  R2, RMSE, and  X2 for the nonlinear 
pseudo-second-order kinetic model were calculated as 0.9998, 0.0243, and 0.00075, respectively. Those for linear 
form were found to be 0.9999, 0.0223, and 0.0006. The results indicate that both linear and nonlinear forms of 
the kinetic model have similar fitness values to experimental data.

In particle diffusion kinetic model as a commonly used kinetic model was also used in the present study. Four 
consecutive stages were involved in the kinetic model as follows: (a) transport of sorbate in the bulk solution; 
(b) film diffusion; (c) mass diffusion migration of sorbate molecules within the pores of sorbent; (d) Adsorp-
tion of solute molecules onto adsorbent via chemical reactions like complexation, ion exchange, and chelating 
 reactions42. The intraparticle diffusion kinetic model is given  as35.

In Eq.,  qt represents the adsorption capacity at time t in (mg  g−1),  kpt describes the intraparticle diffusion rate 
constant (mg  g−1  min−1/2).  kp value is calculated from the linear graph of x =  t1/2 versus y =  qt (Fig. 10c) and 
shown in Table 9.

To made a comparison among the different kinetic models in terms of fitness value, the error functions of  R2, 
RMSE and  X2 were applied. As shown in Table 9, the calculated values of  R2, RMSE, and  X2 revealed that both 
the linear and nonlinear form of the pseudo-second-order kinetic model offers the best fit to the experimental 
equilibrium data when compared with pseudo-first-order and intraparticle diffusion kinetic models.

Thermodynamic studies. Thermodynamic properties of the RR198 adsorption onto the MSW compost 
ash were studied under the optimal condition of the process parameters and a temperature of 298, 303, 308, 313, 
and 318, and 323 °C. Equation (25) was used to determine the �G

◦ thermodynamic parameter and �S
◦ and �H

◦ 
are obtained from the intercept and slope factor of Eq. (26)43.  Keo represents the thermodynamic equilibrium 
constant (dimensionless).

(24)qt = Kpt
0.5 + C

(25)�G
◦
= −RT ln Ke

◦

Figure 10.  Linear and nonlinear kinetic models for RR 198 adsorption by MSW compost ash.
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Here, �G
◦ stands for the change of free Gibbs energy (kJ  mol−1), R represents the gas constant (8.314 J  mol−1  K−1), 

T describes the temperature in Kelvin, �H
◦ shows enthalpy change (kJ  mol−1), �S

◦ is entropy change (J  mol−1  K−1), 
and  Kd is distribution coefficient, MW is the molecular weight of adsorbate (Reactive red 198; 967.5 g  mol−1), 
 [adsorbate]o describes the standard adsorbate concentration (1 mol  L−1),  KL is the best-fitted isotherm constant 
(L  mg−1), and γ is the activity coefficient (dimensionless). We considered the adsorbate solution very diluted 
to assume the activity coefficient of unitary (equal to 1). By plotting lnKd via 1/T, the slope and intercept were 
used to calculate the values of �H

◦ and �S
◦ respectively (Fig. 11). The obtained thermodynamic information for 

the adsorption process model is summarized in Table 10. Negative �G
◦ value is an indication of spontaneous 

adsorption. Further, the less value of �G
◦ at the higher temperatures indicates undesirability of the adsorption 

process at the elevated temperature. The negative value of �H
◦ suggests the exothermic sorption so that adsorp-

tion efficiency is increased at the lower temperatures. The negative �S
◦ value reflected the randomness at the 

solid/liquid  interface44.

Reusability test of MSW compost ash. The recovery of adsorbent was considered a very important 
feature in the present study because of its practical application and economic feasibility. In this context, reus-
ability study of the adsorbent was carried out for successive five cycles, where after each run, the adsorbent was 

(26)lnKe
◦
=

�S
◦

R
−

�H
◦

RT

(27)Ke
◦
=

Km
L [adsorbate]

◦

γ

(28)Km
L = 1000× KL ×MW

Table 9.  Information of linear and non-linear kinetic models for RR 198 adsorption onto MSW compost ash.

Pseudo-first-order kinetic Pseudo-second-order kinetic Intraparticle diffusion kinetic

qexp 
(mg  g−1)

K2 )
g  mg−1  min−1) qe (mg  g−1) R2 RMSE X2 K1  (min−1) qe (mg  g−1) R2 RMSE X2

Kp 
(mg  g−1  min−1/2)

Kp (mg  g−1 
 min−1/2)

Linear 
parameters 0.0558 3.864 0.9853 0.193 0.0245 0.1262 5.144 0.9999 0.0223 0.0006

2.831 0.9669 4.96
Non-linear 
parameters 1.000 4.319 0.9629 0.346 0.148 0.026 5.119 0.9998 0.0243 0.000753

Figure 11.  A thermodynamic model for RR 198 adsorption by MSW compost ash.
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separated from the medium, dissolved in 0.1 mol  L−1 NaOH solution for 3 h, and finally rinsed by deionized 
water to isolate form the  adsorbate7. The relevant results, as given in Fig. 12, show that the adsorption efficiency 
of MSW compost ash has maintained over 80%. So, it confirms the promising reusability of MSW compost ash. 
The slight decline of removal efficiency can be assigned to the decrease in the available active surface area of the 
adsorbent due to the trapped dye molecules in the adsorbent pores even after frequent washing of the adsorbent 
and the mass loss of the adsorbent after washing operation.

Comparison with other adsorbents. In the present study, MSW compost ash as a low-cost and efficient 
adsorbent was used for RR 198 adsorption from an aquatic matrix, showing a remarkably good performance in 
the adsorption process. To further signify its efficiency, the prepared adsorbent was compared with some other 
reported natural adsorbents with respect to their adsorption capacity for dye pollutants in an aqueous solution. 
Table represents the maximum adsorption capacity for different natural adsorbents. As seen, MSW compost ash 
has superiority in dye adsorption when compared with some given adsorbents in Table 11. As a result of reason-
able adsorption capacity, low cost and abundance, availability, it can be proposed as an attractive alternative for 
dye’s removal.

Conclusion
In the present study, MSW compost ash was characterized by using several methods, and its capacity in the 
adsorptive removal of RR198 from synthetic wastewater was studied and optimized. BBD-RSM approach devel-
oped a quadratic polynomial regression model with F-value = 94.596 and  R2 = 0.9436, and ANN suggested a 
three-layer model with test-R2 = 0.9832, the structure of 4-8-1 and learning algorithm type of Levenberg–Mar-
quardt backpropagation. By comparing the two modeling approaches, the ANN model can be introduced as a 
more reliable model to predict the responses closer to the experimental results. The same optimization results 
were achieved by BBD-RSM and GA-ANN techniques. The maximum removal efficiency of RR198 (92.8%) was 
observed under the condition of pH = 3, contact time = 80 min, RR198 = 20 mg  L−1 and MSW compost ash load-
ing = 2 g  L−1. The adsorption behavior was more in line with Freundlich isotherm, pseudo-second-order kinetic 
models, which demonstrate multilayer adsorption with a heterogeneous system and heterogeneous chemical 
adsorption on the adsorbent surface, respectively. Also, the thermodynamic study indicated the exothermic 
nature of the RR198 adsorption onto MSW compost ash. The reusability test of the adsorbent shows no obvi-
ous decline of removal efficiency after five successive cycles of reuse. In conclusion, MSW compost ash as an 
economical, reusable and efficient adsorbent can be proposed to be applied in the adsorption process for dye 
pollutants removal from aquatic environments, and both BBD-RSM and ANN approaches are highly potential 

Table 10.  Thermodynamic information of RR198 adsorption on MSW compost ash.

Temperature (°K) KL (L  mg−1) Ko �G(kJmol−1) �S
◦

(Jmol−1K−1) �H
◦

(kJmol−1) R2

298 0.0017 1598.3 − 28.414

− 10.369 − 31.623 0.9805

303 0.0018 1750.2 − 28.343

308 0.0017 1624.4 − 28.217

313 0.0019 1789.9 − 28.207

318 0.0019 1819.9 − 28.183

323 0.0018 1712.5 − 28.106

Figure 12.  Reusability test for the MSW compost ash.
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methods for modeling the adsorption process. This study also provides preliminary information, which is helpful 
for developing the adsorption process on an industrial scale.
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