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There are two major sequencing technologies for investigating the microbiome: the
amplicon sequencing that generates the OTU (operational taxonomic unit) tables of
marker genes (e.g., bacterial 16S-rRNA), and the metagenomic shotgun sequencing
that generates metagenomic gene abundance (MGA) tables. The OTU table is the
counterpart of species abundance tables in macrobial ecology of plants and animals,
and has been the target of numerous ecological and network analyses in recent gold
rush for microbiome research and in great efforts for establishing an inclusive theoretical
ecology. Nevertheless, MGA analyses have been largely limited to bioinformatics
pipelines and ad hoc statistical methods, and systematic approaches to MGAs guided
by classic ecological theories are still few. Here, we argue that, the difference between
“gene kinds” and “gene species” are nominal, and the metagenome that a microbiota
carries is essentially a ‘community’ of metagenomic genes (MGs). Each row of a
MGA table represents a metagenome of a microbiota, and the whole MGA table
represents a ‘meta-metagenome’ (or an assemblage of metagenomes) of N microbiotas
(microbiome samples). Consequently, the same ecological/network analyses used in
OTU analyses should be equally applicable to MGA tables. Here we choose to analyze
the heterogeneity of metagenome by introducing classic Taylor’s power law (TPL) and
its recent extensions in community ecology. Heterogeneity is a fundamental property of
metagenome, particularly in the context of human microbiomes. Recent studies have
shown that the heterogeneity of human metagenomes is far more significant than that
of human genomes. Therefore, without deep understanding of the human metagenome
heterogeneity, personalized medicine of the human microbiome-associated diseases
is hardly feasible. The TPL extensions have been successfully applied to measure the
heterogeneity of human microbiome based on amplicon-sequencing reads of marker
genes (e.g., 16s-rRNA). In this article, we demonstrate the analysis of the metagenomic
heterogeneity of human gut microbiome at whole metagenome scale (with type-I power
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law extension) and metagenomic gene scale (type-III), as well as the heterogeneity
of gene clusters, respectively. We further examine the influences of obesity, IBD and
diabetes on the heterogeneity, which is of important ramifications for the diagnosis and
treatment of human microbiome-associated diseases.

Keywords: metagenome ecology, metagenomic gene abundance (MGA) table, Taylor’s power law, power law
extensions, metagenome spatial heterogeneity, metagenome functional gene cluster (MFGC), medical ecology
of metagenome

INTRODUCTION

Understanding the microbiome or “the biome of microbes”
usually starts with cataloging the list of OTUs (operational
taxonomic units) and tabulating their abundance distribution,
leading to the so-termed OTU table. The OTU table has a
counterpart in macrobial ecology of plants and animals, known
as species abundance distribution (SAD). The recognition of
the equivalence between OTU table (or OTU distribution)
and SAD has greatly facilitated the infiltration of macrobial
ecology theories into microbial ecology. The translation and
testing of the ecological theories originated in macrobial
ecology with microbiome datasets also lead to the ongoing
development of a unified or inclusive ecology of plants,
animals and microbes. Of course, OTU tables, which are
usually obtained through amplicon sequencing of marker
genes (e.g., 16S-rRNA for bacteria or 18S-rRNA for fungi),
are not sufficient for understanding microbiome. For this
reason, scientists investigate the metagenome (i.e., the total
genomes of all microbes in a microbiome) by using the
whole-genome or metagenome shotgun (MGS) sequencing
technology. The output from the MGS sequencing technology
is the metagenomic gene abundance (MGA) table, which is
rather similar to the OTU table, given that both are the
abundance of genes (i.e., 16S-rRNA gene vs. regular genes).
Nevertheless, there is an essential difference between the
OTU table and MGA table: the OTU table carries taxonomic
information, but MGA table carries genetic or gene information.
The former has been a de fact standard entity in ecological
analyses of the microbiome datasets, and the latter has been
mostly used in genetic and evolutionary analyses. In existing
metagenomic research, however, few ecological analyses have
been performed with MGA data. We argue that the ecological
analysis of metagenomic MGA, or “the ecology of metagenome,”
is an emerging field where ecological theories should play
a critical role.

The similarity between OTU and MGA tables is far from
superficial. The familiar OTU table is a matrix of OTU reads
that capture the species abundance distribution (SAD) of all
species in N microbial communities (e.g., N microbiome samples
from N individuals, spatial sites or time-points of an individual),
with each row corresponding to the SAD of each species, which
is simply the frequency distribution (relative abundance) of an
OTU across N samples. Together, an OTU table represents a
meta-community or ecosystem (when meta-factors were added
as special columns) in terms of species abundance distribution,
including both taxonomic identities and their population

abundances in the system. Various ecological analyses (theories
and models) such as diversity analysis, power law, diversity-
area relationship (DAR), neutral theory and network analyses
have been conducted with OTU tables, to reveal important
insights on the structure, dynamics and functions of microbiomes
(e.g., Costello et al., 2012; Lozupone et al., 2012; Hanson et al.,
2012; Human Microbiome Project Consortium [HMP], 2012;
Barberaìn et al., 2014; Ma, 2015, 2018, 2019; Ma and Li, 2018,
2019; Li and Ma, 2019; Ma and Ellison, 2019; Ma et al.,
2019). These analyses have become a de facto standard for 16S-
rRNA based (amplicon-sequencing based) microbiome research.
However, few such analyses have been applied to MGA tables.

Conceptually, if we conceive the metagenomic genes as “gene
species,” then these gene species or genes (we use both the
terms interchangeably hereafter) constitute “a community of
gene species,” which is essentially the concept of metagenome.
Each metagenome constitutes one row of a MGA table.
In other words, a MGA table consists of multiple (N)
metagenomes, corresponding to N metagenome samples, and
a MGA table can be considered as an assemblage or meta-
community of metagenomes. Here we coin the term “assemblage
of metagenomes” (=metagenome assemblage) or “assemblage”
(when no confusion occurs) to represent “metacommunity of
metagenomes” or ‘meta-metagenome’ and also to avoid the
double prefix of ‘meta-’. Therefore, a MGA table represents an
assemblage of metagenomes, consisting of N metagenomes, e.g.,
from N individuals (or samples). When meta-factors (such as
host physiology) are added to a MGA table, then the MGA table
describes an “ecosystem of metagenomes.” With such conceiving,
we argue that ecological and network analyses can be harnessed
to investigate important problems in metagenome research
such as diversity (Ma and Li, 2018), heterogeneity, functional
redundancy, mechanisms of diversity maintenance, inter-gene
interactions, and dynamics of metagenomes. In a previous study,
we successfully demonstrated the application of Hill numbers
for measuring metagenome diversity and similarity (Ma and Li,
2018). In this study, we demonstrate the application of Taylor’s
power law (Taylor, 1961, 1984; Taylor and Taylor, 1977) and its
recent extensions to community ecology (Ma, 2015) to assess and
interpret the heterogeneity of metagenome assemblage.

According to Li and Reynolds (1995) heterogeneity can
be defined based on two components: the system property
of interests and its complexity or variability. They defined
heterogeneity as “the complexity and/or variability of a system
property in space and/or time” (Li and Reynolds, 1995).
To some extent, considering heterogeneity as the other side
of evenness coin or as a proxy of biodiversity is not
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unreasonable. However, if we look into its usage in population
ecology, specifically in the studies on the population spatial
distribution of animal or plants, we may quickly recognize
one significant difference in community heterogeneity and
community diversity. That is, the former is either explicitly
or implicitly associated with certain spatial elements, but
the latter is not, arguably, beta-diversity is an exception. In
addition, heterogeneity is a “group” property in the sense that
comparing heterogeneity generally requires at least two entities.
As a side note, the heterogeneity in time (states) or temporal
heterogeneity is similar to (temporal) stability (Ma, 2015) and
is not a topic of this study. In the following, we use the
term heterogeneity to refer to spatial heterogeneity whenever
confusion is unlikely.

In the following, we demonstrate the assessment and
interpretation of the metagenomic heterogeneity of human gut
microbiome at whole metagenome scale with type-I power
law extension (PLE) and metagenomic gene scale (type-III
PLE), as well as the heterogeneity of functional gene clusters,
respectively. Here, the term spatial can be applied to different
individuals or different microbiome habitats of an individual
in the case of human microbiomes, or samples from different
habitats in the case of general environmental metagenomes.
Furthermore, we also investigate the influence of three common
microbiome associated diseases (obesity, diabetes, and IBD) on
the metagenomic spatial heterogeneity in human gut systems.

CONCEPTS AND DEFINITIONS

One of the most important findings that the Human Microbiome
Project Consortium [HMP] (human microbiome project) has
revealed is the enormous inter-subject difference or heterogeneity
among individual subjects. However, much of the evidence
supporting the notion of personalized microbiome comes from
16S-rRNA datasets. This is because the OTU tables generated
from 16S-rRNA sequencing are inherently more submissive to
ecological analyses than the MGA tables generated from the
whole-genome metagenomic sequencing are. Indeed, compared
with the analysis of 16S-rRNA OTU tables, the applications
of ecological theories (laws) to the metagenome MGA data
analysis have been much fewer. Here, we propose to introduce
Taylor’s power law (Taylor, 1961, 1984, 2007; Taylor and Taylor,
1977; Taylor et al., 1983, 1988) and its recent extensions
(Ma, 2015; Oh et al., 2016) to the ecological community,
for assessing and interpreting the spatial (or inter-subject)
heterogeneity within the metagenome assemblage represented
by a MGA table. Figure 1 below shows the flowchart of
various ecological and bioinformatics analyses involved in
the present study.

Taylor’s (1961) power law, describing the scaling relationship
between the population mean abundance (m) and its
variance (V) over space (i.e., V = amb), is one of few well
recognized ecological laws in population ecology, and it offers
a powerful mathematical tool to measure the spatial aggregation
(heterogeneity). Its power law scaling parameter (b) often

FIGURE 1 | Showing the flowchart of analyzing the microbiome heterogeneity
from ecological, taxonomical, functional and evolutionary perspective in terms
of various scales [OTU, MG (metagenomic gene), MFGC (metagenome
functional gene clusters), MF/MP (metagenomic function/pathway) with the
power law extensions (PLEs)]. The right side and framed in red color are newly
introduced in the present study. See the Online Supplementary Information
(OSI) for the R-Scripts implementing the PLE analysis and randomization tests.

embodies rich ecological and evolutionary insights about
specie abundance and distribution over space or time across
different environments (Taylor, 1961, 1984, 2007; Taylor and
Taylor, 1977; Taylor et al., 1983, 1988). Since its discovery
more than a half century ago (Taylor, 1961), Taylor’s power
law has been the target of numerous field tests and theoretical
analyses, especially in macrobial ecology of plants and animals.
In particular, a resurgence of theoretical investigation and
extensions to even wider applications in many fields of science
and technology, particularly inter-disciplinary studies, has
been ongoing in the last few years (e.g., Reuman et al., 2009,
2014, 2017; Cohen et al., 2012, 2013; Ma, 2012, 2015; Stumpf
and Porter, 2012; Wearn et al., 2013; Cohen, 2014; Zhang
et al., 2014; Cohen and Xu, 2015; Cohen and Saitoh, 2016; Oh
et al., 2016; Tippett and Cohen, 2016; Quist et al., 2017). In a
previous study (Ma, 2015), we extended the original Taylor’s
(1961) power law from population to community level and
tested four power law extensions (PLEs) with the 16s-rRNA
amplicon-sequencing datasets of the microbial communities
from the human microbiome project (Human Microbiome
Project Consortium [HMP]). Among the four PLEs introduced
by Ma (2015), Type-I and Type-III PLEs can quantify the
community (level) spatial heterogeneity and mixed-species
(level) spatial heterogeneity, respectively. Type-II and Type-IV
were proposed to assess the community temporal stability and
mixed-species temporal stability, respectively, but this study
does not implicate them since both Type-II and IV require
time-series data, for which we did not get sufficiently large
datasets, but they should still be applicable for measuring the
metagenome stability.
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PLE-I (Type-I Power Law Extension) for
Measuring Metagenome Spatial
Heterogeneity
Similar to the PLE-I for measuring community spatial
heterogeneity (Ma, 2015), we propose to use the following
mean-variance power function for measuring the metagenome
spatial heterogeneity of a metagenome assemblage (or
meta-metagenome, as explained previously):

Vs = amb
s s = 1, 2, . . . , S (1)

where ms is the mean of gene abundances of all genes (species)
(G) in the metagenome of an individual subject (s = 1, 2, . . .S),
Vs is the corresponding variance, S is the number of subjects, and
G is the number of genes contained in the metagenomes of the S
subjects. Note ms is the mean gene abundance per gene species,
not per subject, which is different from the case in PLE-III (type-
III power law extension) introduced below. In addition, the fitting
of Eqn. (1) is performed with S data points, i.e., across S individual
subjects (or S metagenomes), rather than across genes, as in the
case of PLE-III below.

The parameter b describes the fractional scaling of V-m
relationship statistically, or the metagenome spatial heterogeneity
biologically. When b = 1, the heterogeneity is random,
which means that the heterogeneity—the inter-subject difference
in their gene abundance distribution—is essentially random,
statistically follows Poisson distribution. When b > 1, the inter-
subject heterogeneity is non-random and follows highly skewed
long-tail distribution (such as the power law distribution). When
b < 1, the inter-subject heterogeneity in their metagenome is
fixed, or follows the uniform statistical distribution. From field
studies in ecology, the cases when b = 1 or b < 1 are extremely rare
in real world and usually only exist theoretically (Taylor, 1961,
1984). We term a metagenome assemblage (i.e., an assemblage of
metagenomes) with b = 1 random metagenome (strictly speaking,
metagenome assemblage), b < 1, homogenous metagenome, and
b > 1, heterogeneous metagenome.

Parameter a in Eqn. (1) is meanwhile related to sampling
related factors such as sampling unit or sequencing platforms, but
is little influenced by biological interactions. Hence, we generally
do not attempt to draw biological interpretations from parameter
a due to the strong influence from sampling. It is noted that
parameter a also has the same interpretation in PLE-III below.

We further define critical diversity of metagenome
heterogeneity (CDMH) or m0 as:

m0 = exp[ln(a)/(1− b)] (b 6= 1) (2)

where a and b are PLE-I parameters from eqn. (1). The
CDMH or m0 is the mean gene abundance level (per
gene species) at which metagenome spatial heterogeneity
is random, and across which the heterogeneity transits to
either heterogeneous (when m > m0) or regular (uniform
or fixed) (when m < m0). Since the mean gene abundance,
although termed abundance, is essentially a measure of gene
diversity (i.e., the mean abundance of various gene species
in a metagenome), we used the term critical diversity of

metagenome heterogeneity, rather than using the term “critical
abundance.” The latter is indeed used in the next section for
PLE-III, which is the average of single gene abundances from
various individuals and consequently the term abundance is
more appropriate.

PLE-III (Type-III Power Law Extension)
for Measuring Gene-Level Spatial
Heterogeneity
Similar to the PLE-III for measuring mixed-species spatial
heterogeneity in Ma (2015), we propose to use the following
mean-variance power function for measuring the gene-level
(inter-gene, or mixed-gene) spatial heterogeneity:

Vg = amb
g g = 1, 2, . . . , G (3)

where mg is the mean abundance of g-th gene, averaged across
S subjects (g = 1, 2, . . .G), Vg is the corresponding variance,
and G is the number of gene kinds (gene species), and S is the
number of individual subjects sampled. Note mg is the mean gene
abundance of the g-th gene species per subject (not per gene),
which is opposite from the case in the previously introduced PLE-
I for measuring metagenome spatial heterogeneity. In addition,
the fitting of Eqn. (3) is performed with G data points, i.e., across
all G gene species, rather than across S subjects, as in the case of
the previous PLE-I.

Note that the notion of “mixed-gene” is similar to the concept
of mixed-species population in the original Taylor’s power law
(Taylor and Woiwod, 1982; Taylor, 1984). It refers to a virtually
“averaged assemblage” of genes, in which the identities or kinds
of different genes were ignored. The m-V pairs are regressed (see
below, through log-linear transformation into linear regression)
across multiple gene species (millions in the case of this study)
in a mixture manner. Given that the notion of gene species is not
widely used in metagenomic research, we suggest using the term
gene-level or inter-gene heterogeneity, rather than mixed-gene
heterogeneity in the context of PLE-III.

When b = 1, the heterogeneity among metagenomic genes in
terms of their gene abundance distributions should be random,
i.e., all genes in the metagenome are equivalent to each other in
terms of their abundance distribution, similar to the neutrality
assumption in the neutral theory of biodiversity. When b < 1,
the heterogeneity or difference among genes, if any, should be
fixed, or follow a uniform distribution statistically. Both the cases
of b = 1 or b < 1 should be extremely rare in real world, and are
mostly theoretical possibilities. In practice, b > 1 should be the
norm rather than the exception for metagenome heterogeneity
at the gene-level. When b > 1, we say the metagenome is
heterogeneous or aggregated in terms of its gene-level or inter-
gene heterogeneity.

We further define critical abundance of gene-level
heterogeneity (CAGH) or m0 as:

m0 = exp[ln(a)/(1− b)] (b 6= 1) (4)

where a and b are PLE-III parameters from eqn. (3). The CAGH
or m0 is the mean gene abundance level (per individual or
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sample) at which gene-level spatial heterogeneity is random, and
across which the heterogeneity transits to either heterogeneous
(when m > m0) or regular (uniform or fixed) (when m < m0).

Statistical Fitting of PLE-I or PLE-III
To fit the power law, including PLE-I and PLE-III, the most
commonly used approach is to transform the power law model
[eqn. (1) or (3)] into the following linear function:

ln(V) = ln(a)+ b ln(m) (5)

where all the variables (m, V) and parameters (a, b) have the
exactly same interpretations as those in eqn. (1) or eqn. (3).
Standard linear regression procedure can be applied to fit the
model. In fact, there is an advantage for adopting the simple
linear transformed regression approach, which is related to an
important property of power law, scale-invariance. This property
makes parameter a less relevant for determining the most
important parameter of power law, i.e., the scaling parameter
b (Ma, 2015). It is for this reason that we choose the simple
linear regression approach for fitting all the power law models.
This allows us to focus on the scaling parameter (b) for assessing
and interpreting the metagenome heterogeneity revealed by the
metagenomic sequencing data.

As a side note, we may define metagenome temporal stability
with Type-II PLE or gene-level temporal stability with Type-IV
PLE, similar to Ma (2015) for community temporal stability
or mixed-species temporal stability, but their demonstrations
require time-series MGA data obtained with metagenomic
(whole-genome or shotgun) sequencing technologies. We failed
to find sufficiently long time-series MGA data to demonstrate the
PLE-II or PLE-IV models and won’t further discuss the temporal
versions of the PLE in this study (Nielsen et al., 2014).

Bioinformatics Analysis of Metagenomic
Sequencing Data
To fit the power law model, one has to first compute MGA tables
from metagenomic sequencing raw reads (also known as shotgun
or whole-genome sequencing) by using standard bioinformatics
software pipelines (e.g., Li and Godzik, 2006; Qin et al., 2010,
2012; Zhu et al., 2010; Chatelier et al., 2013; Li et al., 2014; Xiao
et al., 2015, 2016; Wang and Jia, 2016; Sczyrba et al., 2017; Ma and
Li, 2018).

Millions of contigs are obtained through the metagenome
assembly step. Those millions of contigs are fed into gene
prediction software and the latter generate a list of non-redundant
genes based on the criteria set by ORFs (open reading frames).
We term those non-redundant genes as metagenomic genes
(MGs) or simple genes. MG embodies single-gene-level genetic
information, and its number in a typical metagenome sample is
in the magnitude of millions (Ma and Li, 2018). The previously
defined MGA table is actually the table of MGs.

Directly characterizing or summarizing information from the
millions of MGs or MGA tables can be rather challenging.
An alternative research strategy is to first group those millions
of genes (MGs) into functional gene clusters, and then
investigate the properties of the functional gene clusters. There

are mature bioinformatics algorithms and software pipelines
to cluster the millions of MGs into hundreds of MFGCs
(metagenome functional gene clusters), and the magnitude
of MFGC numbers (hundreds) is much small that that of
the MGs (millions) (Ma and Li, 2018). Obviously, the huge
reduction in the magnitudes from MGs (millions) to MFGCs
(hundreds) should make our measuring metagenomic spatial
heterogeneity simpler.

DEMONSTRATION AND DISCUSSION

The Datasets of Metagenomes
We collected three gut metagenome datasets from public
domain including, 264 stool samples from overweight and
lean individuals (Qin et al., 2010; Chatelier et al., 2013),
145 stool samples from type-2 diabetes and healthy controls
(Qin et al., 2012), and 219 stool samples from IBD patients
and healthy controls. A total of 628 metagenome samples
with their metagenomic gene (MG) catalog and the gene
abundance (MGA) tables for each dataset were computed with
standard metagenomic analysis pipelines (e.g., Li and Godzik,
2006; Qin et al., 2010, 2012; Zhu et al., 2010; Chatelier
et al., 2013; Li et al., 2014; Xiao et al., 2015, 2016; Wang
and Jia, 2016; Sczyrba et al., 2017). Furthermore, we defined
metagenome functional gene clusters (MFGC) based on Ma and
Li (2018) and obtained their abundance tables. Supplementary
Table S1 showed more detailed information about the three
datasets we use in this paper for demonstrating the application
of the power law.

Specifically, after whole-genome (shotgun) sequencing of a
metagenome sample, sequencing reads from the fecal samples
were processed for quality control, removal of human sequences,
assembling, assembly revision and gene prediction by using
MOCAT pipeline (Kultima et al., 2012). This pipeline consists of a
series of software packages, which can process metagenomes in a
standardized and automated manner while improving the quality
of assembly and gene prediction at run time. In the pipeline,
FASTX Toolkit1 was used for quality control; SOAPaligner2 (Li
et al., 2009) for identifying human sequences; SOAPdenovo v1.06
(Li et al., 2010) for assembling; MetaGeneMark (Zhu et al., 2010)
for gene prediction; CD-HIT (Li and Godzik, 2006) for clustering
genes in each cohort.

The details of the data/software/parameters used to compute
the MGA tables can be found in the online method of
Li et al. (2014). In fact, the MGA tables are available
online at: http://meta.genomics.cn/meta/dataTools. Li et al.
(2014) annotated the metagenomic genes according to the
“Kyoto Encyclopedia of Genes and Genomes” (KEGG) and the
“evolutionary genealogy of genes non-supervised orthologous
groups” (eggNOG) databases. They further identified a total of
6,980 KEGG orthologous groups (KOs) and 36,489 eggNOG
orthologous groups, accounting for 51.6 and 69.3% of the total
sequencing reads.

1http://hannonlab.cshl.edu/fastx_toolkit/

Frontiers in Microbiology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 648

http://meta.genomics.cn/meta/dataTools
http://hannonlab.cshl.edu/fastx_toolkit/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00648 May 4, 2020 Time: 17:38 # 6

Ma Heterogeneity of Human Gut Metagenome

TABLE 1 | The parameters of PLE-I (type-I power law extension) for metagenome spatial heterogeneity, in terms of the MGA (metagenomic gene abundance).

Power Law Extension (PLE) Case study Treatment b SE(b) ln(a) SE[ln(a)] m0 R p-value N

Type-I PLE for Metagenome Spatial Heterogeneity with MGA Obesity Lean 2.012 0.113 3.740 0.337 0.025 0.878 <0.001 95

Overweight 3.447 0.158 −1.204 0.532 1.636 0.914 <0.001 96

Type-II Diabetes Healthy 3.232 0.210 −0.529 0.650 1.267 0.876 <0.001 74

Disease 1.846 0.143 3.982 0.447 0.009 0.840 <0.001 71

IBD Healthy 1.385 0.079 5.365 0.266 0.000 0.903 <0.001 71

Disease 2.248 0.227 2.754 0.761 0.110 0.766 <0.001 71

In the online Supplementary Information (OSI), the
R-Scripts for implementing the power law analysis and
randomization tests for determining the differences in the PLE
parameters are provided.

Metagenome Spatial Heterogeneity in
Terms of the MGA (Metagenomic Gene
Abundance) Spatial (Inter-Subject)
Distribution Measured With PLE-I
We first fitted PLE-I (type-I power law extension) with
metagenomic gene abundance (MGA) datasets directly in order
to measure the metagenome spatial (inter-subject) heterogeneity
for each treatment (group) of the three datasets, and the results
were listed in Table 1, from which we summarize the following
findings:

(i) PLE-I fitted to all three datasets extremely well with
p-value < 0.0001. This indicates the ubiquitous applicability
of the PLE for assessing the metagenome spatial (i.e., inter-
subject) heterogeneity of either MGA (this section) or
MFGC (the next section).

(ii) The scaling parameter (b) of PLE-I for the most treatments
is between 2 and 4 except for the two treatments (diseased
treatment in the diabetes study, and the healthy treatment
in the IBD study), and the parameter (b) varied significantly
between the treatments with a range of [1.385, 3.447].

(iii) The values of the scaling parameter (b) for the healthy
samples (group) and diseased samples (group) were
significantly different (p-value < 0.05), in all three
case studies (obesity, diabetes and IBD). Therefore,
we conclude that PLE-I can be harnessed to measure
the metagenome spatial heterogeneity in terms of gene

TABLE 2 | The p-value of the randomization test for the difference between the
healthy and diseased treatments in their metagenome spatial heterogeneities
parameters of PLE-I.

Power Law Extension
(PLE)

Case
Study

Treatments b ln(a) m0

Type-I PLE for
Metagenome Spatial
Heterogeneity with MGA

Obesity Lean vs.
Overweight

<0.001 <0.001 <0.001

Type-2
diabetes

Healthy vs.
Disease

0.044 0.038 0.044

IBD Healthy vs.
Disease

0.021 0.043 0.015

abundance distribution. Furthermore, it has a potential
being a discriminant metric for distinguishing between
the healthy and diseased metagenome samples, as revealed
in Table 2 (p-value < 0.05), in which randomization
test (Collingridge, 2013) with 1000 times of re-sampling
was utilized to test the difference in the b-value between
the healthy and diseased treatments. Figure 2 shows the
fitted power law models for the obesity case study, i.e.,
one straight line for the lean group and another for the
overweight group.

The metagenome spatial heterogeneity is the counterpart
of community spatial heterogeneity in community ecology,
and it measures the spatial heterogeneity of metagenomes of
individual subjects or inter-subject metagenome heterogeneity in
a population (or cohort), similar to measuring the heterogeneity
among spatially explicit local communities in community
ecology (Ma, 2015). With our newly coined term of metagenome
assemblage, parameter b measures the heterogeneity of
metagenome assemblage represented by a MGA table. The higher
b-value of PLE-I represents greater heterogeneity (unevenness or
diversity) among individuals in their metagenomes in terms of
their gene abundance distributions. When b = 1, it implies that
the differences among individuals are random. When b < 1, it
implies that the differences among individuals follow uniform
distribution statistically (i.e., a fixed difference).

FIGURE 2 | The PLE-I (type-I power law extension) models fitted for the
obesity case study.
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Gene-Level (or Inter-Gene) Spatial
Heterogeneity in Terms of the MGA
(Metagenomic Gene Abundance)
Distribution Measured With PLE-III
We also fitted the PLE-III (type-III power law extension) with
metagenomic gene abundance (MGA) datasets directly in order
to measure the gene-level or mixed-gene spatial heterogeneity for
each of the 3 datasets, and the results were listed in Table 3 below.
It was shows that:

(i) The PLE-III fitted to all 3 datasets extremely significant
with p-value < 0.0001, and the standard errors of
the model parameters were close to zero. The linear
correlation coefficients were between 0.949 and 0.961. All
the criteria indicate that the goodness-of-fitting to PLE-III
was extremely well given millions of data points were fitted.

(ii) The parameter b of PLE-III for all the treatments fall
in a rather narrow range of [2.340, 2.466]. Therefore,
we conclude that PLE-III can be harnessed to measure
the gene-level spatial heterogeneity in terms of the
gene abundance distribution, but its application for
discriminating the healthy and diseased samples is of
limited value given its insensitivity to host factors such as
diseases. Figure 3 shows the fitted PLE-III with the dataset
from the obesity study.

Taylor’s power law has been tested with hundreds, if not
thousands, of field studies and many theoretical examinations
(Taylor, 1961, 1981, 1984, 2007; Taylor et al., 1983, 1988; Ma,
1991, 2012, 2013, 2015, 2018; Reuman et al., 2009, 2014, 2017;
Stumpf and Porter, 2012; Cohen and Xu, 2015; Tippett and
Cohen, 2016; Quist et al., 2017). However, to the best of our
knowledge, the tests exhibited in Table 3 should be the cases that
have used the biggest numbers of data points (the column N in
Table 3) to fit the power law model, since it was first discovered
more than a half century ago. For example, in the case of obesity
study, for each of the two treatments (lean vs. overweight), more
than five million genes were used to fit PLE-III model. This shows
the exceptional robustness of the power law model.

The PLE-III for measuring the gene-level or mixed-gene
spatial heterogeneity is the counterpart of mixed-species spatial
aggregation in community ecology (Ma, 2015). The term
aggregation is often used in population ecology, and it is
the counterpart of heterogeneity in community ecology. As
explained previously, the term mixed-gene setting assumes that

FIGURE 3 | The PLE-III (type-III power law extension) models fitted to the
obesity study datasets: more than 10 million points (5407291 lean
group + 5134721 overweight) were used to fit the PLE-III models, but here we
only randomly selected 100,000 points (50,000 from each treatment) to draw
the graphs (so as to accommodate the file size of the figure).

we ignore the identities of individual genes, and what is
measured is the aggregation (unevenness or heterogeneity) of
an average gene species. We suggest using the term “gene-level
spatial heterogeneity” for what is measured with the PLE-III in
metagenomic research.

Metagenome Spatial Heterogeneity in
Terms of the MFGC (Metagenome
Functional Gene Cluster) Distribution
Measured With PLE-I
According to Ma and Li (2018), the term MFGC (metegenome
functional gene cluster) refers to cluster of functionally similar
or same genes, generated from functional annotation or gene
annotation through online mapping to functional databases such
as KEGG (for metabolic pathways) and eggNOG (for protein
functions). Hence, MFGC is purely functionality-based and is
mostly cross-species. One of its unique advantages is that it
embodies the functional redundancy in microbiome very well.
The difference between Type-I MFGC (MFGC-I) and Type-
II MFGC (MFGC-II) lies in their differences in handling the
genes within each cluster. In MFGC-I, only the number of gene
species (kinds) is counted but the abundance of individual gene
is ignored. In MGGC-II, both the number of gene species (kinds)
and the abundance of each gene matter in the analysis. In other

TABLE 3 | The parameters of PLE-III (type-III power law extension) for measuring gene-level (inter-gene) spatial aggregation, in terms of the metagenomic gene
abundance (MGA).

Power Law Extension (PLE) Case study Treatment b SE(b) ln(a) SE[ln(a)] m0 R p-value N

Type-III PLE for Gene-Level Spatial
Heterogeneity with MGA

Obesity Lean 2.371 0.000 −0.732 0.001 1.706 0.961 <0.001 5407291

Overweight 2.363 0.000 −0.744 0.001 1.726 0.961 <0.001 5134721

Type-II Diabetes Healthy 2.340 0.000 −0.842 0.001 1.875 0.954 <0.001 4573927

Disease 2.338 0.000 −0.791 0.001 1.806 0.949 <0.001 4432814

IBD Healthy 2.466 0.000 −1.000 0.001 1.978 0.961 <0.001 2898618

Disease 2.351 0.000 −0.791 0.001 1.796 0.957 <0.001 4462890
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words, with MFGC-I, we only care the number of gene species
(kinds), and with MFGC-II we care both the number of gene
species (kinds) and the abundance of each gene within each
cluster. This treatment is very similar to a common practice in
community ecology, where a simplified measure for biodiversity
is to only count the number of species (also known as species
richness), and a more comprehensive measure of biodiversity
uses more sophisticated entropy such as Shannon entropy, which
consider both species richness and abundances.

In the previous section, we conducted power law analysis
in terms of the metagenomic gene (MG) or metagenomic gene
abundance (MGA) distribution. In this section, our analysis is
performed in terms of the metagenome functional gene cluster
(MFGC). That is, using the MFGC abundance tables (similar to
MGA or OTU tables, except that the entity is the MFGC) to
fit the PLE models.

The results of fitting the PLE-I with MFGC tables were listed
in Table 4, from which we can observe the following findings:

(i) The PLE-I model fitted to the MFGC abundances extremely
well (significant with p-value < 0.0001), and this indicates
the ubiquitous applicability of the PLE for assessing the
metagenome spatial (i.e., inter-subject) heterogeneity of
either MFGCs (this section) or MG (previous section).

(ii) MFGC-I and MFGC-II exhibited slightly different scaling
parameter (b) values. The scaling parameter b of PLE-I
ranged [2.027, 2.138] for MFGC-I and [1.715, 1.988]
for MFGC-II, indicating that the MFGC-I has a higher

heterogeneity degree. This difference should be due to their
definitional difference: MFGC-I ignored the information of
individual gene abundances, only taking into account the
number of gene species (kinds), or gene richness. Obviously,
ignoring the gene abundance information should lead to
larger heterogeneity (difference), which explains why the
PLE-I parameter b of MFGC-I was slightly higher (b > 2),
while that of MFGC-II was lower (b < 2). Furthermore,
MFGC-II should better embody functional redundancy
information given that it considers both gene species (kinds
or richness) and abundances.

(iii) Although MFGC-I and MFGC-II displayed slightly
different ranges in their parameter b, the b-values from
two databases (eggNOG and KEGG) within each MFGC
type were rather close with each other and the difference
was negligible. This simply indicates that the heterogeneity
scaling based on metabolic pathways (KEGG database) or
protein functions (eggNOG) makes little difference. This
should be expected given that, at the MFGC level, both
eggNOG and KEGG should be controlled by the same
underlying gene-level mechanisms.

(iv) As shown in Table 5, in terms of the parameter changes
associated with diseases, only IBD treatment displayed
significant difference from its healthy control in MFGC-I,
and the other diseases treatments did not exhibit any
significant differences from their healthy controls. This
result suggests that at the MFGC level, the metagenome
spatial heterogeneity is less sensitive to diseases than at the

TABLE 4 | The parameters of PLE-I (type-I power law extension) for metagenome spatial heterogeneity, in terms of the MFGC (metagenome functional gene
cluster) distribution.

Type of MFGC and database used Microbiome Treatment b SE(b) ln(a) SE[ln(a)] R p-value N m0

Type-I MFGC (eggNOG) Obesity Lean 2.119 0.020 3.187 0.157 0.996 <0.0001 95 0.058

Overweight 2.028 0.017 3.895 0.135 0.997 <0.0001 96 0.023

Type 2 diabetes Healthy 2.058 0.025 3.501 0.180 0.995 <0.0001 74 0.037

Disease 2.057 0.018 3.480 0.126 0.997 <0.0001 71 0.037

IBD Healthy 2.053 0.017 3.690 0.136 0.998 <0.0001 71 0.030

Disease 2.138 0.021 3.014 0.159 0.997 <0.0001 71 0.071

MFGC Type-I (KEGG) Obesity Lean 2.091 0.015 3.505 0.123 0.998 <0.0001 95 0.040

Overweight 2.027 0.014 4.008 0.109 0.998 <0.0001 96 0.020

Type-II diabetes Healthy 2.035 0.020 3.772 0.150 0.997 <0.0001 74 0.026

Disease 2.036 0.014 3.794 0.106 0.998 <0.0001 71 0.026

IBD Healthy 2.042 0.013 3.888 0.104 0.999 <0.0001 71 0.024

Disease 2.111 0.016 3.292 0.130 0.998 <0.0001 71 0.052

MFGC Type-II (eggNOG) Obesity Lean 1.884 0.021 4.912 0.223 0.995 <0.0001 95 0.004

Overweight 1.859 0.019 5.212 0.208 0.995 <0.0001 96 0.002

Type-II diabetes Healthy 1.783 0.059 5.771 0.614 0.962 <0.0001 74 0.001

Disease 1.715 0.091 6.461 0.937 0.915 <0.0001 71 0.000

IBD Healthy 1.967 0.024 3.992 0.260 0.995 <0.0001 71 0.016

Disease 1.937 0.021 4.295 0.232 0.996 <0.0001 71 0.010

MFGC Type-II (KEGG) Obesity Lean 1.915 0.017 4.834 0.197 0.996 <0.0001 95 0.005

Overweight 1.889 0.016 5.136 0.178 0.997 <0.0001 96 0.003

Type-II diabetes Healthy 1.830 0.054 5.572 0.577 0.970 <0.0001 74 0.001

Disease 1.806 0.078 5.856 0.831 0.942 <0.0001 71 0.001

IBD Healthy 1.988 0.021 3.997 0.234 0.996 <0.0001 71 0.017

Disease 1.961 0.018 4.257 0.201 0.997 <0.0001 71 0.012
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TABLE 5 | The p-value of the randomization test for the difference between the healthy and diseased treatments in their PLE-I (type-I power law extension) parameters in
terms of the MFGC.

MFGC Type and Databases used Microbiome Treatments b ln(a) m0

MFGC Type-I (eggNOG) Obesity Lean vs. Overweight 0.347 0.345 0.348

Type 2 diabetes Healthy vs. Disease 0.985 0.937 0.965

IBD Healthy vs. Disease 0.039 0.033 0.059

MFGC Type-I (KEGG) Obesity Lean vs. Overweight 0.442 0.465 0.444

Type 2 diabetes Healthy vs. Disease 0.987 0.913 0.947

IBD Healthy vs. Disease 0.018 0.012 0.025

MFGC Type-II (eggNOG) Obesity Lean vs. Overweight 0.421 0.388 0.432

Type 2 diabetes Healthy vs. Disease 0.551 0.556 0.597

IBD Healthy vs. Disease 0.330 0.370 0.375

MFGC Type-II (KEGG) Obesity Lean vs. Overweight 0.361 0.337 0.382

Type 2 diabetes Healthy vs. Disease 0.781 0.771 0.787

IBD Healthy vs. Disease 0.370 0.427 0.418

TABLE 6 | The p-value of Wilcoxon tests for the difference between the healthy and diseased treatments in their metagenome spatial heterogeneities and community
dominance (also see Supplementary Figure S1A for the V/M heterogeneity index and Supplementary Figure S1B for the community dominance index).

Taylor’s Power Law Extension (TPLE) Case Study Treatments Mean of Healthy Mean of Diseased P-value

Variance/mean-ratio heterogeneity Index (V/m) Obesity Lean vs. Overweight 886.50 1129.0 <0.001

Type-2 Diabetes Healthy vs. Disease 594.10 761.10 <0.001

IBD Healthy vs. Disease 786.70 1064.4 <0.001

Community dominance Index (M∗/m) Obesity Lean vs. Overweight 45.717 39.910 <0.001

Type-2 Diabetes Healthy vs. Disease 27.766 34.444 <0.001

IBD Healthy vs. Disease 28.419 37.765 <0.001

MG level, as indicated by the randomization test results
in Table 2.

MFGC-Level (Inter-MFGC) Spatial
Heterogeneity in Terms of the MFGC
(Metagenome Functional Gene Cluster)
Distribution Measured With PLE-III
In the previous section, we investigated the spatial heterogeneity
of MFGC by using the PLE-I (type-I power law extension)
modeling. That is to analyze the inter-subject heterogeneity of
their metagenomes in terms of the functional gene cluster (i.e.,
MFGC). In this section, we investigate the spatial heterogeneity at
the MFGC-level by using PLE-III (type-III power law extension).
In other words, by assuming that there exists an average MFGC
in a mixed-MFGC setting (by ignoring the difference among
MFGCs), we assess the heterogeneity of MFGCs at the average
MFGC level. Therefore, a fundamental difference between the
analysis here and the analysis in the previous section is that here,
the heterogeneity is measured in terms of a virtually averaged
MFGC (or at MFGC-level), while in the previous section, the
heterogeneity was measured in terms of the whole metagenome
(or at metagenome level).

To save page space, the results for MFGC-level spatial
heterogeneity were listed in Supplementary Table S2 in the
OSI (online Supplementary Information), from which we
summarize the following findings:

(i) The PLE-III model fitted to the MFGC tables extremely
significant with p-value < 0.0001 in all three case studies,

and this indicates the ubiquitous applicability of the PLE
for assessing the spatial (i.e., inter-subject) heterogeneity of
an ‘averaged’ MFGC.

(ii) The scaling parameter (b) of the PLE-III model ranged
narrowly [1.472, 1.654], and varied little either between the
MFGC-I and MFGC-II or between the healthy and diseased
treatments within each case study. This suggests that, the
sensitivity of the scaling parameter (b) of PLE-III to host
factors such as diseases is rather muted, and consequently
may be of limited practical applications.

(iii) Contrary with the pattern of PLE-I in the previous section,
where MFGC-I has slightly larger scaling parameter (b)
value than MFGC-II has, here MFGC-I [1,472, 1.547] has
slightly smaller b-value than MFGC-II [1.525, 1.654] does.

(iv) The scaling parameter (b) of PLE-III, estimated with KEGG
or eggNOG showed little differences, similar with the
previous PLE-I model.

(v) We also performed the randomization tests for the PLE-III
parameters (Supplementary Table S3). In most cases, the
model parameters did not showed significant differences
between the healthy and diseased treatments.

CONCLUSION AND DISCUSSION

In previous sections, we demonstrated that PLE-I and PLE-III,
originally designed to measure community spatial heterogeneity
and mixed-species population spatial aggregation in community
ecology (Taylor, 1961, 1984; Ma, 2015), can be introduced
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to (i) measure metagenome spatial heterogeneity in terms of
either MG or MFGC abundance distribution and measured with
PLE-I; or (ii) MG-level (or MFGC-level) spatial heterogeneity
measured with PL-III. The first application is a measure
at the whole metagenome (more accurately, metagenome
assemblage) level, because it measures the inter-subject (spatial)
heterogeneity within a cohort or population of individuals in
their metagenomes. The second application is a measure at MG
or MFGC level, because it measures the inter-MG or inter-MFGC
heterogeneity from the perspective of a virtually averaged MG
or MFGC. Although we used the metagenomic datasets of the
human microbiome to demonstrate the concepts and modeling
analyses, the approaches should be equally applicable to the
metagenomes of other microbiomes on the planet.

Traditionally, studies on heterogeneity have been mostly
focused on population level, and metrics for community
heterogeneity are relatively fewer. This may be to do with that
community level studies are mostly focused on community
diversity, instead. Nevertheless, heterogeneity and diversity are
not the same (Shavit et al., 2016). First, the heterogeneity is
a “group” property, while diversity can be measured with one
individual or single community. Without comparing two entities,
heterogeneity does not make sense. Second, diversity is a measure
of numbers (and relative abundances), while heterogeneity needs
to be measured by interactions and working together (Shavit
et al., 2016). For example, one may say, “zoos are diverse, and
natural ecosystems are heterogeneous” (Ayelet Shavit and Aaron
Ellison, personal communication, 22 April 2020).

Two additional heterogeneity indexes that can be used to
measure community level heterogeneity are: (i) Variance/mean
ratio (V/m) and (ii) community dominance index M∗/m. Both are
counterparts of spatial aggregation index and patchiness index
at the population level in population ecology (Taylor, 1984; Ma,
1991). Both indexes have different definitions and interpretations.
The V/m heterogeneity index is simply a ratio of the mean
species abundances (m) and corresponding variance (V), and a
larger index value indicates higher heterogeneity (Taylor, 1984;
Ma, 1991). The community dominance index (Dc) was defined
by Ma and Ellison (2018), and a larger index value indicates
lower heterogeneity. Table 6 shows the values of the computed
heterogeneity indexes for the three datasets (see Supplementary
Table S1) we used, as well as the p-values from Wilcoxon tests
for the differences between the healthy and diseased treatments
in each of the three datasets.

Obviously, the two heterogeneity indexes described above
are much simpler to implement than the power law modeling
introduced in this study. Furthermore, both indexes displayed
significant differences between the healthy and diseased
treatments in their metagenome heterogeneity. Given their
simplicity, a natural question is: what are the advantages from
using the power law modeling? The answer is that the power law
analysis we presented offers tools to synthesize and measure the
heterogeneity at various scales (MG, MFGC) across individuals
in a cohort (population), with a unified power law model, which
achieved the rare status of classic ecological laws. In fact, the
power law analysis demonstrated here can also be applied to
measure metagenome temporal stability at similar scales to the

previous spatial versions. Furthermore, the power law analysis
provides a unified modeling tool to assess and interpret the
heterogeneity from ecological, taxonomical, functional and
evolutionary perspectives, because it can be applied to both OTU
tables and MGA tables, with the exactly same mathematical
model (the power law model). When using MGA tables, it can
be universally applied to the scales of the metagenomic gene or
metagenome functional gene cluster.

Perhaps an even more compelling case for using the TPL/PLE
parameters rather than the simple heterogeneity indexes has
to do with the difference between heterogeneity and diversity.
As argued previously, heterogeneity is a “group” property;
measuring heterogeneity requires at least two entities. While
TPL/PLE can synthesize the information from potentially
unlimited number of entities (samples), the two heterogeneity
indexes previously introduced were computed from single
sample. To synthesize information from multiple samples,
additional statistics such as the mean of the heterogeneity
values, as displayed in Table 6, must be used. Nevertheless, the
distribution of heterogeneity values may satisfy the Gaussian
distribution. This may make the usage of mean problematic since
the distribution of heterogeneity per se is usually highly skewed
and follows power law distribution. In addition, it may even argue
that the two simple heterogeneity indexes are similar to diversity
measures. For example, the community dominance (M∗/m), as
heterogeneity index, may even be treated as the other side of the
evenness (diversity) coin (Ma and Ellison, 2018).
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