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A B S T R A C T

Background

Efficient allocation of resources to intervene against malaria requires a detailed under-
standing of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last
global map of malaria endemicity was published. This paper describes the generation of a new
world map of Plasmodium falciparum malaria endemicity for the year 2007.

Methods and Findings

A total of 8,938 P. falciparum parasite rate (Pf PR) surveys were identified using a variety of
exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a
global database of Pf PR data, age-standardized to 2–10 y for endemicity mapping. A model-
based geostatistical procedure was used to create a continuous surface of malaria endemicity
within previously defined stable spatial limits of P. falciparum transmission. These procedures
were implemented within a Bayesian statistical framework so that the uncertainty of these
predictions could be evaluated robustly. The uncertainty was expressed as the probability of
predicting correctly one of three endemicity classes; previously stratified to be an informative
guide for malaria control. Population at risk estimates, adjusted for the transmission modifying
effects of urbanization in Africa, were then derived with reference to human population
surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion
were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi
Arabia (Africaþ), and 0.04 billion in the Americas. All those exposed to stable risk in the
Americas were in the lowest endemicity class (Pf PR2�10 � 5%). The vast majority (88%) of those
living under stable risk in CSE Asia were also in this low endemicity class; a small remainder
(11%) were in the intermediate endemicity class (Pf PR2�10 . 5 to , 40%); and the remaining
fraction (1%) in high endemicity (Pf PR2�10 � 40%) areas. High endemicity was widespread in
the Africaþ region, where 0.35 billion people are at this level of risk. Most of the rest live at
intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk.

Conclusions

High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic
levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of
intermediate and very rarely high transmission remain. There are therefore significant
opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007
global P. falciparum malaria endemicity map is the first of a series with which it will be possible
to monitor and evaluate the progress of this intervention process.

The Editors’ Summary of this article follows the references.
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Introduction

Maps are essential for all aspects of the coordination of
malaria control [1]. In an international policy environment
where the malaria control community has been challenged to
rethink the plausibility of malaria elimination [2–4], malaria
cartography will become an increasingly important tool for
planning, implementing, and measuring the impact of
malaria interventions worldwide. The last global map of P.
falciparum endemicity was published in 1968 [5]. In common
with all previous maps of the global distribution of malaria
[6–10], and to a large extent those that followed [11–16], the
map (i) suffered from an incomplete description of the input
data used; (ii) defined contours of ‘‘risk’’ using subjective and
poorly explained expert-opinion rules; and (iii) provided no
quantification of the uncertainty around predictions. Here
we describe the generation of a new global map of malaria
endemicity that overcomes these major deficiencies.

Geographic Scope of the Modelling
The global spatial limits of P. falciparum malaria trans-

mission have been mapped recently by triangulating nation-
ally reported case incidence data, other medical intelligence,
and biological rules of transmission exclusion, derived from
temperature and aridity limits to the bionomics of locally
dominant Anopheles vectors [17,18]. The results of this exercise
stratified the world into three classes: the spatial representa-
tion of no risk, unstable risk (P. falciparum annual parasite
incidence [PfAPI] , 0.1 per 1,000 people per annum [pa]),
and stable risk (PfAPI � 0.1 per 1,000 people pa) of P.
falciparum transmission for 2007. These classes are shown in
Figure 1. The stable-unstable classification of PfAPI was based
on a review of the statistical, logistical, programmatic, and
pragmatic reasons underpinning the PfAPI levels used to
define action points during the global malaria eradication
campaign [19–21].

The mapping exercise described here extends this work
substantively. The largest ever global assembly of malario-
metric surveys is used to predict P. falciparum malaria
prevalence values at every point within the stable spatial
limits of transmission to make a continuous P. falciparum
endemicity surface. To facilitate this process the spatial limits
required majority resampling to a 5 3 5 km grid using
ArcView GIS 3.2 (ESRI, 1999) because the computer-intensive
mapping techniques adopted, and described next, could not
be implemented at 1 3 1 km spatial resolution at a global
scale.

Recent Approaches to Malaria Endemicity Mapping
Numerous approaches exist for the production of contin-

uous endemicity maps using data from malariometric surveys,
all of which require the use of a model to predict endemicity
values at locations where survey data are unavailable [22–26].
The maps resulting from such models have an inherent
uncertainty and its quantification is a primary concern in
disease mapping.
A number of recent studies have adopted a predictive

framework known as model-based geostatistics (MBG) [27] for
the spatial prediction of malaria endemicity [28–33] and the
prevalence of other vector-borne and intermediate host-
borne diseases [34–38]. MBG provides a formal statistical
interpretation of classical geostatistical tools for spatial
prediction [39–41] and allows the incorporation of Bayesian
methods of statistical inference [42,43]. The principal
advantage of MBG for disease mapping is the rigorous
handling of uncertainty introduced at different stages in the
modelling process [27]. By modelling the interaction of these
different sources of uncertainty, a probability distribution is
generated for each predicted location, which can be
summarised to provide robust metrics of confidence around
predicted values. This resulting map will therefore provide an
evidence-based contemporary benchmark of global malaria

Figure 1. The Spatial Limits of P. falciparum Malaria Risk Defined by PfAPI with Further Medical Intelligence, Temperature, and Aridity Masks

Areas were defined as stable (dark grey areas, where PfAPI � 0.1 per 1,000 pa), unstable (medium grey areas, where PfAPI , 0.1 per 1,000 pa), or no risk
(light grey, where PfAPI¼ 0 per 1,000 pa) [17–19]. The community surveys of P. falciparum prevalence conducted between January 1, 1985 and July 31,
2008 are plotted. Of the 8,938 surveys collected, 7,953 satisfied our inclusion criteria for modelling (see Methods and Protocol S1.2) and are shown here.
The survey data shown are age-standardized [51] (Pf PR2�10) and shown as a continuum of yellow to red from 0%–100% (see map legend). The dashed
lines separate the America; Africaþ; and the CSE Asia regions.
doi:10.1371/journal.pmed.1000048.g001
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endemicity, using MBG techniques to assess the confidence in
the predictions, and provide those who utilize the map a clear
estimate of the fidelity of the predictions [36].

An underlying principle of geostatistics is that a mapped
prediction becomes increasingly uncertain as the density of
and proximity to nearby data points decreases. When data are
collected at different times, as well as different locations, this
principle is as applicable through time as it is across space.
Examples of epidemiological studies that extend spatial
geostatistics to incorporate time are rare [44–47], but in this
study a full spatiotemporal geostatistical modelling frame-
work was developed. Incorporating the dimension of time
allows for unambiguous comparison of this benchmark with
future map iterations. The map will thus provide an explicit
geographical framework for monitoring and evaluation of the
impact of the malaria control community on P. falciparum
malaria worldwide.

Methods

Analysis Outline
The objective of these analyses is to use a contemporary

database of P. falciparum parasite rate (PfPR) surveys to make
a continuous, global, P. falciparum malaria endemicity surface
for 2007, implemented with transparent and reproducible
methods, and which documents robustly the uncertainty
associated with its predictions.

The main steps used to define the continuous global map of
P. falciparum prevalence within our analytic framework are

outlined in Figure 2. First, it was necessary to search for and
preprocess the PfPR data in order to create a robustly geo-
positioned, geographically extensive dataset of malariometric
surveys for mapping and examine potential environmental
covariates (Protocol S1) and the influence of human settle-
ment patterns (Protocol S2) [48–50]. Second, the refined PfPR
database was used to make a continuous, age-standardized
and urban-corrected malaria prevalence surface with MBG in
a Bayesian statistical framework (Protocol S3). Third, exten-
sive validation procedures were implemented to assess the
accuracy of endemicity predictions and uncertainty metrics
(Protocol S4). Finally, populations at risk (PAR) of P.
falciparum malaria estimates were extracted globally and
presented at the regional level, stratified by age class.

Assembling a Global Database of P. falciparum Parasite
Prevalence
Of all the potential metrics available to measure malaria

endemicity, the parasite rate (the proportion of people
sampled showing detectable parasites in the peripheral
blood) was preferred as a basis for mapping, due to its global
ubiquity [18] and its sensitivity across a wide range of the P.
falciparum malaria transmission spectrum [19]. A categoriza-
tion of the malaria endemicity spectrum in the epidemiolog-
ically informative 2 (2.00)- up to 10 (9.99)-y age group has
been suggested [51], guided by the potential impact on
malaria endemicity using the most widely deployed contem-
porary malaria intervention—insecticide treated bed nets
(ITNs) [19]. The lowest class of PfPR in the 2- up to 10-y age

Figure 2. Schematic Overview of the Mapping Procedures and Methods

Blue diamonds describe input data. Orange boxes denote models and experimental procedures; S1, Protocol S1; S2, Protocol S2; S3, Protocol S3; and S4,
Protocol S4. Green rods indicate output data; dashed lines intermediate output, solid lines final outputs. U, urban; PU, peri-urban; and R, rural extents.
doi:10.1371/journal.pmed.1000048.g002
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group (hereafter PfPR2�10), corresponds to �5%. This is the
point below which PfPR surveys require sample sizes of the
population that become prohibitive logistically, to measuring
endemicity accurately and surveillance-based malariometrics
are therefore favoured [52–54]. We regard intermediate,
stable transmission as represented by PfPR2�10 . 5% to ,

40%, since a range of mathematical models predict that the
interruption of malaria transmission could be achieved with
universal coverage of ITNs in all areas with PfPR2�10 , 40%
[19,55]. Despite being subject to some uncertainty owing to
the behaviour and bionomics of the dominant local Anopheles
vectors [56], the PfPR2�10 , 40% level is considered a
conservative benchmark, since ITNs are rarely deployed
independently of other interventions that will further reduce
transmission. The areas of high stable transmission, where
mixed intervention suites need to be considered if the
interruption of transmission is ever to be achieved, are
identified as all prevalences above this level: PfPR2�10 � 40%.
This malaria classification is used to guide the interpretation
of the predicted endemicity surface throughout and is a
departure from traditional endemicity benchmarks [57] that
have been shown not to scale meaningfully with opportu-
nities for control and elimination in most models [19,55].

The process of identifying, assembling, and geo-locating
community-based survey estimates of parasite prevalence
undertaken since 1985 has been described [58]. Searches for
PfPR data are an ongoing activity of the Malaria Atlas Project
(MAP, http://www.map.ox.ac.uk) and were completed on July
31, 2008 for this 2007 iteration of the global endemicity map
(Protocol S1.1). A total of 8,938 cross-sectional survey
estimates of PfPR were assembled from 78 of the 87 P.
falciparum malaria endemic countries (PfMECs) [18]. Those
countries not represented in the database were Bangladesh,
Belize, Bhutan, Djibouti, Dominican Republic, Guyana, Iran,
Kyrgyzstan, and Panama.

After six levels of exclusion (removing surveys located only
to large [.100 km2] and small [.25 km2] polygons [58];
removing those surveys that could not be, or were only geo-
positioned imprecisely; and removing those that could not be
temporally disaggregated into independent surveys or for
which the date was unknown), 7,991 PfPR surveys remained
(Figure S1.2 in Protocol S1).

All PfPR data were then age-standardized to the 2- to 10-y
age range before mapping using an algorithm based on
catalytic conversion models first adapted for malaria by Pull
and Grab [59]. This algorithm was found to perform best out
of a set of candidate standardization procedures and is
described in detail elsewhere (Protocol S1.3) [51].

The final dataset was stratified into three major global
regions (Figure 1): the Americas; Africa, Yemen, and Saudi
Arabia (Africaþ); and Central and South and East Asia (CSE
Asia) (Protocol S1.4). This division allowed these biogeo-
graphically, entomologically, and epidemiologically distinct
regions [8,16] to be considered separately, whilst retaining
sufficient data in each region for meaningful analysis. These
global divisions were further supported by observing the
distinct spatial structure of the PfPR2�10 data in each region,
illustrated by their semi-variograms (Figure S1.1 in Protocol
S1).

Malaria transmission-specific approaches to mapping
urban, peri-urban, and rural extents were developed, the
rationale for which is described in detail elsewhere (Protocol

S2) [50]. In brief, all urban extents (UEs) defined by the Global
Rural Urban Mapping Project (GRUMP) alpha version UE
mask (GRUMP UE) [60,61] were identified at 13 1 km spatial
resolution (Protocol S2.1) [50]. Within these extents, those
areas containing population densities greater than 1,000
people per km2 according to the Gridded Population of the
World version 3 population density surface [60,61] were then
mapped [48]. All surveys were then assigned as either urban
(Gridded Population of the World version 3 � 1,000 km2

within GRUMP UE), peri-urban (Gridded Population of the
World version 3 , 1,000 km2 within GRUMP UE), or rural
(outside GRUMP UE) (Protocol S2.2).
Extreme statistical outliers in the rural PfPR2�10 data were

then identified using a geostatistical filter (Protocol S1.5).
This process used semi-variogram statistics to assess whether
each point differed significantly from neighbouring points
given their separation distances and regional patterns of
spatial variation. This procedure identified 38 nonurban
PfPR2�10 records, which were removed from the dataset
before further modelling. Details of these surveys are
available on request.
The final set of PfPR2�10 data (n ¼ 7,953) used is shown in

Figure 1. The attributes of this PfPR2�10 database are
described (Table S1.2 in Protocol S1), along with a plot of
the median PfPR2�10 by year for the observation period
(Figure S1.3 in Protocol S1), indicating that time was an
important source of variation to include in the MBG model.
Similar preliminary explorations of the relationships of these
data with a range of climate [62] and remotely sensed [63]
environmental covariates showed no strong relationships
(Figure S1.5 and S1.6 in Protocol S1), supporting the
predominantly univariate approach to the analyses.
There is a common misconception that malariometric

surveys are only conducted in areas of high prevalence. In
fact, an increasing tendency to conduct national surveys
powered to be representative of all regions of a country, and
the confirmation of the absence of P. falciparum transmission
when sampling for P. vivax, result in many zero prevalence
values being recorded in surveys. In total, 119 of 261 surveys
report zero values in America, 1,010 of 5,307 surveys report
zero values in Africaþ, and 775 of 2,385 surveys report zero
values in the CSE Asia region (Figure 1).

Statistical Details
Geostatistical algorithms generate continuous maps by

predicting values at unsampled locations using linear
combinations of the available sample data. In the mapping
task described in this study, it is intuitive that the confidence
attached to a prediction of PfPR2�10 at a given unsampled
location will be affected by (i) the distribution of survey
points around that location (the spatial density of the
training data), (ii) the extent to which PfPR2�10 varies
smoothly across space (the spatial heterogeneity of the
training data), and (iii) the number of people sampled in
each survey (the precision of the component surveys in the
training data). An MBG approach [27] was implemented in a
Bayesian statistical framework to incorporate these factors in
the generation of continuous maps of PfPR2�10 (Protocol S3).
Because the data were collected at different times throughout
the study period 1985–2008, it was important to extend the
spatial-only geostatistical approach to a space-time frame-
work that accounted simultaneously for the density and
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heterogeneity of the data in both space and time. The age-
standardization algorithm was incorporated as a submodel in
the framework to allow the errors inherent in this process to
be estimated and propagated into the MBG stage (Protocol
S3).

For each region, a Bayesian geostatistical model was
constructed in which the underlying value of PfPR2�10 in
2007, PfPR2�10(xi), at each location xi was modelled as a
transformation g(�) of a spatiotemporally structured field
superimposed with unstructured (random) variation e(xi). The
number of P. falciparum positive responses Ni

þ from a total
sample of Ni at each survey location was modelled as a
conditionally independent binomial variate given the unob-
served underlying age-standardized PfPR2�10 value [36]. The
spatiotemporal component was represented by a stationary
Gaussian process f(xi,ti) with mean l and covariance defined
by a spatially anisotropic version of the space-time cova-
riance function proposed by Stein [64]. A modification was
made to the Stein covariance function to allow the time-
marginal model to include a periodic component of wave-
length 12 mo, providing the capability to model seasonal
effects in the observed temporal covariance structure. These
effects arise when studies performed in different years but
during similar calendar months have a tendency to be more
similar to each other than would be expected in the absence
of seasonality. The mean component l was modelled as a
linear function of time t and whether the prediction location
x was urban, or peri-urban (denoted by the indicator variables
1u(x) and 1p(x), respectively) rather than rural: l ¼ bx þ btt þ
bu1u(x)þ bp1p(x). Each survey was referenced temporally using
the mid-point (in decimal years) between the recorded start
and end months. Urban, peri-urban, or rural status was
assigned to each prediction location using the modified
GRUMP UE surface described previously (Protocol S2.2),
resampled to a 5 3 5 km grid. The unstructured component
e(xi) was represented as Gaussian with zero mean and variance
V. Bayesian inference was implemented using Markov Chain
Monte Carlo (MCMC) to generate samples from the posterior
distribution of: the Gaussian field f(xi,ti) at each data location;
the unobserved parameters bx, bt, bu, bp, and V as stated above
and further unobserved parameters defining the structure
and anisotropy of the exponential space-time covariance
function (Protocol S3.4). Distances between locations were
computed in great-circle distance to incorporate the effect of
the curvature of the Earth, which becomes important at the
regional scale. Samples were generated from the 2007 annual
mean of the posterior distribution of f(xi,ti) at each prediction
location. For each sample of the joint posterior, predictions
were made using space-time conditional simulation over the
12 mo of 2007 ft ¼ 2007Jan, . . ., 2007Decg [44,65]. These
predictions were made at points on a regular 53 5 km spatial
grid within the spatial limits of stable P. falciparum trans-
mission. Model output therefore consisted of samples from
the predicted posterior distribution of the 2007 annual mean
PfPR2�10 at each grid location, which were used to generate
point estimates (computed as the mean of each set of
posterior samples), endemicity class membership probabil-
ities, and standard variance estimates (Protocol S3.4). Further
description of how geostatistical outputs were used to
generate the various maps described is provided (Protocol
S3.5).

Model Validation
An assessment of the plausibility of the mapped surface was

essential and several nontrivial descriptive methods were
implemented (Protocol S4). The ability of the model to
predict point-values of PfPR2�10 and the most probable
endemicity class was tested using a hold-out procedure. A
validation set was generated by the selection via spatially
declustered stratified random sampling of 10% of the data (n
¼ 800), which were then removed from the dataset (Protocol
S4.1). The model was then run in full using the remaining
7,153 data points to generate predictive posterior distribu-
tions of PfPR2�10 for comparison with known values at the
locations of the 800 held-out data. In contrast to the main
model run, in which annual means were predicted for 2007,
the validation run predicted Pf PR2�10 for the month
corresponding to the mid-point of each held-out survey, to
provide temporally comparable values. Given the large size of
the dataset, a single validation set was considered sufficient to
generate validation statistics with the required level of
precision.
The ability to predict known values of PfPR2�10 was

summarised using mean error as a measure of overall bias,
mean absolute error as a measure of overall accuracy, and the
correlation coefficient as a measure of linear association
[44,66]. These statistics were presented as both absolute
values and as a proportion of the mean PfPR2�10 in each
region as calculated from the validation set. The ability to
predict endemicity class membership was tested using the
area-under-curve (AUC) statistic derived from receiver-
operating-characteristic curves, which plot sensitivity versus
1-specificity for each endemicity class [34,67]. AUC values
above 0.9 indicate excellent agreement between actual and
predicted class membership, values above 0.7 indicate a
moderately good agreement, and values of 0.5 indicate that
the model performs no better than a random allocation of
class membership [34,67]. A procedure was also implemented
[44,68] to test the extent to which predicted posterior
distributions at each prediction location provided a suitable
measure of uncertainty. This procedure allowed the proba-
bility assigned to predicted values of PfPR2�10 at each
prediction location to be compared to the corresponding
observed probabilities within each region. Further details of
this procedure are provided (Protocol S4.2).
Frequency distributions of PfPR2�10 were visualised for

both input data and the output predicted surface using violin
plots [69]. These plots display a smoothed approximation of
the frequency distribution (a kernel density plot) of PfPR2�10
for each region overlaid on a central bar showing median and
inter-quartile range values. Separate plots were computed
using age-standardized PfPR2�10 data from all years in the
database and for 2007 only, and a further plot was computed
using point estimates for every location on the predicted
output PfPR2�10 surface for 2007.

Estimating Human Population Density in 2007
The GRUMP alpha version provides gridded population

counts and population density estimates at 1 3 1 km spatial
resolution for the years 1990, 1995, and 2000, both adjusted
and unadjusted to the United Nations’ national population
estimates (Protocol S2.3) [60,61]. The adjusted population
counts for the year 2000 were projected to 2007 by applying
the relevant national, medium variant, inter-censal growth
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rates by country [70] using methods described previously
(Protocol S2.4) [71]. These population counts were then
stratified nationally by age group using United Nations-
defined [72] population age structures for the year 2005 to
obtain 0–4 years, 5–14 y, and�15 y population count surfaces.

Digital boundaries of the 87 P. falciparum malaria endemic
countries were overlaid on the urban-adjusted endemicity
class surface (reprojected to an equal area projection), and
areas of each endemicity class were extracted using ArcView
GIS 3.2 (ESRI, 1999) (Protocol S2.4). These layers were also
overlaid on the GRUMP data [60,61] to extract urban adjusted
estimates of PAR of P. falciparum by endemicity and age class
(Protocol S2.4). Finally these surfaces were combined with the

uncertainty maps to provide a population-weighted index of
uncertainty (the product of the log of population density and
the reciprocal of the probability of correct class assignment).

Results

Accuracy of the Predicted P. falciparum Malaria
Endemicity Map
The continuous predicted surface of P. falciparum malaria

endemicity is shown in Figure 3. The control related
endemicity class for which membership is most probable is
shown in Figure 4. The actual probability of predicting each
class correctly is given in Figure 5A. A detailed description of
the regional variation of the area at these different levels of

Figure 3. The Spatial Distribution of P. falciparum Malaria Endemicity

The data are the model-based geostatistical point estimates of the annual mean Pf PR2�10 for 2007 within the stable spatial limits of P. falciparum
malaria transmission, displayed as a continuum of yellow to red from 0%–100% (see map legend). The rest of the land area was defined as unstable risk
(medium grey areas, where PfAPI , 0.1 per 1,000 pa) or no risk (light grey, where PfAPI¼ 0 per 1,000 pa) [17–19].
doi:10.1371/journal.pmed.1000048.g003

Figure 4. The Spatial Distribution of P. falciparum Malaria Pf PR2�10 Predictions Stratified by Endemicity Class

They are categorized as low risk Pf PR2�10 � 5%, light red; intermediate risk Pf PR2�10 . 5% to , 40%, medium red; and high risk Pf PR2�10 � 40%, dark
red. The map shows the class to which Pf PR2�10 has the highest predicted probability of membership. The rest of the land area was defined as unstable
risk (medium grey areas, where PfAPI , 0.1 per 1,000 pa) or no risk (light grey) [17–19].
doi:10.1371/journal.pmed.1000048.g004
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stable risk and the associated PAR, follows a description of
the accuracy of the predictions in the text. Alternative
measures of the uncertainty of the predictions are provided
(Protocol S4.3).

Predicting Point-Values of Pf PR2�10

Examination of the mean error in the generation of the P.
falciparum malaria endemicity surface (Figure 3) revealed
minimal overall bias in predicted PfPR2�10 values with a
global value of 0.91 revealing an overall tendency to
overestimate PfPR2�10 by less than 1% (Americas ¼ 0.63,
Africaþ¼ 0.80, CSE Asia¼ 1.18) (Table 1). Examination of the
mean absolute error revealed an average magnitude of error
in PfPR2�10 predictions of 9.75 (Americas ¼ 3.52, Africaþ¼
11.02, CSE Asia ¼ 7.71) (Table 1). The global correlation
coefficient between actual and predicted values was 0.82,
indicating excellent linear agreement at the global level and
this was further illustrated in the scatter plot (Figure 6A;

Table 1). The regional level correlations for the Americas and
CSE Asia were generally weaker (Americas ¼ 0.03, Africaþ¼
0.82, CSE Asia ¼ 0.70) (Table 1). A semi-variogram of
standardised model residuals (Figure 6B) showed some
evidence of very weak spatial autocorrelation, up to lags of
around two decimal degrees, although comparison with a
simulated null-envelope revealed that this was not statistically
significant (Protocol S4.2).

Predicting Endemicity Class
The receiver-operating-characteristic curves and AUC

statistics for each endemicity class are shown (Figure 6C;
Table 2). Global AUC values for all three endemicity classes
exceeded the 0.7 threshold for fair to good discrimination,
whilst those for both the PfPR2�10 � 5% and PfPR2�10 � 40%
classes exceeded the 0.9 threshold for excellent discrimina-
tion. Overall, 70.8% of points were classified correctly
(Americas ¼ 80.0%, Africaþ ¼ 70.6%, CSE Asia ¼ 69.9%)

Figure 5. Maps of Model Uncertainty

(A) The probability of Pf PR2�10 being in the class to which it was assigned is mapped and shown as a yellow to blue continuum from 0.3̇� 1. Any value
above 0.3̇ is better than a chance allocation. The rest of the land area was defined as unstable risk (medium grey areas, where PfAPI , 0.1 per 1,000 pa)
or no risk (light grey) [17–19].
(B) The population-weighted index of uncertainty. This index shows the likely importance of uncertainty assessed by the product of the log of
population density (Protocol S2.3) and the reciprocal of the probability of correct class assignment, rescaled from 0–1. The index is shown for the most
probable Pf PR2�10 endemicity class. Unstable and no risk are as (A).
doi:10.1371/journal.pmed.1000048.g005
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Table 1. Summary of the Validation Statistics for Predicting Continuous Pf PR2�10 by Region

Validation Measure Americas Africaþ CSE Asia World

Mean error 0.627 (20.401) 0.805 (3.070) 1.184 (9.203) 0.912 (4.267)

Mean absolute error 3.522 (114.639) 11.023 (42.024) 7.705 (59.860) 9.750 (45.625)

Correlation 0.032 0.822 0.699 0.823

The mean of each predicted posterior distribution was used as the point estimate of Pf PR2�10 for comparison with observed values. Values in parentheses indicate the percentage of the
regional mean represented by the corresponding error value. See text for a full explanation on the derivation of these statistics and interpretation of results.
doi:10.1371/journal.pmed.1000048.t001

Figure 6. Model Validation Plots

(A) Scatter plot of actual versus predicted point-values of Pf PR2�10.
(B) Sample semi-variogram of standardized model Pearson residuals estimated at discrete lags (circles) and compared to a Monte Carlo envelope
(dashed lines) representing the range of values expected by chance in the absence of spatial autocorrelation.
(C) Receiver-Operating-Characteristic curves for each Pf PR2�10 endemicity class (black line, Pf PR2�10 � 5%; red line, Pf PR2�10 . 5% to , 40%; green
line, Pf PR2�10 � 40%) and associated AUC statistics.
(D) Probability-probability plot comparing predicted probability thresholds with the actual percentage of true values exceeding those thresholds. In the top left
and bottom left plots the 1:1 line is also shown (dashed line) for reference. See text for full explanation of validation procedures and interpretation of results.
doi:10.1371/journal.pmed.1000048.g006
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and importantly, only 1.1% of points were grossly misclassi-
fied to a nonadjacent class (Americas¼ 0.0%, Africaþ¼ 0.6%,
CSE Asia¼ 2.5%) (Table 2). A full contingency table for each
class is provided (Protocol S4.3).

Providing Realistic Measures of Uncertainty for Each
Prediction

The probability-probability plot comparing predicted
probability thresholds with observed coverage probabilities
(Figure 6D) shows generally close correspondence between
these two measures, suggesting that the model provides a
reasonably faithful representation of the uncertainty in the
point predictions. However, the plotted line falls slightly
above the 1:1 line across most threshold values, most
substantially for probability thresholds between 0.00 and
around 0.25. This means that a predicted probability thresh-
old of, for example, 0.1, is likely to relate to an ‘‘actual
probability threshold’’ of around 0.2. In other words, the
model has a tendency to underestimate the probability of
PfPR2�10 taking low values (Figure S4.1A in Protocol S4). This
tendency may have led, in turn, to overestimates of PfPR2�10
in some low endemicity areas.

Global P. falciparum Malaria Endemicity Map
In 2007 the global area at risk of stable P. falciparum malaria

was 29.73 million km2, distributed between the Americas (6.03
million km2, 20.30%), Africaþ (18.17 million km2, 61.10%),
and CSE Asia regions (5.53 million km2, 18.60%) (Table 3). We
have estimated previously that there are 2.37 billion people at
any risk of P. falciparum transmission worldwide and that 0.98
billion of these live where the risk is unstable [17,18]. Those
exposed to stable risk, 1.383 billion, are distributed between
the Americas (0.041 billion, 2.94%), Africaþ (0.657 billion,
47.48%), and CSE Asia (0.686 billion, 49.58%) (Figure 7; Table
4). The regional variation in stable P. falciparum risk, stratified

by the low (PfPR2�10 � 5%), intermediate (PfPR2�10 . 5 to ,

40%), and high (Pf PR2�10 � 40%) endemicity classes
facilitated by these analyses are described below. In the
Americas and CSE Asia, children (the 0–4 y and 5–14 y age
groupings) approach a third (32% each) of the total PAR. In
Africaþ this proportion rises to 43%.

The Americas
The stable P. falciparum transmission area of the Americas is

characterised by a uniformly low endemicity (PfPR2�10 � 5%)
(Figures 3 and 4). The total area at stable risk covers 6.03
million km2, mostly located in the Amazon basin (Figures 3
and 4). All the 40.64 million people in this region are exposed
to this low risk. The median prevalence was 2.17% with the
lowest and highest predicted PfPR2�10 values 0.31% and
8.81%, respectively (Figure 8C). Examination of the fre-
quency distributions for the region showed predicted values
distributed approximately symmetrically around this median
value (Figure 8C). The input data for 2007 (Figure 8B) showed
a similar range but were positively skewed, whilst those for all
years included values over a larger range (max¼ 21.30%) and
displayed a pronounced positive skew (Figure 8A). The
probability of correct endemicity class assignments was high
in the Americas (Figure S4.1A in Protocol S4), due mainly to
the relative uniformity of the low PfPR2�10 value survey data
[17,18], rather than any strong spatial structure (Figure S1.1
in Protocol S1). This result, combined with the relatively low
population density of the region, led to the lowest values of
the population weighted index of uncertainty (Figure 5B).

Africaþ
The stable P. falciparum transmission area in the Africaþ

region covers 18.17 million km2, which contains 656.61
million people at risk and spans a wide range in transmission
intensity. Over 4.03 million km2 (22.18%) of this area and

Table 2. Summary of the Validation Statistics for Predicting Pf PR2�10 Endemicity Class by Region

Validation Measure Americas Africaþ CSE Asia World

AUC (� 5%) 0.452 0.927 0.885 0.915

AUC (.5% to , 40%) 0.452 0.758 0.813 0.779

AUC (� 40%) — 0.921 0.842 0.927

Overall % correct 80.000 70.621 69.874 70.750

� 5% classed as � 40% (%) 0.000 0.188 0.418 0.250

� 40% classed as � 5% (%) 0.000 0.377 2.092 0.875

See text for a full explanation on the derivation of these statistics and interpretation of results.
doi:10.1371/journal.pmed.1000048.t002

Table 3. Area at Risk of P. falciparum Malaria in 2007

Region Unstable Risk Stable Risk Pf PR2�10 � 5% Pf PR2�10.5 to ,40% Pf PR2�10 � 40% Total

Americas 2.13 6.03 6.03 0.00 0.00 8.17

Africaþ 4.21 18.17 4.03 5.63 8.50 22.37

CSE Asia 3.40 5.53 4.72 0.69 0.11 8.93

World 9.74 29.72 14.79 6.32 8.61 39.46

Areas are in millions of km2. Unstable risk (PfAPI , 0.1 per 1,000 people pa) and stable risk (PfAPI � 0.1 per 1,000 people pa). Stable risk is subdivided into three age-standardized [51] and
control-related PfPR2�10 endemicity classes [19].
doi:10.1371/journal.pmed.1000048.t003
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114.50 million people (17.44%) experience PfPR2�10 � 5%.
These areas are located in the central and eastern extents of
the southern and northern most latitudes (Figures 3 and 4).
This endemicity class was relatively confidently predicted
(Figure S4.1A in Protocol S4). The high transmission regions
where PfPR2�10 � 40% dominate West Africa and large areas
of Central Africa, covering 8.50 million km2, in which 345.28
million people are at risk. The probability of correct
endemicity class prediction was high in West Africa and
much lower in Central Africa (Figure S4.1C in Protocol S4),
due to the relative abundance of contemporary PfPR2�10
survey data in the former region and paucity in the latter
(Figure 1). A significant area of the continent (5.63 million
km2) has intermediate endemicity values, PfPR2�10 . 5% to
, 40%, and contains 196.83 million PAR. This endemicity
class was predicted with the least confidence (Figure S4.1B in
Protocol S4).

The median predicted prevalence for the stable endemicity
area of the continent was 33.34%, with the lowest and highest
predicted PfPR2�10 values 0.20% and 75.40%, respectively

(Figure 8C). The frequency distribution of predicted values
(Figure 8) was centred on this median value, with a much less
pronounced secondary mode centred at around 15% (Figure
8C). This distribution was very different to those of the all-year
and 2007 input data, which were both positively skewed with
maximum values of 99.78% and 98.70%, respectively (Figure
8A and 8B, respectively). The population weighted index of
uncertainty shows a mixed picture for the region, with high
values evident in Ethiopia for the low endemicity class and
high values evident in Nigeria for the high endemicity class
(Figure 5B), reflecting the co-occurrence of both low density
of PfPR2�10 surveys and large populations in each country.

CSE Asia
The stable P. falciparum transmission area of the CSE Asia

region is characterised by low malaria endemicity (PfPR2�10 �
5%), with geographically small but epidemiologically impor-
tant patches of intermediate (PfPR2�10 . 5 to , 40%) and
high risk (PfPR2�10 � 40%) in for example, Orissa state,
eastern India, western Myanmar, and the lowlands of New
Guinea. The total area at stable risk covers 5.53 million km2,

Figure 7. Pie Charts Showing the PAR of P. falciparum Malaria in 2007

The charts show the proportion of the population living in each predicted Pf PR2�10 endemicity classes for the America, Africaþ, CSE Asia regions, and
worldwide. The charts are scaled proportionally to the total population at risk in each region and the segments are coloured to match the endemicity
classes shown in Figure 4.
doi:10.1371/journal.pmed.1000048.g007

Table 4. PAR of P. falciparum Malaria in 2007

Region Age Range Unstable Riska Stable Riska Pf PR2�10 � 5% Pf PR2�10 . 5 to , 40% Pf PR2�10 � 40% Total

Americas 0–4 5.62 4.51 4.51 0.00 0.00 10.14

5–14 10.66 8.66 8.66 0.00 0.00 19.32

15þ 33.78 27.47 27.47 0.00 0.00 61.25

Total 50.06 40.64 40.64 0.00 0.00 90.71

Africaþ 0–4 3.29 108.64 15.48 32.90 60.26 111.93

5–14 5.64 170.80 25.35 51.48 93.98 176.44

15þ 12.95 377.17 73.67 112.45 191.05 390.12

Total 21.88 656.61 114.50 196.83 345.28 678.49

CSE Asia 0–4 99.69 73.70 64.98 8.10 0.62 173.38

5–14 195.40 143.20 126.26 15.67 1.27 338.60

15þ 616.17 468.75 412.37 51.52 4.86 1,084.93

Total 911.26 685.65 603.61 75.29 6.75 1,596.91

World 0–4 108.60 186.85 84.97 41.00 60.88 301.31

5–14 211.70 322.66 160.26 67.15 95.25 560.40

15þ 662.90 873.40 513.51 163.97 195.91 1,504.41

Total 983.20 1,382.91 758.75 272.13 352.04 2,366.11

Populations are in millions. Unstable risk (PfAPI , 0.1 per 1,000 people pa) and stable risk (PfAPI � 0.1 per 1,000 people pa). Stable risk is subdivided into three age-standardized [51] and
control-related Pf PR2�10 endemicity classes [19]. For each region PAR is further subdivided by 0–4 y, 5–14 y, and 15þ age group.
aIt should be noted that the computing constraints that required the resampling of the spatial limits to a 5 3 5 km spatial resolution will inevitably result in very slight changes to the total
global PAR, estimated previously at 1 3 1 km [18].
doi:10.1371/journal.pmed.1000048.t004
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which contains 685.65 million PAR, mostly located in India
and Indonesia (Figures 3 and 4). Over 4.72 million km2

(85.54%) of this area and 603.61 million (88.03%) people
experience PfPR2�10 � 5%. The median predicted prevalence
was 9.99%, with the lowest and highest predicted PfPR2�10
values 0.006% and 45.40%, respectively. The frequency
distribution of predicted PfPR2�10 values was positively

skewed (Figure 8C). The frequency distribution of the 2007
input data spanned a similar range of values, but displayed a
more pronounced positive skew (Figure 8B). The plot for data
from all years was also positively skewed but covered a much
larger range of values, with a maximum of 93.91% (Figure 8A).
The probability of correct endemicity class assignments was
relatively high in the CSE Asia region, but with considerable
uncertainty in the border areas between the low and
intermediate endemicity classes (Figure S4.1A in Protocol
S4). This result, combined with the high population density of
the region, led to highest values of the population weighted
index of uncertainty, notable particularly in India (Figure 5B).

Discussion

We have to our knowledge, for the first time in 40 y
provided a contemporary map of P. falciparum malaria
endemicity at the global scale. The map addresses the key
deficiencies of older maps of the global distribution of
malaria risk outlined previously and therefore is unique in
the following ways. First, it is based on a heavily documented
and geographically extensive malariometric survey database
(Protocol S1) [58] that will be released in the public domain
(where permission has been granted for individual surveys)
for all to use and evaluate in 2009 [1]. Second, the MBG
methods (Protocol S3) and validation procedures (Protocol
S4) have also been documented in exhaustive detail and the
relevant code been made available in the public domain. The
entire mapping process should therefore be reproducible by
those with access to the requisite computing resources. Third,
a rigorous assessment of the uncertainty associated with the
mapped outputs has been undertaken so that the confidence
in the results can be evaluated objectively (Figure 5).

The World Malaria Situation in 2007
The world is substantially less malarious than would be

predicted from the inspection of historical maps [5,14], both
through a shrinking of the spatial limits and through a
reduction in endemicity within this range. There is a striking
global transition to a lower risk malaria ecology that will be
explored in more detail in future work.
Of the 1.382 billion people exposed to stable malaria risk

worldwide in 2007, 0.759 billion live in conditions of
extremely low malaria endemicity with PfPR2�10 � 5% in
the CSE Asia (0.604 billion, 79.55%), Africaþ (0.115 billion,
15.09%), and America (0.041 billion, 5.36%) regions (Figure 7;
Table 4). These populations live under conditions where the
biological prospects for sustained control at very low levels of
malaria transmission is achievable and are ultimately com-
patible with a long-term movement toward elimination [19].
Specific subregional and national recommendations should
of course, however, be shaped by a sober assessment of other
environmental, logistical, financial, and political factors
affecting the efficiency with which intervention plans might
be implemented [73–75]. To a good approximation, the rest
of the global population at stable malaria risk are Africans:
0.197 billion live under conditions of intermediate risk
(PfPR2�10 . 5 to , 40%) and 0.345 billion under conditions
of high risk (PfPR2�10 � 40%) (Figure 7; Table 4). In the areas
of intermediate risk, mathematical modelling suggests that by
taking ITNs to scale, the interruption of P. falciparum malaria
transmission might be achieved, whereas in the high trans-

Figure 8. Violin Plots Showing for Each Region Frequency Distributions

of Pf PR2�10 data

(A) For all years, (B) for 2007, and (C) for the predicted 2007 surface. The
width of each polygon illustrates the relative frequency of different
Pf PR2�10 values within each region. The background is coloured to match
the endemicity classes shown in Figure 4. The black central bar indicates the
inter-quartile range and white circles indicate the median values (see text).
doi:10.1371/journal.pmed.1000048.g008
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mission areas, malaria transmission will be more intractable
and require aggressive control with suites of additional and
complementary interventions [19,55].

Statistical Implementation and Model Validation
The modelling procedure presented here represents a large

scale implementation of modern Bayesian geostatistical
techniques and incorporates a number of novel components.
The incorporation of an age-standardization model has
allowed the coherent assimilation of survey data obtained
across a wide variety of surveyed age ranges whilst acknowl-
edging the uncertainty introduced by this additional source
of variation. Likewise, the use of a fully spatiotemporal
random field has allowed surveys from as early as 1985 to be
incorporated in the prediction of contemporary P. falciparum
endemicity in a statistically and epidemiologically plausible
framework.

MBG techniques are exceptionally computationally de-
manding even for small prediction problems. To our knowl-
edge this is the first time these procedures have been applied
to any disease at the global scale. This computational burden
has also imposed a number of restrictions on the modelling
procedure that may have improved predictive capability. In
particular, the current model adopts a single mean and
covariance function within each global region, representing
an assumption of second-order stationarity within each.
Approximations to nonstationary random fields adopted in
smaller scale studies [32,76] represent possible refinements to
the current model, but were considered computationally
infeasible globally.

Assessment of the various validation statistics revealed that
the model performed satisfactorily for each of the three
performance aspects: predicting PfPR2�10 point values and
endemicity class, and providing realistic measures of pre-
diction uncertainty. Given the highly variable nature of P.
falciparum endemicity over even short distances, an overall
correlation of 0.82 between the model predictions and
validation data, and an average absolute error magnitude of
9.75% PfPR2�10 represents an unexpected level of precision.
Certain aspects of the uncertainty measures output by the
model are suboptimal: in particular, the tendency to under-
estimate slightly the probability of PfPR2�10 taking very low
values. Nevertheless, given the multitude of sources of
uncertainty that are captured and propagated though the
modelling framework, the resulting uncertainty predictions
represent a rich source of information in the generation of
output products for decision makers.

The model was fitted using MCMC [77,78]. MCMC is an
extremely powerful algorithm, and is the only general-
purpose, computationally tractable algorithm available for
many Bayesian problems. However, it is an approximate
algorithm. No fail-proof method for estimating its error is
available, but using a heuristic method (Protocol S1.3) we
estimated that our ‘‘Monte Carlo error’’ is unimportant
relative to the uncertainty in our actual posterior distribu-
tions.

The information contained in the maps presented here and
the associated uncertainty varies across a range of geo-
graphical scales. The large-scale variation in endemicity
described between regions and countries is unambiguous,
robustly quantified, and of direct use to global planners. As
progressively finer scales are considered, however, the utility

of these maps for local malaria control managers diminishes
although this is heavily dependent on the local availability
and density of survey points. The appropriate threshold and
metric of uncertainty will vary enormously for different end
users and applications of the maps. As a rule-of-thumb,
however, it is suggested that the differentiation in endemicity
between areas smaller than the first administrative level
would be inappropriate for most countries.
Examination of the frequency distributions for all-year and

2007 input PfPR2�10 data, and for the predicted PfPR2�10
surface, revealed a number of important features. Firstly,
2007 data from all three regions displayed substantially
smaller median and maximum values and were more
positively skewed than data from all years considered
together (compare Figure 8A and 8B). Secondly, there were
marked differences in all regions between the distribution of
2007 data values and the distribution of values from the
predicted PfPR2�10 surface (compare Figure 8B and 8C).
Specifically, the latter distributions had larger medians, were
less positively skewed, and for the Americas and Africaþ had
substantially smaller maximum values. The overall shift
towards higher PfPR2�10 in the predicted surfaces can be
attributed to the spatial clustering of the survey locations. It
must always be remembered that the set of surveys collated
represents an opportunistic sample driven by the motivations
and constraints of a multitude of individuals, organizations,
and governments. Visual examination of this set reveals a
considerably larger proportion located in lower endemicity
regions than would be the case in a spatially random sample
and, as such, summary statistics of these raw data display a
substantial bias. By predicting endemicity over a continuous
surface, the MBG process compensated implicitly for this
clustering in the output maps and the resulting frequency
distribution was not biased in the same way.
The MBG process makes predictions at unsampled loca-

tions using linear combinations of survey data. For this
reason, the resulting surfaces are inevitably smoother than
the raw data from which they are predicted. One feature of
this smoothing process is that the range of extreme high and
low values in the predicted surface is likely to be smaller than
that displayed by the input data. This explains why the
frequency distributions for the predicted PfPR2�10 surface
cover substantially smaller ranges of values than those of the
input data. An important implication of this smoothing effect
is that the predicted surface provides a more robust
prediction of endemicity at larger scales but is less able to
represent faithfully the short-scale variations occurring over
very short distances.

Using Environmental Covariates to Make Continuous Maps
The extreme limiting effects of climate covariates have

been incorporated comprehensively in the definition of the
stable and unstable limits of P. falciparum malaria trans-
mission described above [18]. There is an illusory attraction
in the further use of environmental covariates to increase
complexity and improve predictive accuracy in MBG ende-
micity mapping. This is because such analyses are based on
the assumption that the contemporary distribution and
endemicity of malaria approximates its fundamental niche
[79,80]. This assumption is unfounded because the global
distribution of malaria has contracted substantially [18] since
its hypothesised maximum distribution circa 1900 [14].
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Moreover, it is not known to what extent the environmental
determinants of the remaining distribution reflect this
fundamental niche, how these relationships might vary
spatially, and therefore, what artefacts might be introduced
by their inclusion in the analyses. In addition, it is not trivial
to obtain ‘‘adequate’’ environmental covariates at a global
level with the required spatial and temporal fidelity [63,81].
Finally, the degree to which these relations would be further
obscured by ongoing and spatially variable intervention
efforts is also unquantified. An increasing body of evidence
points to these intervention effects being substantial, to have
accelerated in the post 2000 period, and to represent a spatial
mosaic of influence that would act to confound substantially
any modelled relationships [82–90]. Unsurprisingly, no
statistical support was found for the inclusion of a range of
climate [62] and remotely sensed [63] environmental cova-
riates (Protocol S1.7).

In eschewing the use of environmental covariates in this
analysis framework, the output maps are determined only by
the input survey data and the assumptions of the modelling.
This choice ensures a maximally parsimonious baseline,
against which future changes may be audited.

Potential Geostatistical Improvements
In embracing the MBG approach, the rationale for

excluding surveys with a sample size below 50 is diminished,
as the uncertainty in relation to the population sampled is
explicitly modelled by the technique (Protocol S3). This
exclusion rule was devised at a time before MBG could be
applied at a global scale and will be revised in future
iterations of the map.

The spatial resolution with which these MBG techniques
could be reasonably implemented on a computer cluster was
on a 53 5 km grid. The entire process took an average of one
month at this spatial resolution and has been estimated to
take one year to run on a 13 1 km spatial grid. There are no
plans to increase the spatial resolution of the output maps at
the global scale because they are robust for the regional
planning purposes for which they are intended. For smaller
areas, such as PfPR data rich countries where higher spatial
resolution maps may be desirable to support national control
plans, however, MBG outputs to 1 3 1 km grids can be
considered [33]. Moreover, at these national scales, the fidelity
of the geo-positioning of the input PfPR survey data may
have an important influence on the uncertainty of the
predictions, so procedures that can help incorporate these
effects into the modelling may also need to be investigated
[91–93]. In this study, the uncertainty likely to be contributed
by geo-positioning errors was thought to be trivial in relation
to the scales of spatial variation in observed endemicity and
given the global scale of model outputs.

We were not able to improve the age-correction model’s
predictive performance by modelling the age-dependent
sensitivities of microscopy and rapid diagnostic tests sepa-
rately or by modelling diagnostic specificity. The accuracy in
the determination of PfPR by microscopy or rapid diagnostic
tests were assumed to be equivalent in these analyses, but the
sensitivity of the diagnostic technique [94–98] could be
included into a future iterations of this MBG framework.

No solution could be found to applying these MBG
techniques across large tracts of ocean (for example in the
Caribbean, Madagascar, and the Indonesian archipelago),

given the global distribution of the PfPR data and the lack of
data in some regions (Figure 1). Potential biogeographical
influences on malaria transmission on islands are ignored by
these analyses. Future map iterations would ideally have
sufficient data to treat islands separately or sufficient
information on the distribution of Anopheles vectors to help
inform the predictions [56].
We have incorporated the ability for the analyses to be

cognisant of secular trends in the PfPR data and of annual
variations in transmission. This map does not provide a full
description of seasonal malaria dynamics [99–101], however,
and further information on the global variation of malaria
seasonality might inform future map iterations.

The Road Ahead: Public Domain and Dynamic Maps
These mapped surfaces are made available in the public

domain with the publication of this article. The underlying
data used in their predictions are due for public release in
2009 [1], and the online infrastructure to host this service is
under development. The MAP team anticipate providing
annual updates of this P. falciparum global malaria endemicity
map and the accompanying PfPR database. Annual updates
will also be required to reflect the changing spatial limits of
stable and unstable P. falciparum malaria transmission [18] in
order to define accurately the limits within which endemicity
predictions need to be made. If the international community
is successful in rolling back malaria, informed decisions will
need to be made about the temporal discontinuity between
the spatial limits of P. falciparum malaria transmission
(defined, where possible, by the average PfAPI in the three
most recently recorded years [18]) and the endemicity data
(PfPR collected since 1985).
It is obvious that the predicted map represents a snapshot

of the year 2007 from a malaria endemicity that changes
through time. No degree of statistical sophistication can
circumvent the fact that additional data will increase the
fidelity of the map, by either increasing the spatial resolution
of the malariometric surveys or updating an existing survey
location with more recent information. The methods have
been devised specifically so that these surfaces can be updated
rapidly. The predominantly univariate approach adopted also
means changes in future maps’ iterations can be attributed
reliably to finding more data in areas of high uncertainty
(changes in space) or to changes brought about through
intervention success or disease recession (changes in time),
rather than any temporal and spatial mix of the relationship
of the PfPR2�10 data and the environmental covariates.
We encourage the submission of additional existing data to

improve the map in areas where we have least spatial accuracy,
and new data to sustain future production of updated
contemporary maps. Current areas of highest uncertainty
are indicated to a good approximation by the inverse of the
class prediction probability (Figure 5), although future work is
aimed at refining this information. Therefore, an immediate
priority is to generate regional maps showing the optimal
location of new surveys that would need to be implemented to
maximally reduce the variance in the existing endemicity
surface for the minimum cost. These solutions are substan-
tially more involved than the list of areas with highest variance
provided here because (i) each new survey will change the
structure of the spatial variance and affect the optimal
location of the next survey; (ii) both the number and spatial
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distribution of surveys will affect the outcome and require
multiple simulations to converge on optimal solutions; and
(iii) potential survey locations will need to be weighted
appropriately by the distribution of the human population.

Immediate MAP Goals
The initial focus of the MAP has been P. falciparum [1] due

to its global epidemiological significance [102] and its better
prospects for control and local elimination [19]. We have not
yet addressed the significant problem of P. vivax burden [103]
despite its increasingly recognised clinical importance [104–
106], but have archived over 2,500 P. vivax parasite rate
surveys with which to start this process. Another immediate
goal is in refining global burden of disease estimates for P.
falciparum (both morbidity [102] and mortality [48,107,108]) to
support global estimation of antimalarial intervention and
commodity needs. The statistical methods used in this analysis
will allow the next iteration of burden estimates to represent
more holistically and robustly the uncertainty in predictions.
In the medium term, combinations of these global endemicity
maps with forthcoming maps of the distribution of the
dominant Anopheles vectors of human malaria [56] should
empower malaria control managers to make more informed
decisions regarding interventions appropriate to the bio-
nomics of their local suite of vectors. In the long term we
hope to not only monitor and evaluate progress with these
maps, but to increase our ability to model future malaria
endemicity and support objective assessment of where in the
world it might be possible to eliminate malaria.

Conclusions
The state of the P. falciparum malaria world in 2007

represents an enormous opportunity for the international
community to act [109,110], but these actions remain
considerably under-resourced [111]. Regardless of whether
nations champion sustained, intensive control or reach for
the higher ambition of malaria elimination [2–4,74,112–114],
the intermediate intervention paths are similar [19]. This
cartographic resource will help countries determine their
needs and serve as a baseline to monitor and evaluate
progress towards interventional goals. We wish to continue to
work alongside individuals, countries, and regions to improve
future iterations of this map and document hopefully these
intervention successes.
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Editors’ Summary

Background. Malaria is one of the most common infectious diseases in
the world and one of the greatest global public health problems. The
Plasmodium falciparum parasite causes approximately 500 million cases
each year and over one million deaths in sub-Saharan Africa. More than
40% of the world’s population is at risk of malaria. The parasite is
transmitted to people through the bites of infected mosquitoes. These
insects inject a life stage of the parasite called sporozoites, which invade
human liver cells where they reproduce briefly. The liver cells then
release merozoites (another life stage of the parasite), which invade red
blood cells. Here, they multiply again before bursting out and infecting
more red blood cells, causing fever and damaging vital organs. The
infected red blood cells also release gametocytes, which infect
mosquitoes when they take a blood meal. In the mosquito, the
gametocytes multiply and develop into sporozoites, thus completing
the parasite’s life cycle. Malaria can be prevented by controlling the
mosquitoes that spread the parasite and by avoiding mosquito bites by
sleeping under insecticide-treated bed nets. Effective treatment with
antimalarial drugs also helps to decrease malaria transmission.

Why Was This Study Done? In 1998, the World Health Organization and
several other international agencies launched Roll Back Malaria, a global
partnership that aims to reduce the human and socioeconomic costs of
malaria. Targets have been continually raised since this time and have
culminated in the Roll Back Malaria Global Malaria Action Plan of 2008,
where universal coverage of locally appropriate interventions is called for
by 2010 and the long-term goal of malaria eradication again tabled for
the international community. For malaria control and elimination
initiatives to be effective, financial resources must be concentrated in
regions where they will have the most impact, so it is essential to have
up-to-date and accurate maps to guide effort and expenditure. In 2008,
researchers of the Malaria Atlas Project constructed a map that stratified
the world into three levels of malaria risk: no risk, unstable transmission
risk (occasional focal outbreaks), and stable transmission risk (endemic
areas where the disease is always present). Now, researchers extend this
work by describing a new evidence-based method for generating
continuous maps of P. falciparum endemicity within the area of stable
malaria risk over the entire world’s surface. They then use this method to
produce a P. falciparum endemicity map for 2007. Endemicity is
important as it is a guide to the level of morbidity and mortality a
population will suffer, as well as the intensity of the interventions that
that will be required to bring the disease under control or additionally to
interrupt transmission.

What Did the Researchers Do and Find? The researchers identified
nearly 8,000 surveys of P. falciparum parasite rates (Pf PR; the percentage
of a population with parasites detectable in their blood) completed since
1985 that met predefined criteria for inclusion into a global database of
Pf PR data. They then used ‘‘model-based geostatistics’’ to build a world
map of P. falciparum endemicity for 2007 that took into account where
and, importantly, when and all these surveys were done. Predictions
were comprehensive (for every area of stable transmission globally) and
continuous (predicted as a endemicity value between 0% and 100%).
The population at risk of three levels of malaria endemicity were
identified to help summarize these findings: low endemicity, where Pf PR
is below 5% and where it should be technically feasible to eliminate
malaria; intermediate endemicity where Pf PR is between 5% and 40%
and it should be theoretically possible to interrupt transmission with the

universal coverage of bed nets; high endemicity is where Pf PR is above
40% and suites of locally appropriate intervention will be needed to
bring malaria under control. The global level of malaria endemicity is
much reduced when compared with historical maps. Nevertheless, the
resulting map indicates that in 2007 almost 60% of the 2.4 billion people
at malaria risk were living in areas with a stable risk of P. falciparum
transmission—0.69 billion people in Central and South East Asia (CSE
Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africaþ), and 0.04
billion in the Americas. The people of the Americas were all in the low
endemicity class. Although most people exposed to stable risk in CSE
Asia were also in the low endemicity class (88%), 11% were in the
intermediate class, and 1% were in the high endemicity class. By contrast,
high endemicity was most common and widespread in the Africaþ
region (53%), but with significant numbers in the intermediate (30%),
and low (17%) endemicity classes.

What Do These Findings Mean? The accuracy of this new world map of
P. falciparum endemicity depends on the assumptions made in its
construction and critically on the accuracy of the data fed into it, but
because of the statistical methods used to construct this map, it is
possible to quantify the uncertainty in the results for all users. Thus, this
map (which, together with the data used in its construction, will be freely
available) represents an important new resource that clearly indicates
areas where malaria control can be improved (for example, Africa) and
other areas where malaria elimination may be technically possible. In
addition, planned annual updates of the global P. falciparum endemicity
map and the Pf PR database by the Malaria Atlas Project will help public-
health experts to monitor the progress of the malaria control community
towards international control and elimination targets.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
1000048.

� A PLoS Medicine Health in Action article (Hay SI, Snow RW (2006) The
Malaria Atlas Project: Developing Global Maps of Malaria Risk. PLoS
Med 3(12): e473) and a Research Article (Guerra CA, Gikandi PW, Tatem
AJ, Noor AM, Smith DL, et al. (2008) The Limits and Intensity of
Plasmodium falciparum Transmission: Implications for Malaria Control
and Elimination Worldwide. PLoS Med 5(2): e38) also provide further
details about the global mapping of malaria risk, and a further
Research Article (Snow RW, Guerra CA, Mutheu JJ, Hay SI (2008)
International Funding for Malaria Control in Relation to Populations at
Risk of Stable Plasmodium falciparum Transmission. PLoS Med 5(7):
e142) discusses the financing of malaria control in relation to this risk
� Additional national and regional level maps and more information on

the global mapping of malaria are available at the Malaria Atlas Project
� The MedlinePlus encyclopedia contains a page on malaria (in English

and Spanish)
� Information is available from the World Health Organization on malaria

(in several languages)
� The US Centers for Disease Control and Prevention provide informa-

tion on malaria (in English and Spanish)
� Information is available from the Roll Back Malaria Partnership on its

approach to the global control of malaria, and on malaria control
efforts in specific parts of the world
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