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Each level of the coronary artery has different sizes and properties. The primary coronary arteries usually have high contrast to the
background, while the secondary coronary arteries have low contrast to the background and thin structures. Furthermore, several
small vessels are disconnected or broken up vascular segments. It is a challenging task to use a single model to segment all coronary
artery sizes. To overcome this problem, we propose a novel segmenting method for coronary artery extraction from angiograms
based on the primary and secondary coronary artery. Our method is a coarse-to-fine strategic approach for extracting coronary
arteries in many different sizes. We construct the first U-net model to segment the main coronary artery extraction and build a
new algorithm to determine the junctions of the main coronary artery with the secondary coronary artery. Using these
junctions, we determine regions of the secondary coronary arteries (rectangular regions) for a secondary coronary artery-
extracted segment with the second U-net model. The experiment result is 76.40% in terms of Dice coefficient on coronary X-ray
datasets. The proposed approach presents its potential in coronary vessel segmentation.

1. Introduction

In all living mammal species, including humans, blood ves-
sels inside the body are highly organized and complex, ensur-
ing that blood flows unidirectionally on vessel branches.
Localization, segmentation, and visualization of blood vessels
from X-ray angiograms are highly necessary and useful in
various medical diagnoses. Based on the blood vessel width,
reflectivity, and abnormal branching, we can determine
symptoms of vessel diseases such as stenosis, vascular mal-
formation, and atherosclerosis. By using the X-ray angio-
gram, medical experts or doctors manually detect and
delineate the blood vessels. However, this process is time-
consuming and challenging in the cases of enormous number
of X-ray angiograms and small and thin vessel structures.
Hence, it is highly necessary to develop automatic and accu-
rate blood vessel detection and segmentation methods from

angiograms. Many related works conducted the coronary
vessel segmentation based on the weak contrast between
the coronary arteries and the background, strong overlapping
shadows of the bones, nonuniform illumination in X-ray
angiogram, small and thin vessel branches, complex shape
of the vessel tree, and/or other body tissues [1, 2]. These fac-
tors can decrease the accuracy of segmentation results.

The improvements in coronary vessel enhancement
and segmentation algorithms can be divided into six
main categories, such as pattern recognition approaches,
model-based approaches, tracking-based approaches, arti-
ficial intelligence-based approaches, neural network-based
approaches, and miscellaneous tube-like object detection
approaches [2]. Liao et al. [3] applied an enhanced multi-
scale approach to extract 2D coronary artery central lines
from X-ray projection images. Authors introduced the 3D
symbolic reconstruction based on an energy minimization
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problem incorporating a soft epipolar line constraint and
a smoothness term. The nonlinear anisotropic filtering [4]
approach performs anisotropic smoothing without blur-
ring the vessel edges on the local orientation. Hessian-
based multiscale filtering [5–8] has been proposed for
vessel enhancement. In this technique, an input image is
filtered by the derivatives of a Gaussian at multiple scales.
Then, the Hessian matrix is analyzed at each pixel in the
filtered image to determine the structures’ local shape.
However, due to the second-order derivatives, the
Hessian-based approaches are highly sensitive to noise.
Furthermore, this approach led to suppressing junctions,
as junctions are characterized similarly to the blob-like
structures.

In [6], the authors proposed a filter model based on the
regularized gradient vector correlation matrix to avoid the
need for second-order derivatives. However, this technique
faces the same limitations as Hessian-based filters in finding
small and low-contrast vessels when dealing with angiogra-
phy images, which are noisier and suffer from nonuniform
illumination. Truc et al. [7] introduced a new framework
for vessel enhancement by applying the directional informa-
tion present in an image. The input images are first decom-
posed by a decimation-free directional filter bank (DDFB)
into a set of directional images. Distinct appropriate
enhancement filters are then used to enhance vessels in the
respective directional images. Finally, the enhanced direc-
tional images are recombined to generate the output image
with enhanced vessels. Although this approach is still noise-
sensitive, it reveals the small vessel network and avoids junc-
tion suppression. Trinh et al. [8] introduced a hierarchical
approach to extract coronary vessels from an X-ray angio-
gram. They applied the DDFB and Homographic Filtering
(HF) since they are suitable for strengthening the vessels at
different orientations and radii. To obtain the main and small
coronary vessels in various sizes, they used a coarse-to-fine
strategy for iterative segmentation based on the Otsu
algorithm.

Recently, deep learning approaches have been applied for
medical image segmentation and analysis [9–13]. These new
powerful techniques based on convolutional neural networks
(CNNs) lead to high performance in the field of medical
imaging for segmentation without expert knowledge. Many
studies confirm that deep learning models outperform tradi-
tional medical segmentation systems. In [10], authors devel-
oped a successful and well-known network based on the
CNN, named as U-net, for biomedical image segmentation.
The network architecture consists of two paths: encoder
and decoder. The encoder is a contraction stack of convolu-
tional layers used to capture the context of input images.
After each convolutional layer, a rectified linear unit (ReLU),
max pooling, and dropout layers are added. The decoder is an
expansive path that is used to enable precise localization by
using transposed convolutions. In the decoder, the final layer
is used to map the feature vector to the binary prediction (i.e.,
vessel vs. nonvessel). The U-net requires the inputs as 2D
image patches and returns the 2D segmentation probability
map for each given patch. Milletari et al. [11] introduced a
V-net architecture that adopts a volumetric CNN for prostate

segmentation from MRI. Similar to U-net, V-net induced
two paths. The first path (left path) of the V-net consists of
a compression path. The second one (right path) decom-
presses the input image until its original size is reached.
Holistic-net [12] was proposed for brain tumor segmenta-
tion. It is a combination of holistic CNNs and generalized
Wasserstein Dice scores for multiclass segmentation. In
[13], a graph neural network (GNN) is proposed to learn
global vascular structures in medical images. The authors
combined the GNN into a unified CNN architecture to learn
not only local appearances but also the global structures of
vessels.

Deep learning-based automated ventricle segmentation
methods are summarized in the research [14]. Authors [15]
developed a novel encoder-decoder deep network algorithm
to exploit 2D + t sequential images’ contextual information
in a sliding window. The encoder extracts the temporal-
spatial features. The skip connection layers subsequently fuse
these features and deliver them to the corresponding decoder
stages. The decoder employed the channel attention mecha-
nism. In [16], the authors proposed a nested encoder-
decoder architecture named T-Net. T-Net consists of several
small encoder-decoders for each block constituting a convo-
lutional network. They evaluated T-Net by segmenting only
three main vessels in coronary angiography images and
archive the Dice similarity coefficient score of 88.97%. In
the research [17], the blood vessels are segmented from both
the coronary angiogram and the retinal fundus images using
a single VSSC Net after performing the image-specific pre-
processing. The VSSC Net consists of two-vessel extraction
layers with additional supervision on top of the base VGG-
16 network. The VSSC Net attains average AUC values of
0.98205 across the target datasets. Authors [18] proposed a
novel weakly supervised training framework to alleviate the
annotator’s burden by learning from noisy pseudo labels gen-
erated from automatic vessel enhancement instead of fully
manual annotation. Their annotation-refining self-paced
learning framework (AR-SPL) corrects the possible errors
using suggestive annotation. Experiments confirm that their
proposed framework largely reduced annotation cost and
Dice score of 82.09%. Another study proposed an automated
prostate MRI data segmentation using bicubic interpolation
with improved 3D V-Net. Two clinical prostate-MRI data
datasets were used to evaluate the model’s effectiveness with
the manual delineations available as the ground truth [19].
The segmentation result is 98.29% of average accuracy and
0.9765 of Dice metric.

With the supportive goal of interpreting pathophysio-
logical processes and clinical decision-making, the study
[20] developed a multiview recurrent aggregation network
(MV-RAN) for the echocardiographic sequence’s segmen-
tation with the full cardiac cycle analysis. Experiments
were conducted on spatial-temporal (2D + t) datasets of
multicenter and multiscanner clinical studies. Compared
to other studies, the research [20] achieved results of
0.92 Dice score.

This study proposes a novel hierarchical approach to
extract coronary vessels from X-ray coronary angiographic
images. We use a coarse-to-fine strategy for iterative
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segmentation based on the U-net model to segment the cor-
onary vessels in various sizes as follows:

(i) We use U-net to segment the main and large blood
vessels

(ii) We propose a new approach to extract junctions
from vascular trees and detect small vessel regions
based on the main information from extracted
vessels

(iii) We apply the region-based U-net segmentation to
locate and obtain the small vessels

2. Materials and Methods

In this section, we describe the proposed hierarchical
approach in detail. As illustrated in Figure 1, our proposed
framework includes tree main steps: preprocessing, extract-
ing the large coronary vessels, and extracting the small ones.

The preprocessing procedure is applied to remove high-
frequency noise and also enhance the contrast of X-ray coro-
nary angiographic images. We first apply a Gaussian filter to
smooth the vessel image. The Gaussian filter is low-pass fil-
tering that is used to reduce high-frequency noise in order
to make our vessel segmentation more accurate. In our study,
we use Gaussian smoothing to detect false edges or artifacts
(not small artery fragments) due to noises and reduce their
effect on the input. In addition, a histogram equalization
method [21] is applied to adjust the contrast of images.
Figure 2 shows our preprocessing process.

In the next step, we apply a coarse-to-fine strategy for
iterative segmentation. Particularly, we segment regions that
include the main coronary vessels based on the high-contrast
pixels. The main coronary vessels include features such as
vascular tree and junctions. Subsequently, we use coarse
information extracted in the previous step to detect the small
vessels that often have low contrast and are affected by noises.
We describe each step of the proposed technique in detail in
the following sections.

2.1. Large Vessel Extraction Based on U-net. In this section,
we describe a method to extract vessels by using U-net and
the coarse-to-fine segmentation strategy. Figure 3 shows a
block diagram of the vessel’s extraction.

The U-net model is proposed for biomedical image seg-
mentation [10]; as shown in Figure 4, the network architec-
ture consists of encoder and decoder paths. The encoder is
a contraction path that captures the context in the input
image. The decoder is an expansive path that applies trans-
posed convolutions to enable precise localization. In the
decoder, the final layer maps the feature vector to the binary
outputs such as vessel or nonvessel. The U-net receives the
inputs as 2D image patches and returns the 2D segmentation
probability map for each given patch.

The U-net uses the loss function as the cross-entropy
function shown as follows:

J = −〠
x∈Ω

w xð Þ log pl xð Þ xð Þ
� �

, ð1Þ

where plðxÞ is the soft-max function defined by plðxÞ = exp ð
alðxÞÞ/ð∑L

l ′=1expðal ′ðxÞÞÞ , where alðxÞ is an activation in fea-
ture channel l at the pixel position x ∈Ω with Ω ⊂ Z2, l : Ω
→ f1,⋯, Lg is the true label of each pixel x, and L denotes
the number of classes.

The weight map is computed as

w xð Þ =wc xð Þ +w0 ⋅ exp −
d1 xð Þ + d2 xð Þð Þð Þ2

2σ2

 !
, ð2Þ

where wc : Ω→ R denotes the weight map to balance the
class frequencies, d1 : Ω→ R is the distance to the border
of the nearest cell, and d2 : Ω→ R denotes the distance to
the border of the second nearest cell. In experiments, we set
w0 = 10 and σ = 5 pixels following the related research [10].

In this study, the original input images and their corre-
sponding segmentation labeling (or ground truth segmenta-
tion) are used to train U-net for extracting the large vessels.
For a test case, the input image is required for the U-net
model and returns a 2D segmentation probability map.
Figure 5 presents an example of U-net segmentation for large
vessels. We can realize that the U-net model can obtain a
good performance for large vessel segmentation because of
its high contrast to the background. However, the model per-
formance is limited for small vessels. Figure 5 illustrates that
some small vessels are disconnected or broken up vascular
segments due to their low contrast to the background and
thin structures. Subsequently, to overcome this problem, we
propose a coarse-to-fine algorithm-based U-net for detecting
and extracting small and thin blood vessels.

2.2. Small Vessel Extraction Based on Coarse-to-Fine
Algorithm-Based U-net. In the previous section, we represent
the U-net approach to extract the main coronary vessels.
However, it cannot reveal well the small vessels due to their
blurring and low contrast compared with the background.
To solve this problem, as shown in Figure 6, we use the infor-
mation of the main extracted vessels and propose a new
method to extract junctions on the vascular tree and extract
small regions that included small vessel branches. Then, we
apply a region-based U-net approach to segment small ves-
sels based on a coarse-to-fine mechanism.

The branching geometry and junctions of the blood ves-
sel tree are challenges in applying the coarse-to-fine U-net
framework for vessel segmentation. The Zhang-Suen thin-
ning algorithm [21] can be applied to extract the skeleton
or central line of the main vessels. However, after segmenta-
tion, thin broken blood vessels may appear due to low con-
trast or low signal-to-noise ratio, leading to reduced
performance. Therefore, we introduce an improved Zhang-
Suen thinning algorithm to connect small broken blood ves-
sels. We summarize this approach in Algorithm 1, and
Figure 7 displays the result after applying this algorithm.
Figure 8 presents the blood vessel’s central line result based
on an improved Zhang-Suen thinning algorithm.

The start, end, and junction nodes of the blood vessels are
determined based on the central line of the large vessel seg-
mentation result. In an X-ray angiogram, because of the huge
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number of vessel branches, it is necessary to distinguish each
blood vessel branch. Algorithm 2 describes a method to
detect important nodes in the blood vessel. Given a central
line image (skeleton binary image) of the large vessel seg-
mentation result (output from Algorithm 1), object pixels
(foreground) will have the value 1 (belonging to the blood
vessel tree) and background pixels will have 0. For each pixel
in the binary image, we classify each pixel ði, jÞ belonging to a
particular label. Specifically, background pixels that have the
value of 0 is classified into class 0 (or label 0). These back-
ground pixels are ignored while finding the important nodes.

Consider object pixels as the foreground, whether an object
pixel has exactly two neighbour object pixels, this object pixel
is considered a midpoint in the skeleton image (not the start,
end, or junction points) and it is classified into class 1 and is
ignored while finding the important nodes. Finally, an object
pixel that has exactly one neighbour object pixel is consid-
ered start and end nodes and is classified into class 2; the
object pixel has more than two neighbour object pixels, and
it is a junction node and is classified into class 2. For each
object pixel ði, jÞ in the skeleton image and having label 2,
we find all neighbour object pixels of pixel ði, jÞ that were

Input
image Pre-processing Large vessel 

extraction
Small vessel 

extraction Output

Figure 1: An illustration of the proposed method.
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equalization
Preprocessed

image

Figure 2: Preprocessing process.
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Figure 3: Vessel’s extraction based coarse-to-fine segmentation.
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Figure 4: Illustration of the U-net architecture [10].
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classified into class 2 and then calculate their centroid point.
The centroid points are considered the important nodes.
Figure 9 demonstrates the determined nodes in the blood
vessel tree.

Usually, the small vessels from an X-ray angiogram are
blurring low-contrast images. It is difficult to extract large
and small vessels simultaneously. For that reason, a local

region-based segmentation approach should be used to
extract the small ones. Based on the idea from local thresh-
olding, we apply a region-based U-net to segment these small
vessels. This approach helps reduce the effect of changing in
grayscale values between the vessels and the background
compared to the global approach. For each node in the
blood vessel tree, we will construct a window between

(a) Input (b) U-net segmentation (c) Ground truth

Figure 5: An example of U-net segmentation result.

Input
image

Large vessel
extraction

Junction of vessel
tree detection

ResultsRegion-based U-net
segmentation

Small vessel
extraction

Small vessel regions

Figure 6: A block diagram for small vessel extraction.

Input: Binary image after applying large vessel extraction-based U-net
Output: Central line of vessels (output central line)
Step 1. Remove small regions less than γ pixels (γ ~116 pixels)
Step 2. Apply the baseline Zhang-Suen thinning algorithm to get the skeleton image, Γ
Step 3. Reconnect the broken segments in the Γ image

+ Find connected components in the Γ image
+ Find the largest connected component, LCC, in the Γ image
+ Initialize: output central line = LCC
+ For each remaining connected component (small component) in the Γ image, do

(i) Determine orientation (or direction) of small component to the LCC and connect each small connected component to the
LCC.

(ii) Update: output central line = LCC

Algorithm 1: Vessel central line extraction from a binary image.

(a) (b)

Figure 7: An example of connecting the nearest the central lines: (a) input image and (b) image after connecting the nearest central lines
(reproduced from Trinh et al. 2019 [under the Creative Commons Attribution License/public domain]).
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Input image Result of the baseline 
Zhang-Suen thinning 

algorithm 

Result of the improve 
Zhang-Suen thinning 

algorithm 

Figure 8: Results of the central lines of blood vessels based on the improved Zhang-Suen thinning algorithm. Input image. Result of the
baseline Zhang-Suen thinning algorithm. Result of the improved Zhang-Suen thinning algorithm.

Input: The central line of the large vessel segmentation result (output central line)
Output: L: List of important nodes in the blood vessels
Step 1. Based on the image of the central line of a large vessel (binary image), we classify each pixel (i, j) into three classes (three labels)

[0, 1, 2] as follows: labelði, jÞ =
0, pixelði, jÞis background ðhave value of 0Þ,
1, pixelði, jÞ is foreground and its two neighbour pixels are foreground,
2, pixelði, jÞ is foreground and it has one or at least three neighbour pixels are foreground:

8>><
>>:

Step 2. Find the important nodes (start, end, and junction nodes)
While pixelði, jÞ ∈ output central line (skeleton image) and labelði, jÞ ==2:
+ Find neighbour object pixels of pixel ði, jÞ that were classified into class 2 (label 2), and then calculate centroid point of them.
+ node ← centroid point
+ L.append(node) (add determined node into List L)

End

Algorithm 2: Detecting important nodes in the blood vessel tree.

(a) Central line image (b) Nodes on skeleton image

(c) Nodes on main vessel segmentation

Figure 9: An example of nodes (starting, end, and junction points) in the blood vessel tree.
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nodes i and j. The width (w) and height (h) of the
window are described by

w = xi − xj
� ��� �� + bias, ð3Þ

h = yi − yj
� ����

��� + bias: ð4Þ

In our experiment, we select a bias of 20 pixels for
obtaining small vessels near node i. The proposed
approach focuses on determining regions of small blood
vessels as summarized in Algorithm 3. Figure 10 describes
an example of a local region that includes small vessels. In
the local region, there exists a large vessel with high inten-
sity and high contrast to the background compared to
small vessels. Thus, we remove the effect of the large vessel
in the window and then apply contrast adjustment based
on image processing to areas that include the small vessels.
Figure 11 presents a contrast enhancement based on image
processing in the small region. Additionally, we apply the
region-based U-net approach to segment these small
vessels.

3. Results and Discussion

3.1. Dataset.All of the experiments were conducted on the X-
ray angiogram database of the coronary vessel, which was
collected and supported by local hospitals. The database con-
tains 48 different vessel images corresponding to two catego-
ries: D1 and D2. The size of each image is 512 × 512 pixels,
with 256 gray levels per pixel. The D1 dataset consists of 20
images that obtain a direct front view of the coronary vessels.

Input: L: List of important nodes in the blood vessels, the central line image (skeleton binary image), label of object pixels.
Output: B: List of rectangles including small blood vessels
Step 1. Find blood vessel segments, edges

Init: edges = ∅
Visit every node of list L:

edge = ∅
Repeat

(i) Find neighbour object pixel (called as nb) of the current node (the pixel with label of 1 in the central line image),
(ii) Update: node = nb,
(iii) edge.append(node)

Until nb∈ L
edges.append(edge)

Step 2. Find the top-left and bottom-right coordinates of rectangle
Init: i =0; B = ∅
For edge ∈ edges:

(i) Find two points, p1 and p2, so that p1 is the top-left point and p2 is the bottom-right point of a rectangle that includes the
largest blood vessel region based on equations (3) and (4).

(ii) B[i].append(p1, p2)
(iii) i = i+1

End

Algorithm 3: Small blood vessel region detection.

(a) A single region (b) Small vessel regions

Figure 10: An example of a region constructed between two nodes.

(a) (b)

Figure 11: An example of contrast enhancement in the region
analysis: (a) input image and (b) result from contrast
enhancement (reproduced from Trinh et al. 2019 [under the
Creative Commons Attribution License/public domain]).

Figure 12: Ground truth of an X-ray angiogram image.
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The D2 dataset includes 28 images taken from four different
angles of the coronary vessels [8].

Our dataset is divided into 40 images for training and
8 images for testing. During the training process, we use
data augmentation methods to enhance the performance
of the segmentation result. This method allows the net-
work to become invariant and robust to certain transfor-
mations when the size of the training set is limited. For
example, rotation, flip, and shear operators are usually
used for convolutional neural networks and yield the
desired invariance and robustness properties of the result-
ing network. In our experiment, the augmentation was
applied using the ImageDataGenerator function imple-
mented in Keras.

3.2. Experimental Environment. In the experiments, we use
the software MIPAR of Sosa [22] to create ground truth in
order to evaluate the performance of the segmentation algo-
rithm. We compute the Dice similarity coefficient [23]
between binary segmentation results and the ground truths
to evaluate the accuracy of our system. Figure 12 shows
a sample image and its ground truth. Our experiments
are implemented on an Intel® Xeon® E5-2630, CPU @
2.3GHz with 128GB RAM, 4 GPU NVIDIA Geforce
GTX 1080Ti - Vram 11GB (CUDA 6.1). The average run-
time of the proposed algorithm to be applied to each
image is 66.67ms. In the large blood vessel extraction pro-
cedure, we use the U-net model with 64 filters for the first
convolutional layer, followed by the ReLU activation func-
tion, we set the learning rate of 1e − 4, and the sigmoid
function is used as the final activation function. The train-
ing process of region-based U-net is similar to that of the
original U-net model. The region-based U-net is a small
version of the original U-net. Particularly, it is modified
with a small number of filters of 16 for the first convolu-
tional layer to deal with small input images (including
small vessel regions). The small vessel regions from the
same original training set are used to train a region-
based U-net model.

In the small blood vessel extraction procedure, we use the
U-net model with 16 filters for the first convolutional layer,
followed by the ReLU activation function, we set the learning
rate of 1e − 4, and the sigmoid function is applied for the final
activation function.

4. Results

This research investigates the coronary vessel segmentation
performance based on the coarse-to-fine strategy-based U-
net for iterative segmentation comprising other approaches.
Figure 13 illustrates a segmentation result of the proposed
approach. We found through experimental analysis that
our method segments the large coronary vessels significantly.
The performance of size-independent coronary vessel seg-
mentation attains 80.17%. Besides, our method reveals a large
number of small and thin blood vessels. Finally, the proposed
approach obtains the average of the performance of coronary
vessel segmentation of 76.40%. We also compare the pro-
posed approach’s performance with the baseline U-net and
the other techniques in [7, 8] on our database. Figure 14
shows a comparison of segmentation results. Table 1
describes a summary of the coronary vessel segmentation
performance in terms of the Dice coefficient. The experimen-
tal results are described as mean ± standard deviation.

From Figure 14 and Table 1, we realize that our method
using the hierarchical approach based on deep learning and
coarse-to-fine strategy obtains better segmentation results
and outperforms the standard approaches. In Figure 14, we
can realize that the DFB-based segmentation [7] leads to
more artifacts and fails to enhance small vessels compared
to our approach correctly. Furthermore, it cannot detect the
small vessels that have low intensity and large vessels with
missing parts. Our method detects the large and small vessels
at the same time; even in the case of existing large difference
in intensity between the large vessels (which are high-
contrast objects) and the small vessels (which are low-
contrast objects), the DFB-based method cannot significantly
extract small vessels. The proposed method in [8] can extract
large blood vessels very well, but it leads to missed extraction
of small and thin vessels and vessels with low contrast to the
background. Experimental analysis indicated that the base-
line U-net yields higher accuracy than the traditional DFB
and Otsu approach. The U-net can obtain very high accuracy
for the main vessels. However, it also leads to missed extrac-
tion of small ones. Our proposed method-based U-net and
coarse-to-fine strategy-based segmentation provide the opti-
mal performance.

Our method is proposed to overcome the problem by
separately detecting the large vessels and small vessels based

(a) (b) (c)

Figure 13: Segmentation result of the proposed approach: (a) input image; (b) ground truth; (c) segmented blood vessels.
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on a hierarchical technique via the U-net model. Because we
consider that the large vessels always have high contrast to
the background than the small vessels, the U-net model is
suitable for extracting them. The coarse-to-fine strategy-
based segmentation guarantees that the method can correctly
extract the large vessels. In the small vessel extraction stage,
we first reduce the effect of large vessels and make a contrast
enhancement on the region that includes small vessels. This
deals with the low-contrast problem on small vessel regions.
When the small vessel regions have increased the contrast,
they were easily detected and segmented by U-net. This is
significant to extract small vessels. The experimental results
show that our method overcomes the limitations of the stan-
dard approaches, such as small vessel intensity and noise sen-
sitivity. It also performs better on real angiography images.

However, most errors occurred while processing small
vessels. These errors cause contrast enhancement based on
an image processing technique and quality of small images.
In particular, the traditional contrast enhancement approach
has errors due to the background enhancement with fewer
artifacts. In our cases, several small vessel images are affected
by illumination and noises, such as low-light conditions and
low contrast. The traditional contrast enhancement
approach cannot deal with all problems leading to reducing
the accuracy of our segmentation system. Figure 15 shows a

small vessel image affected by illumination and contrast
enhancement. Some small vessel branches are missing.

Our research contains other limitations rather than the
dependence on traditional methods for contrast enhance-
ment. There is a limitation in the number of public datasets
of X-ray angiograms of the coronary vessels. Researchers
have limited access to X-ray angiograms of coronary vessel
data. In addition, this research is a proof-of-concept study
and limited by the size of the dataset. Our dataset is consid-
ered small for developing a completed medical image-based
deep learning application. Medical image segmentation-
based deep learning requires sufficient data to obtain higher
accuracy than traditional systems.

5. Conclusions

We introduce an improved coronary vessel segmentation
technique by a hierarchical approach based on the coarse-
to-fine strategy for iterative segmentation using U-net archi-
tecture. Our method not only segments the main blood ves-
sels but also locates and extracts the small and thin vessel
branches. Through experiments results, it has been con-
firmed that our proposed method is effective and can
enhance the performance of vessel segmentation. However,
small vessel images are missing due to enhancing the back-
ground with fewer artifacts when these images are applied
to contrast enhancement based on the traditional image pro-
cessing technique. In the future, we intend to improve the

(a) (b)

(c) (d)

Figure 14: Comparison of the segmentation results: (a) input
image; (b) result in [7]; (c) result in [8]; (d) result of our method.

Table 1: Performance comparison of the coronary vessel
segmentation in terms of Dice coefficient.

Method Dice coefficient (%)

DFB-based segmentation [7] 45:50 ± 1:31%
Coarse-to-fine-based DFB and Otsu [8] 71:34 ± 0:80%
Baseline U-net [10] 73:64 ± 1:32%
Proposed approach 76:40 ± 1:02%

(a) (b)

(c) (d)

Figure 15: Under segmentation error of small vessel image due to
the effect of illumination: (a) input image; (b) contrast
enhancement image; (c) result using U-net; (d) result of our
method.
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results for small and thin vessels by exploiting the superpixel-
based deep learning approach to enhance the quality of small
vessel image and explore other deep learning frameworks for
coronary vessel segmentation and an extended method to
deal with 3D images.

Data Availability

We use private data from the hospital.
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