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Abstract
Response time (RT) data play an important role in psychology. The diffusion model (DM) allows to analyze RT-data in 
a two-alternative-force-choice paradigm using a particle drift diffusion modeling approach. It accounts for right-skewed 
distributions in a natural way. However, the model incorporates seven parameters, the roles of which are difficult to compre-
hend from the model equation. Therefore, the present article introduces the diffusion model visualizer (DMV) allowing for 
interactive manipulation of each parameter and plotting the resulting RT densities. Thus, the DMV serves as a valuable tool 
for understanding the specific role of each model parameter. It may come in handy for didactical purposes and in research 
context. It allows for tracking down parameter estimation problems by delivering the model-based ideal densities, which can 
be juxtaposed to the data-based densities. It will also serve a valuable purpose in detecting outliers. The article describes the 
basics of the DM along with technical details of the DMV and gives several hints for its usage.
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Introduction

Response times (RTs) for decisions constitute a valuable 
source of information in psychological research. They occur 
in simple reaction tasks (e.g., response to the occurence of 
a stimulus such as a light) and recognition tasks (go/no-go 
tasks and choice tasks, responding to stimuli with certain 
characteristics, but not to distractors lacking these charac-
teristics). In the present context, we will focus primarily on 
data from recognition tasks.

RT distributions are right-skewed by nature, requiring 
appropriate handling when applying analysis techniques 
assuming normally distributed data. Because of the techni-
cal efforts required to record RT data, we usually use experi-
mental designs to generate response data. These are primar-
ily evaluated with ANOVA-based methods, which do assume 
normal distributions. As a remedy, several ways of handling 
the skewed data have been proposed: some argue that the 
ANOVA F test is sufficiently robust against non-normality 
and, therefore, do not correct at all (e.g., Hays, 1994, p. 

406). Others apply transformations to approach normal dis-
tribution, like the Box–Cox transformation (e.g., Seber & 
Lee, 2003, ch. 10.3.2), the square root transformation or, 
more general, the family of power transformations (e.g., 
Cohen, Cohen, West & Aiken, 2003, p. 233 and p. 245), 
the logarithmic transformation (Cohen et al., 2003, p. 245), 
rank-based normalization (Cohen et al., 2003, p. 247), the 
shifted power transformation (e.g., Atkinson, 1985, p. 184), 
and others (e.g., Gro, 2004, ch. 6). A third line of handling 
is elimination of the values considered as outliers, i.e., both 
fast and slow responses (e.g., Voss, Nagler & Lerche, 2016). 
Fourth, one may as well try to apply other models than the 
normal one, as did Matzke and Wagenmakers (2009) by 
probing the ex-Gaussian and the shifted-Wald distribution, 
however, with limited success. Although some researchers 
found parameters of descriptive parameterizations of RT 
distributions to be useful (e.g., Schmiedek, Oberauer, Wil-
helm, Sü & Wittmann, 2007; Spieler, Balota & Faust, 1996), 
the primary point of criticism concerning shifted Wald and 
ex-Gaussian parameterization is probably that they are not 
motivated by a psychological theory. Another shortcoming 
is that they neglect the information in classification errors. 
Consequently, they are not suited to cope with speed–accu-
racy trade-offs.
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In contrast, the diffusion model constitutes an entirely 
different approach by drawing on particle diffusion theory. 
This approach offers a compelling principle to describe the 
skewed RT distributions typically resulting from human 
decision formation. However, due to its complexity (involv-
ing seven model parameters, as will be demonstrated below), 
it is hard to conceive, how the various parameters affect the 
resulting RT density curves. Therefore, the present article 
introduces a visualization tool allowing for exactly track-
ing and scrutinizing the role of each parameter and their 
interplay in great detail. The text is structured as follows: 
after a short introduction of the diffusion model (including 
numerous hints to relevant sources), the visualization tool 
is presented along with some technical details. Finally, we 
will discuss useful applications of the visualization program.

The diffusion modeling approach to RT 
analysis

The diffusion model (DM; Ratcliff, 1978, 2013), also termed 
Ratcliff DM, drift diffusion model (DDM, e.g., Bogacz, 
Brown, Moehlis, Holmes & Cohen, 2006; Correll, Witten-
brink, Crawford & Sadler, 2015; Dutilh et al., 2016, subm.), 
or Wiener diffusion model with absorbing boundaries (e.g., 
Grasman, Wagenmakers & van der Maas, 2009) takes into 
account both RT and accuracy of speeded binary decisions 
like those occurring in a two-alternative-forced-choice 
(2AFC or TAFC) paradigm. Respondents have to select 
one out of two response alternatives, possibly under time 
pressure, while RT and correctness are recorded for each 
decision. The simultaneous availability of both provides 
a means for disentangling the speed–accuracy trade-off 
dilemma (for a detailed account see Heitz, 2014 or Ratcliff, 
1978, pp. 93–97). How DM analyses improve our under-
standing of relatively fast decisions has been a major topic in 
two recent overview articles (Forstmann, Ratcliff & Wagen-
makers, 2016; Ratcliff, Smith, Brown & McKoon, 2016).

The concept of the diffusion model

Basically, the model assumes that cognitive informa-
tion accumulation and processing takes place in form of a 
sequential sampling process. After stimulus presentation, 
the respondent collects, processes, and accumulates stimu-
lus features, which favor either decision A or decision B. 
The model assumes that this accumulation corresponds to 
neural activity in some way without making further assump-
tions regarding details of the process. Several studies col-
lected empirical evidence supporting the plausibility of 
this assumption (e.g., Gold & Shadlen, 2007, Forstmann 
et al., 2016, Heekeren, Marrett, Bandettini & Ungerleider, 
2004; Heekeren, Marrett & Ungerleider, 2008; Ho, Brown 

& Serences, 2009; Lo & Wang, 2006; Ma, Beck & Pouget, 
2008; Soltani & Wang, 2010).

We conceive of the decision process as a random walk 
(i.e., discrete), but with the sampling assumed so fast that 
it can be expressed by a Wiener (i.e., a continuous-time) 
diffusion process, with a large noise component (cf. Nav-
arro & Fuss, 2009). The two resulting RT distributions form 
First-Passage Time distributions (FPT; e.g., Feller, 1968, 
ch. XIV.6 or Feller, 1971, ch. XIV.5), which can be traced 
back to what Siegmund (1986) has termed the “grandfa-
ther of all such problems” (p. 361), the one sample Kol-
mogorov–Smirnov statistic. Cox and Miller (1965) provide 
a fundamental treatise regarding Brownian motion and 
absorption.

Technically, we deal with sequential sampling models in 
the sense of Wald (1945, 1947), assuming here that a deci-
sion is the result of (noisy) evidence accumulation across a 
period of time eventually passing a critical threshold. Lam-
ing (1968) presents a series of experiments specifically link-
ing the decision process to the random walk model. How-
ever, in contrast to random walk models, the DM assumes 
both, evidence and time, to be continuous. The DM is there-
fore frequently described as a special case of the more gen-
eral class of sequential sampling models, which are charac-
terized by sampling of relative evidence, and contrasted to 
the class of Accumulator Models characterized by absolute 
evidence criteria (Bogacz et al., 2006; Ratcliff et al., 2016).

The four main parameters of the DM

The “classical” DM as formulated by Ratcliff (1978) 
employs four model parameters, which can be perceived as 
the “main” parameters carrying the fundamental meaning of 
the model in substantive terms (extensions will be discussed 
in “Parameter variability/variability parameters”).

Figure 1 shows an illustration of the RT densities of 
both reaction alternatives along with the four main model 
parameters. The parameter a is the upper threshold of 
accumulated evidence in favor of decision alternative A 
required to issue the respective response (usually pressing 
a key). The lower boundary is set to a value of zero, hence 
a is the boundary separation and reflects the threshold 
difference at the same time. The parameter z denotes the 
location of the starting point. It can be expressed as an 
absolute value on the same scale as a, then 0 < z < a ; 
however, it has proven convenient to rescale it to rep-
resent the starting position relative to a, then 0 < z < 1 
(which will be adopted here). The parameter t0 (or TER ) 
collects all time components not related to decision-
making but for encoding and response. The parameter � 
denotes the drift rate of information accumulation, which 
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is the average amount of evidence gathered per time slice. 
It can take positive and negative values.

Parameter interpretation from a psychological point 
of view

While the model parameters convey a compelling inter-
pretation from a theoretical point of view, we have to 
provide empirical evidence corroborating these theo-
retical assumptions from a substantive (psychological) 
perspective. The following selection of results regarding 
parameter validation illustrates that we already dispose of 
ample evidence supporting the theoretical view. For stud-
ies systematically exploring parameter validity see, for 
example, Arnold, Broder and Bayen (2015), Lerche and 
Voss (2017), Ratcliff and Rouder (1998), Voss, Rother-
mund and Voss (2004), or Wagenmakers, Ratcliff, Gomez 
and McKoon (2008).

Boundary separation a

Large values of a are assumed to indicate the subject’s 
response caution, which is under subjective control and 
determined prior to the start of each trial (e.g., Wagen-
makers, 2009). In this sense, Voss et al. (2004) termed this 
parameter the “response criterion”. Ratcliff and Rouder 
(1998) established a speed vs. accuracy condition by 
instructing the respondents to respond as quickly as possi-
ble in the first case or to decide as accurate as possible in the 
latter case. They found marked differences in the a param-
eter estimates between the two conditions. Also Voss et al. 
(2004) found significantly increased values of this parameter 
when instructing respondents to “work especially carefully 
and to avoid mistakes” (p. 1211). Likewise, van Ravanzwaaij 
and Oberauer (2009) found the speed-accuracy instruction 
to affect primarily a. Arnold et al. (2015) varied the speed-
accuracy instruction by giving negative feedback either 
when the response was wrong (accuracy condition) or when 
the response took more than 1000 ms (speed condition), 

Fig. 1   Graphical user interface of the diffusion model visualizer 
showing an example of a distribution. Notes: The horizontal axis 
represents the RT. The top section (green curve) shows the RT den-
sity for positive responses and the bottom section (red curve) the RT 
density for negative responses. For reaction times shorter than t

0
 , the 

probability of a response is zero. In the left panel there are seven slid-
ers allowing for adjusting the four main (upper row) and the three 
variability parameters (lower row). Below, we find entry fields for 

parameters affecting the computation of the density curves. The mid-
dle section contains the plot: The vertical dashed lines indicate the 
expected means and the stacked bars at the end of the horizontal axis 
show the expected proportions of positive and negative responses. 
The shaded blue bars represent the variability parameters s

z
 , s

t
0
 , and 

s� . In the upper and lower right corner, the chosen parameter values 
(blue) and some descriptive statistics (red) are printed. At right hand 
side, we find the options to fine-tune the appearance of the diagram
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yielding the expected differences in a as well. Moreover, 
the boundary separation also seems to increase with age. 
Ratcliff and McKoon (2008) quote a large series of studies 
indicating that this effect is due to increased conservatism 
of older adults (p. 911).

Response bias z

The starting point (or bias) parameter z is understood as a 
bias of the individual, reflecting the a priori expectation, 
whether the next stimulus will be a positive or negative 
example (i.e., which response will likely be the adequate 
one). Accordingly, Ratcliff and McKoon (2008) found vari-
ations in z in relation to the proportion of left- and right-
moving stimuli (which the subjects were told in advance); 
Arnold et al. (2015) also found variations in z by varying the 
proportion of old and new items in a recognition memory 
experiment; Voss et al. (2004) further revealed that the start-
ing point varies when one of the two responses is offered a 
reward.

Drift parameter �

Ratcliff and McKoon (2008) describe the drift parameter as 
the “quality, or strength, of the information available from a 
stimulus” (p. 901). Hence, large (absolute) values indicate 
that the stimulus allows for a fast decision, while values 
close to zero indicate that the decision might rather rest upon 
guessing. Ratcliff (1978) considered the drift parameter “to 
alone represent input from memory into the decision sys-
tem” (p. 70). However, in a between-subject comparison of 
identical tasks, � may as well be seen as the parameter repre-
senting “perceptual sensitivity” (Voss et al. 2004, p. 1208). 
This interpretation is rather appealing, as it allows for mod-
eling a subject’s information processing speed independent 
of speed–accuracy preference or conservatism (which is 
covered by a) or motor response-execution speed (covered 
by t0 ). It is further in line with Schmiedek et al. (2007), who 
found a relation of the drift parameter to working memory. 
Also, van Ravenzwaaij, Brown and Wagenmakers (2011) 
relate individual differences in general intelligence to the 
drift parameter and Ranger, Kuhn and Szardenings (2016) 
characterize � generally as “(...) the subject’s capability to 
process information.” (p. 124).

Voss et al. (2004) found the drift rate to vary correspond-
ing to the increased difficulty of the task. Also Ratcliff and 
McKoon (2008) found that stimuli of varying difficulty 
affected exclusively the drift parameter. Similarly, van 
Ravanzwaaij and Oberauer (2009) found � to correspond to 
the stimulus–response compatibility (p. 469). Arnold et al. 
(2015) presented some of the old stimuli of a recognition 
experiment once and some of them twice along with new 

items, yielding significant differences in � across these three 
conditions.

Non‑decision time component t
0

The t0 parameter comprises all processes not involved in 
decision-making. These embrace encoding of the stimu-
lus, response preparation, and motor response. Voss et al. 
(2004) induced a response handicap condition, in which 
respondents were instructed to use one and the same finger 
for all keyboard responses (“C” and “M”), requiring them 
to press the “B”-key with the same finger to start the trial. 
They found on average a significantly increased value for the 
t0-parameter (compared to a standard experimental condi-
tion, not involving this response handicap), suggesting that 
the non-decision parameter actually reflects the motoric 
complexity of a task. The same conclusion was achieved by 
Gomez et al. (2015), who by varying the response modality 
(eye movement, key pressing, and pointing on a touchscreen; 
p. 1518) found these three modalities to affect only t0 (and 
its variability, st0 ), but none of the other model parameters. 
Lerche and Voss (2017) required their respondents to press 
the response key not once (as usual), but three times in a 
row, after coming to a decision. They found clear effects 
upon the t0-parameter, thus corroborating the validity of this 
parameter.

The model equations

The DM relies on two sources of information, the (non-)
matching response rate and the two RT distributions. Resort-
ing to the “gamblers ruin problem” (or “classical ruin prob-
lem”, as denoted by Feller 1968, p. 342), which is of discrete 
nature, Ratcliff (1978) restated winning (or losing) a dollar 
as the (non-)matching of the features of a probe item and a 
memory item. By considering information accumulation as 
a continuous process, he arrives at

for the probability of a non-matching response and the fin-
ishing time density for negative responses is given as

(p. 70, Equations (A8) and (A9), notation adapted). The 
probability of and density for positive responses is obtained 
analoguously by applying �+ = −� and z+ = a − z . The term 
s2 denotes the variance of the Brownian motion within one 
trial (therefore termed intra-trial variability of the drift), 
which is not a model parameter, but rather a constant. It 

(1)P(−|a, z, �) = e−(2�a∕s
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has to be set to an appropriate value prior to parameter 
estimation to make the model identified (cf. Ratcliff et al., 
2016, p. 262). The choice of s is not critical, as it regards 
only the scale of the estimated parameters; two values are 
often observed, s = 1 and s = 0.1.

Equation (2) has been previously published, e.g., in Feller 
(1968, eq. 6.15), who also notes that it is known as “Fürth’s 
formula for first passages” in physical diffusion theory (Feller, 
1968, p. 359). Busemeyer and Diederich (2010, esp. Appendix 
to ch. 4) provide a comprehensible derivation of the model 
equations. Ratcliff (1978) also showed an alternative means 
to derive the first-passage time distribution (2) as the solution 
of a partial differential equation (PDE, also known as Fok-
ker–Planck Backward Equation in statistical mechanics), thus 
circumventing the approximation of the infinite sum involved 
in Eq. (2).

Parameter variability/variability parameters

For applications it is reasonable to take further sources of 
variability into account and to provide for the according 
parameters. The core aspect of parameter variability is that it 
seems unplausible to assume respondents’ attention to remain 
constant throughout the entire experiment. Rather, we have 
to expect a trial-to-trial-fluctuation of the model parameters.

The variability of the drift parameter s� (Ratcliff, 1978 and 
other authors use � for the mean and � for the standard devia-
tion of � ) has always been an integral element of the drift dif-
fusion model. It allows to account for variability in encoding in 
memory, but also predicts slower RTs for incorrect responses 
than for correct ones (cf. Ratcliff & Rouder, 1998, p. 348; Rat-
cliff et al., 2016, p. 267).

Ratcliff and Rouder (1998) introduced further the start-
ing point variability parameter sz to explain error responses 
“slower than correct responses at intermediate levels of 
accuracy” and “faster than correct responses at extreme lev-
els of accuracy” (p. 349). Moreover, Ratcliff and Tuerlinckx 
(2002) introduced also a variability parameter of the encoding 
and reaction time, st0 to model large variability of very fast 
responses (esp. the 0.1 quantile of the RT distribution, see 
ibid., p. 441).

Distributional assumptions and estimation

The drift rate variability is assumed to follow a normal dis-
tribution with mean � and standard deviation s� . In contrast, 
the encoding and reaction time component t0 and the starting 
point z are modelled assuming a uniform distribution, with 
range st0 and sz , respectively. Thus, we yield for the effective 
parameters �∗ , z∗ , and t∗

0
:

(3)�∗ ∼ N(�, s2
�
),

(4)z∗ ∼ U(z − sz∕2, z + sz∕2),

The three variability parameters do not have a psychologi-
cal interpretation of their own, but rather allow for captur-
ing random disturbances without invalidating the model or 
deteriorating parameter estimates and model fit. However, 
some authors argue in favor of fixing the variability param-
eters, either because this might improve estimability of the 
four main parameters (e.g., Lerche & Voss, 2016; 2017), or 
to keep the entire procedure as simple as possible (e.g., van 
Ravenzwaaij, Donkin & Vanderkerckhove, 2017).

The variability parameters are not part of the model Eqs. 
(1) and (2), but rather have to be found by numerical integra-
tion in the parameter estimation process (see “Behind the 
scenes: a few technical details”). They have (compared to 
the four main parameters) little influence upon the resulting 
density curves, which can easily be checked with the tool 
presented in the next section.

Further extensions

Next to the variability parameters, several model extensions 
have been proposed, e.g., Voss et al. (2010) introducing a 
response-execution bias parameter; Krajbich and Rangel 
(2011) providing for a three-alternative decision design; 
Diederich (1994) using an Ornstein–Uhlenbeck process 
with drift; Tuerlinckx and Boeck (2005), van der Maas et al. 
(2011), and Molenaar, Tuerlinckx and van der Maas (2015) 
bridging the DM to item response theory (IRT) models, or 
Vandekerckhove et al. (2011) introducing a hierarchical 
approach with responses (level 1) nested within respond-
ents (level 2).

The diffusion model visualizer

The diffusion model has proven to be a valuable tool for 
evaluating both response correctness and RT in decision-
making processes. However, the specific roles the various 
model parameters play in generating the densities of posi-
tive and negative responses are hardly apprehensible from 
the model equations. For that purpose, the diffusion model 
visualizer (DMV) has been developed visualizing the RT 
density curves for a given parameter constellation. Figure 1 
shows the graphical user interface (GUI) of this program.

The DMV GUI

At the left, there is a panel with seven sliders allowing 
adjustment of each parameter. These sliders can be changed 
with the mouse, using the “+” and “–” buttons, using the 
PgUp and PgDown buttons, or by entering values into the 
respective text fields. Below, three entries allow for setting 

(5)t∗
0
∼ U(t0 − st0∕2, t0 + st0∕2).
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s2 , the number of iterations to approach the infinite sum of 
Eq. (2), and the number of nodes to be used for the numeri-
cal integration required for the variability parameters. The 
middle section of the GUI shows the resulting density curves 
along with a symbolic depiction of the actual model param-
eters. At the right, graphical and computational options 
allow for fine-tuning the plot. On top of the screen, there 
are four tabs allowing for switching from the PLOT page to 
a HELP page with some basic instructions and usage hints, 
the LIMITS page, which allows for increasing the parameter 
limits (for experimental purposes), and the LOG page with 
some numerical details of the calculations. The DRAW​ but-
ton invokes the calculations and delivers the diagram with 
the currently set options. The CLEAR button empties the 
canvas, the CLIP button copies the current diagram to the 
clipboard, and the SAVE button allows for storing the plot 
to disk. A bold face caption of the DRAW​ button indicates 
pending parameter changes.

Next to the DRAW​ button there is the Animation check-
box. It causes the plot to be drawn instantly upon slider 
movements, which gives a vivid impression how the curves 
change with parameter modifications. Next to this option, 
there is a Superimpose densities checkbox, which 
helps to compare various parameter constellations.

The Plot options panel allows for adaption of the 
diagram to specific scenarios (e.g., for a closer inspection 
of the densities’ ascending tails by decreasing the Time 
span). The fill area option might prove useful in cases, 
in which a very small image is to be conveyed, for example 
in a matrix plot.

DMV usage

The default parameter setting is a = 1 , z = 0.5 , � = 0.2 , and 
t0 = 300 , with the variability parameters set to zero and 
s2 = 1 . This configuration results in two fairly similar den-
sity curves. Shifting the a slider upwards shows how both 
densities become increasingly flatter the larger the value 
of a. This effect is comprehensible, as a larger a indicates 
more evidence accumulation towards one of the two deci-
sion boundaries thus causing elongated reaction times. In 
contrast, when we decrease a, the densities increase for short 
reaction times changing their shape drastically. Both curves 
change in a similar way, as positive and negative responses 
are affected equally from changes in a.

Changing the starting point z causes a strong dissimilar-
ity of the two curves. Increase of z causes the upper curve 
to grow and the lower curve to shrink and vice versa. This 
effect is near at hand, as being biased towards, say, the upper 
decision fosters its choice while much more evidence is 
required to come to the lower one, and vice versa. At the 
same time, the two curves also change their shape drastically 

and in an asymmetrical way, because not only the response 
probabilities (as given in Eq. 1) change, but also the respec-
tive RT mean values.

Changing the � parameter also in-/decreases the kurtosis 
of the two curves, as did z. But in contrast to z, the shape 
changes are more symmetrical, less pronounced, and the 
means will not differ notably.

Finally, moving the t0 slider shifts both densities hori-
zontally. This is evident from the model definition, as the 
encoding and RT is not associated with the decision process 
itself thus leaving the densities’ shapes unaltered.

The three variability parameters are initially set to zero. 
Increasing sv will cause a slight increase in short reaction 
times moving the mode of the curve somewhat to the left. 
The sz parameter causes a slight increasing of the “peaked-
ness” (i.e., the kurtosis) of both densities. The st0 parameter 
“flattens” the ascending tails of the densities a bit and thus 
reduces their kurtosis. Note that due to the computational 
burden, the variability parameter sliders will take effect not 
before releasing the mouse button (in contrast to the four 
main parameter sliders; see “Behind the scenes: a few tech-
nical details”).

To gain an impression of the effect of the various param-
eter configurations, the Superimpose densities 
checkbox allows for plotting multiple curves in one plot. 
Note that this option becomes automatically unchecked, 
if the Draw model parameters options is checked 
and the value of a is changed. Otherwise, the dislocated 
baselines (indicating the de-/increasing a) would be drawn 
one over the other, thus rendering the diagram distorted. 
Alternatively, one could also uncheck the Draw model 
parameters option, which will leave the two baselines 
in place thus keeping the diagram intact (this applies only if 
you want to change a; for examining the other parameters, 
using Superimpose densities and Draw model 
parameters conjointly will provide highly informative 
diagrams).

While it is relatively easy to describe the main effects of 
changing one parameter at a time, the impact of multiple 
changes is much more complex and is, therefore, left to the 
reader. As an introductory example, interested readers could 
increase the (uncommonly low) � (which is 0.2 at start-up) 
to a more frequently observed value of 1 and inspect the 
changes.

Behind the scenes: a few technical details

The program implements the model Eqs. (1) and (2). The 
infinite sum contained in Eq. (2) is approximated by 100 
steps. This value can be changed with the Kmax option. 
However, program testing showed that too small a Kmax 
(simulations suggest below approximately 50) may cause 
artifacts (spikes in the vicinity of t0 ) with certain parameter 
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configurations due to numerical inaccuracies. A preliminary 
sensitivity analysis revealed that the default value should 
suffice for most cases (in most cases, the sum converges after 
much fewer iterations). Readers are, therefore, advised to 
increase Kmax with caution, as larger values will increase 
the computational burden considerably, in particular when 
working with the variability parameters.

The effects of the three variability parameters are induced 
by integrating over the respective distributions as given by 
Eqs. (3), (4), and (5) (cf. Ratcliff & Tuerlinckx, 2002, esp. 
App. B). The integration is implemented using the trapezoi-
dal rule with ten nodes across the respective ranges as given 
in Eqs. (3), (4), and (5). For � , the integration interval is 
� ± 4s� . The nodes option allows for changing the number 
of nodes, but again, use this option with caution, increasing 
it will also cause considerable computational burden, while 
decreasing will lead to numerical inaccuracies.

Because the numerical integration routines invoked by the 
variability parameters are computationally expensive, espe-
cially when activating two or all the three of them simulta-
neously, plotting may slow down. Therefore, the Anima-
tion feature regarding the sz -, the s� -, and the st0-sliders 
only update the plot upon releasing the mouse button, while 
the a-, z-, � -, and t0-sliders invoke the plot update immedi-
ately upon mouse movement.

The intra-trial variance of the Brownian motion, s2 , 
defaults to one with an option for change. Changing s2 
will alter the plot unless the other parameter values, which 
are linearly related to s2 [see model Eqs. (1) and (2)], are 
adapted accordingly.

The DMV is written in Free Pascal/Lazarus (Free Pas-
cal Team 1993–2016; Lazarus Team 1993–2016). This pro-
gramming environment has three advantages relevant to our 
endeavour: first, it allows generation a fast executing code, 
which is necessary as complex calculations are performed. 
Second, it supports building clearly-arranged GUIs with lit-
tle effort. Thirdly, it allows for cross-compiling, i.e., generat-
ing binaries for a Linux or a Mac environment as well (at 
the moment, only a Windows version is provided; in case a 
version for a different platform is required, please contact 
the author; under Linux, the program can be executed using 
the wine emulator).

Applying the DMV

Several applications of the program can be thought of: first 
of all, it may serve as a valuable tool for educational pur-
poses, allowing for a vivid illustration of how the various 
parameters affect the resulting density curves. This is an 
important task, because the diffusion model uses seven 
parameters whose effects on the polymorphic RT densi-
ties and response probabilities are complex and difficult to 

understand—equally for students and researchers new to the 
model. The DMV allows exploration of the effect of the vari-
ous model parameters upon the decision accuracy and the 
RT distribution, i.e., not only its mean and standard devia-
tion, but also the higher moments skewness and kurtosis—or 
even the entire shape as such.

The diffusion model differs fundamentally from more 
frequently applied models in psychology, like the Gener-
alized Linear Model (GLM; McCullagh & Nelder, 1989) 
including multi-level structures and structural equation mod-
eling extensions (Skrondal & Rabe-Hesketh, 2004), or Item 
Response Theory models (IRT; de Ayala, 2009). The most 
important difference is that it is not a member of the expo-
nential family (Barndorff-Nielsen, 1978) thus follows quite a 
different mathematical structure, viz. differential equations. 
Moreover, DMs are still rather rarely applied (but show-
ing a strongly increasing tendency), so researchers have so 
far had fewer opportunities to become familiar with them. 
While the model equations rather conceal information, the 
animated illustration allows for grasping the basic concept 
and dynamics of the model and the roles its parameters play 
in an intuitive way.

The DMV might also prove useful in research. It could 
come in handy when parameter estimation problems are 
observed (e.g., estimates exhibit unexpected values or the 
estimation routine would not terminate in a regular fashion). 
Then, one could juxtapose the observed RT distributions of 
positive and negative responses to those of the DMV plot 
and explore manually various parameter constellations. Such 
a comparison will be particularly useful for determining RT 
outliers, which are subject to an ongoing debate of how to 
be handled (cf. Grasman et al., 2009; Ratcliff, 1978; Vande-
kerckhove & Tuerlinckx, 2007).

Similarly, the DMV could serve as a validation tool for 
empirical data: for example, Schmiedek et al. (2007) used 
the DM parameters estimated from their data to simulate 
a DM perfectly in line with these estimates and compared 
statistics derived from the simulated data to the respective 
empirical counterparts (Schmiedek et al., 2007, p. 424, 
Fig. 3). With the DMV, they had the entire shape of the RT 
distributions at their disposal, rather than only statistics.

Most diffusion model parameter estimation routines 
allow for fixing of parameters and estimating the remain-
ing ones (e.g., z = 0.5 or variability parameters are set to 
zero). Comparing the observed with DMV-generated dis-
tributions may help determine a sensible choice of model 
parameter restrictions (requiring validation by independent 
data, of course). For example, in “Parameter variability/vari-
ability parameters”, we referred to studies arguing in favor 
of fixing the variability parameters. Exploring the effect 
of these parameters with the DMV reveals that they have 
rather moderate impact upon the RT densities compared to 
those of the four main parameters. This supports—at least 



1164	 Psychological Research (2020) 84:1157–1165

1 3

to some extent—the critical voices regarding the variability 
parameters.

Conclusions and outlook

Although the diffusion model was introduced quite a while 
ago in the late seventies, it was only scarcely applied during 
the early years of its existence. But within approximately 
the last decade, a number of easy-to-use programs have 
appeared and a steadily growing number of studies have 
been applying the DM. For this growing community, the 
DMV will likely serve as a useful tool and might come in 
handy during lectures and presentations. The program is 
available at https​://osf.io/4en3b​/ or http://www.dmvis​.at/.
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