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Automatic assessment 
of adverse drug reaction reports 
with interactive visual exploration
Zongyang Gao1,2,4, Yu Yang1,4, Ruogu Meng1, Jinyang Yu3 & Liang Zhou1*

A large number of adverse drug reaction (ADR) reports are collected yearly through the spontaneous 
report system (SRS). However, experienced experts from ADR monitoring centers (ADR experts, 
hereafter) reviewed only a few reports based on current policies. Moreover, the causality assessment 
of ADR reports was conducted according to the official approach based on the WHO-UMC system, a 
knowledge- and labor-intensive task that highly relies on an individual’s expertise. Our objective is to 
devise a method to automatically assess ADR reports and support the efficient exploration of ADRs 
interactively. Our method could improve the capability to assess and explore a large volume of ADR 
reports and aid reporters in self-improvement. We proposed a workflow for assisting the assessment 
of ADR reports by combining an automatic assessment prediction model and a human-centered 
interactive visualization method. Our automatic causality assessment model (ACA model)—an ordinal 
logistic regression model—automatically assesses ADR reports under the current causality category. 
Based on the results of the ACA model, we designed a warning signal to indicate the degree of the 
anomaly of ADR reports. An interactive visualization technique was used for exploring and examining 
reports extended by automatic assessment of the ACA model and the warning signal. We applied 
our method to the SRS report dataset of the year 2019, collected in Guangdong province, China. Our 
method is evaluated by comparing automatic assessments by the ACA model to ADR reports labeled 
by ADR experts, i.e., the ground truth results from the multinomial logistic regression and the decision 
tree. The ACA model achieves an accuracy of 85.99%, a multiclass macro-averaged area under the 
curve (AUC) of 0.9572, while the multinomial logistics regression and decision tree yield 80.82%, 
0.8603, and 85.39%, 0.9440, respectively, on the testing set. The new warning signal is able to assist 
ADR experts to quickly focus on reports of interest with our interactive visualzation tool. Reports of 
interest that are selected with high scores of the warning signal are analyzed in details by an ADR 
expert. The usefulness of the overall method is further evaluated through the interactive analysis of 
the data by ADR expert. Our ACA model achieves good performance and is superior to the multinomial 
logistics and the decision tree. The warning signal we designed allows efficient filtering of the full ADR 
reports down to much fewer reports showing anomalies. The usefulness of our interactive visualization 
is demonstrated by examples of unusual reports that are quickly identified. Our overall method could 
potentially improve the capability of analyzing ADR reports and reduce human labor and the chance of 
missing critical reports.

Drug safety has been well considered during the highly complex process of drug development, including phase 
I to phase III trials. However, pre-marketing trials lack sufficient power to reliably detect important adverse 
drug reactions (ADRs). Post-marketing surveillance for ADRs is indispensable since the possibility of rare, but 
serious ADRs or common delayed ADRs cannot be excluded even after approval to further ascertain safety for 
patient consumption. Post-marketing drug safety surveillance has primarily depended on spontaneous data 
from the ADR reporting system for decades, which relies on voluntary reporting by medical professionals, 
pharmaceutical companies, health authorities, or patients and their families1. The spontaneous reporting system 
(SRS) has been established in China since 1989 and supervision of ADRs now is a working priority for the drug 
authorities of China2.
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The identification and evaluation of signals of possible ADRs have required careful manual review of indi-
vidual case safety reports (ICSRs) from SRSs. Causality assessment is a fundamental feature of ICSRs review3. 
The WHO-UMC4 system for expert judgment is the most widely accepted method for causality assessment 
worldwide. The current approach for causality assessment of SRS in China was listed in the “Administrative 
Measures for the Reporting and Monitoring of Adverse Drug Reactions” revised by the Ministry of Health in 
2011. This approach adapts the WHO-UMC system—it follows the basic principle of judging the causal relation-
ship of adverse reactions and considers the timing, consistency, intensity, and specificity of adverse reactions. 
The correlation evaluation of adverse drug reaction (ADR)/adverse drug events (ADE) reports adopts the 6-level 
evaluation method with the following categories: “certain”, “probable/likely”, “possible”, “impossible”, “conditional/
unclassified” and “unassessable/unclassifiable”.

Such assessment approaches highly depend on individual expertise and judgment, making it a knowledge- and 
labor-intensive task. China Food and Drug Administration (CFDA) had established ADR monitoring centers 
at different levels (municipal, provincial, and national levels) as technology supporting institutions5. However, 
not all reports would be reviewed by experts at different levels. According to the current regulation, only a small 
part of individual reports judged as serious ADR reports would be reviewed again by ADR experts from ADR 
monitoring centers at the provincial level every year. Moreover, only reports of death cases would be reviewed 
by national-level experts. For example, in 2020, 1676000 ADR reports were received in the SRS system, of which 
ADR experts reviewed only about 10%. The lacking of an effective tool for examining ADR data may have reduced 
the value of the large number of reports collected through the SRS.

In this paper, we advocate for assisting in reviewing and assessing ADR reports with automated assessment 
prediction and interactive visualization. Automatically assessing all reports could provide ADR experts with an 
overview of all reports and help ADR reporters to review and improve their reports. However, a perfect prediction 
model does not exist, and, therefore, automatic assessments cannot replace the judgment of humans. In fact, it is 
vital to have humans in the loop in drug safety practices. Interactive visualization is a human-centered technol-
ogy that has demonstrated its usefulness and effectiveness in balancing the cognitive advantage of humans and 
the computational advantage of computers in data mining6 and decision making7. Therefore, we propose to use 
interactive visualization for users to explore ADR reports and examine reports of interest with their automatic 
assessments in detail. To facilitate filtering ADR reports with interactive visualization, a warning signal is devised 
such that characteristics of ADR reports could be conveniently measured quantitatively. Overall, our technique 
is a new approach for assessing and reviewing ADR reports in large quantities.

Method
Unlike a large body of research focusing on “signal detection” from ADR reports, our work is intended to auto-
matically assess the causality category of reports by learning from ADR experts and facilitate the exploration of 
ADR reports thereafter. In the remainder of this section, we will provide an overview of the method, and then, 
discuss each module of the method in detail, including the data, the automatic assessment model (ACA model), 
the warning signal computation, and the analysis with interactive visual exploration.

Overview.  The workflow of our method is shown in Fig. 1, which features an iterative human-in-the-loop 
approach. The input is report data from the SRS, which could be interactively assessed with the visualization tool 
(the orange box with dashed line) to provide labeled ADR reports. The labeled reports (typically, a small por-

Figure 1.   The workflow of our method.
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tion of all reports)—either assessed with or without the interactive visualization tool, e.g., previously manually 
assessed data—along with the input data are processed by our ACA model.

The ACA model predicts an assessment Y for each report in the SRS dataset. Our new warning signal  � is 
calculated for each record using Y and the original ADR data, and � is used for filtering so that users could focus 
on particular groups of reports, e.g., reports with high absolute values of the warning signal  as discussed in 
“Interactive visual exploration of the ACA modelresults”. The warning signal  � is used for interactive exploration 
of ADR reports in our visualization tool. Interactive exploration could improve the assessment and allows users 
to examine specific report more closely. Moreover, ADR reporters could easily compare the difference between 
model assessment and theirs and possibly improve the quality of assessments after that. Therefore, the workflow 
of our method forms a loop that iteratively improves the quality of SRS reports.

Data.  Spontaneous reports recorded by the Guangdong adverse drug reaction monitoring center in 2019 
(2019 dataset, hereafter) that have been anonymized were used in our study under the approval by the institu-
tional review board ethics committee of the Peking University with ethical exemption (IRB00001052-20012-ex-
empt). The total number of records in the dataset amounts to 137964. Among all records, 20022 records labeled 
by ADR experts of Guangdong adverse drug reaction monitoring center were used for model training and test-
ing. The data contain various types of variables: Boolean variables describing gender of the patient, the classifica-
tion of ADR/ADE (new or not; serious or not); ordinal variables recording causality assessments of the report 
by the reporter, the institute of the reporter, experts of municipal ADR administration, and experts of ADR 
administration at provincial-level ADR experts; ADR/ADE occurrence time, the duration of the drug usage; 
textual information on the ADR/ADE symptoms, the brand name and the trade name of the drug, and other 
information required in formatted report.

The value of an assessment is categorized into five levels in an increasing order of certainty and coded as 
follows.

•	 1 = unassessable/unclassifiable
•	 2 = conditional/unclassified
•	 3 = possible
•	 4 = probable/likely
•	 5 = certain

We use all variables in our interactive visualization tool and a subset of the variables are chosen for the automatic 
assessment model. Variables that are relevant for automatic assessment are first empirically selected by an ADR 
expert and then systematically refined by experimenting with the performance of the model. The resulting vari-
ables used for our automatic assessment model are listed and explained in Table 1.

Automatic causality assessment model.  The prediction of assessments of the data could be realized by 
logistic regression. Multinomial logistic regression is a typical method for such a task8. However, this requires 
the fitting of a large number of parameters, so the degree of freedom used in the model fitting process will put 
excessive demands on the data set. More problematic, multiple logistic regression does not take into account the 
ordinal properties of the response variables9.

In contrast, ordinal logistic regression is geared for data with ordinal response variables. Moreover, ordinal 
logistic regression has no specific requirements on variable types, considering that all dependent variables are 
classified variables, it is a simple and applicable method in this situation. Often, ordinal logistic regression is 
achieved through the proportional-odds cumulative logit model10. The model reads:

Table 1.   Variables used in the ACA model.

Name of variable Description Type

Casualty Assessment 1 Plausible time relationship to drug intake Boolean

Casualty Assessment 2 Matched with known ADR types Boolean

Casualty Assessment 3 Response to withdrawal plausible Boolean

Casualty Assessment 4 Rechallenge satisfactory Boolean

Casualty Assessment 5 Can be explained by other factors Boolean

Severity Assessment 1 Death Boolean

Severity Assessment 2 Carcinogenic, teratogenic, or birth defect Boolean

Severity Assessment 3 Significant or permanent disability or damage to organ function Boolean

Severity Assessment 4 Life threatening Boolean

Severity Assessment 5 Admission or prolonged hospitalization Boolean

Severity Assessment 6 Other significant medical events Boolean
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where Yi is the ordinal dependent variable, Xi is the independent variable, and i is the index of the record within 
the dataset of n records. The probability function of the proportional-odds model is:

where θj is the cut point of the jth logit function. This model is based on the assumption that the slope coefficients 
do not depend on the selection of cut-off points11, i.e., the parallel assumption. However, the parallel assumption 
can be easily violated.

As a natural extension of the proportional odds model, the partial proportional odds model is proposed10. 
This model allows some variables to violate the parallel assumption, in other words, allows some to vary among 
logit equations. The partial proportional odds model can be expressed as follows:

The probability function reads:

where Ti is a q× 1 vector, q ≤ p , represents the values of q independent variables violating the parallel assump-
tion, and τj is the regression coefficients associated with those variables, also depend on the selection of j. If all 
variables follow the parallel assumption, it becomes the proportional odds model.

Therefore, the partial proportional odds model is used in our ACA model as it is more flexible and has a higher 
tolerance of independent variables compared to the proportional odds model. In our model, Xi is the independ-
ent variable of p attributes, which is a p× 1 vector, and Yi denotes the recorded causality category assessment 
of ordinal scales 1 through 5 of the ith report in the dataset that contains n records. Here, the number of p is 
determined to be 11 according to our variable selection as shown in Table 1.

We used the 2019 dataset that contains provincial-level ADR experts labeled records to train our model. The 
labeled data, i.e., the ground truth data, contains 20022 records in total, and we divide the records randomly 
into a training set (16,017 records) and a testing set (4005 records) to train the model. We implemented the 
ACA model in R aided by the ‘vgam’ package that readily implements the partial proportional odds model12. 
We compare the results of the ACA model to the ground truth data (expert labeled assessment), and those 
from the multinomial logistic regression and the decision tree methods. The accuracy, F1 scores, and multiclass 
receiver operating characteristic (ROC) curves13 are calculated for each method. The multiclass ROC is used as 
the standard ROC is designed for binary classification, it is not suitable for our case of classification of multiple 
ordinal classes. The results can be found in “Results”.

Warning signal computation.  With our automatic assessment model, each report now has a predicted 
assessment trained with assessments by provincial-level ADR experts providing a reference for an ADR reviewer. 
However, exploring and analyzing the whole dataset even with automatic assessments is still challenging and 
laborious.

To this end, a warning signal that could quickly draw the attention of an ADR reviewer to reports of interest 
is helpful. Our goal is to encode the following information with the warning signal: I1, whether an agreement 
exists between assessments by the ACA model and a reporter, for example, both agree that a true adverse event 
occurred but assessments could vary on degrees; I2, the difference between the assessment of a reporter and 
the ACA model; I3, the severity of the adverse event. Moreover, the warning signal should use a medium value 
to encode the majority of reports, whereas high and low values indicate reports that are distinct as they are of 
potential interest.

We denote assessments from the ACA model and the spontaneous report as Y, and Y0 , respectively. The term 
s is designed to encode I1 and I3 using variables d and r:

(1)
logit[P(Yi ≤ j)] = ln

P
(

Yi ≤ j | Xi

)

1− P
(

Yi ≤ j | Xi

) = θj + βTXi ,

j = 1, 2, 3, 4, 5 i = 1, . . . , n,

(2)P(Yi ≤ j) =
exp(θj + βTXi)

1− exp(θj + βTXi)
, j = 1, 2, 3, 4, 5 i = 1, . . . , n,

(3)
logit[P(Yi ≤ j)] = ln

P(Yi ≤ j | Xi)

1− P(Yi ≤ j | Xi)
= θj + βTXi + τTj Ti ,

j = 1, 2, 3, 4, 5 i = 1, . . . , n.

(4)
P(Yi ≤ j) =

exp(θj + βTXi + τTj Ti)

1− exp(θj + βTXi + τTj Ti)
,

j = 1, 2, 3, 4, 5 i = 1, . . . , n,

(5)d =







|Y − Y0|, (Y − 3)(Y0 − 3) > 0,
Y + Y0 − 6, (Y − 3)(Y0 − 3) = 0,
−|Y − Y0|, (Y − 3)(Y0 − 3) < 0.

(6)r =

{

1, normal ADE,
4, serious ADE,
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where d describes the degree of disagreement of assessments (I1), and r describes the severity of the adverse event 
(I3). The variable d is designed in a way (Eq. 5) that a positive sign indicates that the assessment of ACA model 
agrees with that of the report, and a negative sign indicates that the two assessments disagree; whereas its absolute 
value measures the difference of the two assessments. To support intuitive user interactions in the visualization, s is 
designed to have a symmetric range by offsetting d by one ( d + 1 ) as in Eq. (8). The values of the term r are chosen 
to avoid the warning signal value overlapping for normal and serious ADE reports. As a result, a symmetric range 
is achieved for s with the possible values being a set S = {−16,−12,−8,−4,−3,−2,−1, 0, 1, 2, 3, 4, 8, 12, 16} . 
For a normal ADE, s ∈ [−3, 3] , while s ∈ [−16,−4] ∩ [4, 16] suggests a serious ADE.

At this point, I1 and I3 have been described with s, which has a symmetric range with severe cases spreading 
at two ends and normal cases at the center. To capture the difference information I2, we use another variable 
t that measures the difference between Y and Y0 . Therefore, our final warning signal  � is a tuple of s ( �s ) and t 
( �t ) for each report:

With � , a reviewer could efficiently and flexibly filter the reports, and focus on the few reports that are of 
interest. The usefulness of the warning signal is demonstrated with our interactive visualization in “Interactive 
visual exploration of the ACA modelresults”.

Interactive visualization.  Parallel coordinates14,15 are a widely-used multidimensional visualization tech-
nique that arranges data dimensions (variables) as parallel vertical axes and visualizes data as polylines across 
these parallel axes. We choose parallel coordinates as our interactive visualization method for its two advantages: 
data dimensions are readily scalable by simply adding more vertical axes, and multidimensional data query 
can be achieved by interactively selecting ranges, namely, brushing, on specific axes. The arrangement of axes 
in parallel coordinates could be also modified for visualizing correlation information of intended orderings of 
dimensions.

Our dataset of 137,964 reports imposes a challenge as they are too large for interactive visualization and 
manipulation if rendered as a whole at every update, i.e., every user selection, window resizing, or axis reordering. 
To achieve interactivity, we adopt progressive rendering that draws a portion of the full dataset at every frame 
and generates the full visualization progressively.

The user interface of our interactive visualization method is shown in Fig. 2. The parallel coordinates plot is 
shown on the top of Fig. 2 with ordinal and Boolean variables as axes with the following default ordering: known 
or unknown ADE (New ADE), normal or severe ADE (Severe ADE), Gender, the assessment of the reporter 
(R assess), the assessment of the reporter’s institute (RI assess), the assessment of the municipal-level regulator 
(Muni assess), the assessment of the provincial-level regulator (Prov assess), suspected or co-occurring drug (Sus-
pect), automatic assessment (Auto assess), warning signal �s (Risk s), and warning signal �t (Risk t). Moreover, 
we use “RI assess” as the assessment Y0 . These configurations are empirically determined by an ADR expert. To 
facilitate the exploration, a linked table view (bottom of Fig. 2) is used for showing the full information of each 
ADR report including the textual information of symptoms, the product name, and the batch number. Polylines 

(7)� = (�s , �t) = (s, t),

(8)where s = r · (d + 1),

(9)t = Y − Y0.

Figure 2.   The interactive visualization tool with the ADR dataset of 137,964 records.
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in the parallel coordinates are colored based on our predicted assessment Y—with a red-yellow-blue color map 
indicating the causality category 1 (red) through 5 (blue). The table view is linked with the parallel coordinates 
so that changes on one view is reflected on the other, e.g., updates of brushing on parallel coordinates change 
the visibility of corresponding data items in the table view, and focusing on one row of the table highlights the 
corresponding polyline in the parallel coordinates. Moreover, the table supports convenient editing of elements 
enabling users to assess ADR reports interactively.

Our visualization tool is an interactive web page that can be conveniently accessed by users with modern 
web browsers. The tool is implemented in HTML and JavaScript aided by the Data-Driven Documents (D3.js)16, 
d3-parcoords17, and the SlickGrid18 libraries.

Ethical approval.  All data used in this study are anonymous. All methods were performed in accord-
ance with the relevant guidelines and regulations. This study have been approved by the institutional review 
board ethics committee of the Peking University and obtained ethical exemption (Ethical approval number: 
IRB00001052-20012-exempt).

Results
Results of our method are shown through the performance analysis of the ACA model and reports of interest 
found through interactive visual exploration. The performance of the ACA model is evaluated by comparing it 
to the ground truth and other competing models in “The ACA model evaluation”, and the analysis of reports is 
discussed in “Interactive visual exploration of the ACA modelresults”.

The ACA model evaluation.  We compute the accuracy, the F1-score, and multiclass ROC curves as perfor-
mance measures for the evaluation. The ACA model is compared to the ground truth, the multinomial logistic 
regression (MLR), and the decision tree (DT) on the testing set (4005 records, i.e., 20% of the labeled data). Note 
that the same set of variables as in Table 1 are used in the multinomial logistic regression and the decision tree. 
Performance measurements of these methods are summarized in Table 2.

The ACA model achieves an accuracy of 85.99% . In comparison, the multinomial logistic regression and 
decision tree achieve the accuracy as 80.82% and 85.39% , respectively. The F1-score that is widely used for perfor-
mance measurement in classification problems is the harmonic mean of the precision and sensitivity. F1-score can 
better measure the performance of models than the accuracy. In our case, F1-score is calculated for each category. 
Note that category 1 was not used by provincial ADR experts leading to F1 = 0 of category 1 for all methods, and 
are, therefore, omitted. As shown in Table 2, for category 2 (“conditional/unclassified”) through 5 (“certain”), the 
F1 scores of our method are 0, 0.4, 0.8329, 0.8775, and 0.9083, respectively; multinomial logistic regression yields 
scores of 0, 0, 0.7716, 0.8482, and 0; scores of the decision tree are 0, 0, 0.8346, 0.8692, and 0.8559.

Multiclass ROC curves and the associated AUC are calculated for further evaluation. The averaged ROC 
curves can be seen in Fig. 3, where micro curves—ROC curves calculated using true positives, false positives, 
true negatives, and false negatives of each class—are solid, and macro curves—the average of ROC curves of 
each class—are dashed19. The ACA model, the multinomial logistic regression, and the decision tree are drawn 
as blue, red, and yellow curves, respectively. Note that a baseline has to be set for multinomial logistic regression. 
Different baseline settings affect the performance of the multinomial logistic regression: when the baseline is 
set to 4 (“probable/likely”), the macro AUC is 0.8603, when the baseline is set to 5 (“certain”), the macro AUC 
is about 0.8, and the macro AUC is about 0.65 (the minimum is 0.5) when the baseline is set to categories 1, 2, 
3 (“unassessable/unclassifiable”, “conditional/unclassified”, “possible”). Detailed comparison of each causality 
category of our method and the multinomial logistic regression is shown in Fig. 4a, while b shows the comparison 
of results of ours and the decision tree. The AUC of the macro and micro curves, and the AUC of each category 
for all methods are listed in Table 2.

Table 2.   Performance comparison of different assessment models on the test set. ACA model Automatic 
casualty assessment model, MLR Multinomial logistic regression, DT Decision tree, F1-x: the F1 score of 
category x (category 2–5), AUC​ Area under curve, AUC-x the multiclass AUC of category x (category 2–5).

Measurements ACA model MLR DT

Accuracy 85.99% 80.82% 85.39%

F1 -2 (conditional/unclassified) 0.4 0 0

F1 -3 (possible) 0.8329 0.7716 0.8346

F1 -4 (probable/likely) 0.8775 0.8482 0.8692

F1 -5 (certain) 0.9083 0 0.8559

AUC-macro 0.9572 0.8603 0.9440

AUC-micro 0.9748 0.9572 0.9779

AUC-2 (conditional/unclassified) 0.9878 0.9580 0.9416

AUC-3 (possible) 0.9324 0.9162 0.9398

AUC-4 (probable/likely) 0.9291 0.9126 0.9176

AUC-5 (certain) 0.9796 0.6547 0.9768
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Interactive visual exploration of the ACA model results.  Evaluations of the ACA model in the pre-
vious section show the performance of the new model numerically. In this section, reports of interest that are 
found with interactive visual exploration are examined by ADR experts to demonstrate the usefulness of the new 
warning signal � . ADR experts are interested in reports that have high absolute values of �s and �t in combination 
with conditions of other variables. Such reports of interest are not easily detected with traditional methods in 
the dataset, but can be quickly and flexibly identified through interactive visual exploration with our automatic 
assessment and warning signal. According to the design of �s , we are interested in negative �s with high absolute 
values as they indicate that the ACA model provides opposite assessment predictions than reporters.

By selecting suspect drugs (Suspect = 1) with negative �s with high absolute values ( �s < −8 ), 62 reports were 
found when we examined the whole records of 2019 dataset (137,964 reports). Among them, nine reports have 
opposite assessments between provincial-level experts (Prov assess) and reporters (R assess). The “Prov assess” is 
greater than 3, i.e., categories of probably/likely, or certain. In contrast, “R assess”, “RI assess”, and “Muni assess” 
are all less than or equal to 3, i.e., categories of unassessable/unclassifiable, conditional/unclassified, or possible. 
These reports can be easily found through interactive brushing on parallel coordinates as shown in Fig. 5, where 
brushes of range selections on variables are shown as gray boxes on vertical axes.

Details of the reports are summarized in Table 3. Notably, assessments by our ACA model (Auto) are almost 
identical to the Prov assess with one exception that a 5 is given by our method with the report of drug “Levo-
floxacin Hydrochloride”. All of the ADRs included had been reported previously (National medical products 
administration of China (https://​www.​nmpa.​gov.​cn/) and U.S. Food and drug administration (https://​www.​
fda.​gov/) were used for ADR information acquisition), and most of them were listed in the ADR Section of the 
instruction of drug.

Reporters could also potentially benefit from using our method as the quality of their assessments may be 
improved even without assessments by higher-tier experts. Such a case is demonstrated in Fig. 6. We start by 
brushing on suspected drugs with no Prov assess (Prov assess = −1 ) in the 2019 dataset. Then, we select auto-
matic assessment with the highest value (Auto assess = 5). As a result, ten records are found (see the table below 
the parallel coordinates in Fig. 5), and provincial-level ADR experts did not review those reports. Most of the 
event-drug pairs included in these ten reports were reported previously (with the aforementioned sources), but 
the assessment results between reporters, reporter’s institute, and the municipal-level regulator are inconsistent. 
Notably, assessments by reporter’s institute (RI assess) conflict with the municipal-level regulator: “RI assess” 
are “unassessable/unclassifiable” (RI assess = 1), whereas “Muni assess” vary from “possible” to “certain” (Muni 
assess ≥ 3).

The analysis of reports with our warning signal  and the interactive visualization tool is efficient. In fact, the 
whole process of each example took less than one minute, so that the reviewer could quickly identify the reports 
of interest.

Figure 3.   The macro and micro multiclass ROC curves of the ACA model (ACA), multinomial logistic 
regression (MLR), and decision tree (DT).

https://www.nmpa.gov.cn/
https://www.fda.gov/
https://www.fda.gov/
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Figure 4.   ROC curves of the ACA model (solid lines) and the multinomial logistic regression (a dash lines), 
and the decision tree (b dash lines) on causality categories.

Figure 5.   ADR reports with top (negative) scores of �s (Risk s). These records are given opposite assessments 
by provincial experts and the ACA model as likely but possible or less possible by other assessments (causality 
category ≤ 3 ). The brushes on value ranges are shown as gray boxes on vertical axes.
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Discussion
In this study, we successfully developed an automatic causality assessment model based on ordinal logistic regres-
sion. We combined this model with the interactive visualization tool to establish an iterative workflow that will 
help reporters for self-review and improvement. Our method is not a new model for ADR causality assessment 
but is to assist reporters at primary-level medical institutions and experts at municipal- and provincial-level alike 
in facilitating and improving the process of reporting and reviewing.

Logistic regression has been wildly used in medical research for years, where the typical logistic regression 
model is the binary logistic regression model. When possible confounding factors need to be controlled for, or 
multiple factors need to be considered, particular multivariate logistic regression could be used. However, typi-
cally used multinomial logistic regression requires the fitting of many parameters, so the degree of freedom used 
in the model fitting process will put excessive demands on the data set. Moreover, the multinomial logistic regres-
sion does not consider the ordinal properties of the output variables9. In contrast, ordinal logistic regression is 
devised for an ordinal response variable8. In addition, the ordinal logistic regression has no specific requirements 
on variable types, considering that all dependent variables are classified variables. Therefore, the ordinal logistic 
regression is an effective and applicable method for problems with ordinal outcomes. Ordinal logistic regression 
has been previously used in many areas including medical researches20, for example, in risk prediction and life 
expectation21. An ordinal risk index is fitted using ordinal logistic regression to predict the risk of postopera-
tive acute kidney infection22. A risk score is modeled using ordinal logistic regression to predict hand-and-foot 
syndrome dynamics in a longitudinal study23. However, to our knowledge, ordinal logistic regression has not 
been used for causality assessment of ADR reports.

Visualization converts data into interactive graphics to gain insights into the data through perception and 
interaction. Medicine is an important research topic in visualization, and an overview of drug safety-related 
visualization methods can be found elsewhere24. A web-based tool with a visual interface is available for validating 
clinical cases and assessing detection rules of ADEs of hospital record data25. The tool relies on structured query 
language for setting ADE rules and generates reports with lab test results and drug prescriptions. A visual analytic 
method26 is proposed for analyzing ADR data with an overview visualization of ADEs, interactive filtering of 
co-occurring drugs, and an advanced query interface supporting hypotheses generation. This method supports 

Table 3.   Reports of interest found through interactive visual exploration. s: warning signal �s , Auto: ACA 
model assess, R: R assess, RI: RI assess, Muni: Muni assess, Prov: Prov assess.

Adverse event Drug name s Auto R RI Muni Prov

Fever Misoprostol −12 4 1 1 3 4

Rash, itching Brain protein hydrolysate −12 4 1 1 3 4

Anaphylactic shock Levofloxacin hydrochloride −16 5 1 1 3 4

Dyspnea, chest tightness Bone melon extract −12 4 1 1 3 4

Anaphylactic reaction Guanxinning injections −12 4 1 1 3 4

Rash Penicillin sodium −12 4 1 1 3 4

Fever Misoprostol −12 4 1 1 3 4

Rash, itching Cefoxitin −12 4 1 1 3 4

Rash, itching Ambroxol hydrochloride −12 4 1 1 3 4

Figure 6.   ADR reports with highest �t (Risk t) and are not assessed by provincial ADR experts.
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signal generation based on the odds ratio using the contingency table. However, these methods do not analyze 
datasets with causality assessments nor support the assessment of such categories. A combined automatic and 
interactive visualization ADR assessment approach is not available currently.

Multinomial logistic regression and decision tree were chosen for comparison. Multinomial logistic regression 
model had been used to estimate the probability of severe ADRs27. And the first causality assessment method for 
drug-induced liver injury was based on the decision tree28. As shown in “The ACA model evaluation”, our ACA 
model achieved similar accuracy with the decision tree method and is better than multinomial logistic regres-
sion. The results of F1 scores for categories 2–5 (“conditional/unclassified”, “possible”, “probable/likely”, “certain”) 
of our method are superior to the multinomial logistic regression for all categories and F1 scores of categories 
2 (“conditional/unclassified”) and 5 (“certain”) for the multinomial logistic regression are 0; our method has 
comparable F1 scores of categories 3–5 (“possible”, “probable/likely”, “certain”) to the decision tree, however, a 0 
F1 score is achieved by decision tree for category 2 (“conditional/unclassified”).

Multiclass ROC curves are commonly used as an evaluation method for multiclass regression models, it can 
reveal True Positive Rate (TPR) and False Positive Rate (FPR) for each paired classes19. Results of multiclass 
ROCs show that the ACA model has better AUC than multinomial logistic regression for all curves (micro, 
macro, categories 1–5). Furthermore, the ACA model has comparable or slightly better AUC than decision tree 
for the micro, macro, category 3–5 (“possible”, “probable/likely”, “certain”) curves, and better AUC for categories 
1 (“unassessable/unclassifiable”) and 2 (“conditional/unclassified”).

There are still some limitations of our method. First, only reports from one province of China in one calen-
dar year were used to train and test the ACA model. The generality of the ACA model requires further studies. 
We have performed a preliminary study of the ACA model in spontaneous reports collected by the Guangdong 
adverse drug reaction monitoring center in 2018 (anonymous data with 143,406 reports under the same ethical 
approval as of the 2019 data) and received a comparable accuracy of 85.77% . Second, unbalanced data, signifi-
cantly, when many categories exist, could impact the performance of ordinal logistic regression. The predicted 
results are potentially biased due to considerable differences between sample sizes of categories29, which is the 
nature of ADR reports. Third, the variables used in the ACA model were selected based on the experience of 
ADR experts. An automatic selection method should be used to choose variables systematically in the future. 
Last, the current visualization method is effective but does not cover the many aspects of the ADR data, and, 
therefore, we plan to design a full-fledged integrated visual analysis method in the future.

Conclusion
In this paper, an automatic assessment method with interactive visualization exploration is proposed to aid the 
causality assessment of ADR reports. The ACA model automatically predicts causality assessment for sponta-
neous reports by learning assessments of experienced ADR experts. A warning signal  is derived based on the 
automatic assessments for filtering a large volume of reports. A parallel coordinates-based visualization method 
is used for interactive exploration of the ADR data extended by the automatic assessment and the warning sig-
nal. The ACA model achieves good accuracy, and potential reports of interest can be quickly and conveniently 
selected with our web-based interactive visualization tool. Our overall method could improve the efficiency of 
the assessment process and increase the coverage of ADR reports reviewing for ADR experts. Moreover, the 
method could also potentially improve the capability of analyzing ADR reports and is promising in reducing 
human labor and the chance of missing critical reports.

For future work, we would like to further improve the model for better prediction efficiency and automate 
the variable selection process. Another direction is to devise a comprehensive interactive visual analysis method 
to provide users an integrated environment for more efficient review and assessment of ADR reports and to gain 
more insights during the process.
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