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BACKGROUND Conventional clinical risk scores and diagnostic al-
gorithms are proving to be suboptimal in the prediction of obstruc-
tive coronary artery disease, contributing to the low diagnostic
yield of invasive angiography. Machine learning could help better
predict which patients would benefit from invasive angiography
vs other noninvasive diagnostic modalities.

OBJECTIVE To reduce patient risk and cost to the healthcare sys-
tem by improving the diagnostic yield of invasive coronary angiog-
raphy through optimized outpatient selection.

METHODS Retrospective analysis of 12 years of referral data
from a provincial cardiac registry, including all patients
referred for invasive angiography of more than 1.4 million in-
dividuals in Ontario, Canada. Stable outpatients undergoing
coronary angiography during the study period were included
in the analysis. The training set (80% random sample, n 5
23,750) was used to develop 8 prediction models in Python us-
ing grid-search cross-validation. The test set (20% random
sample, n 5 5938), evaluated the discrimination performance
of each model.
Trial Registration: ClinicalTrials.gov NCT03554057 Address reprint
requests and correspondence: Dr Jon-David Schwalm, Population Health
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Barton St East, Hamilton, Ontario, Canada L8L 2X2. E-mail address: JD.
Schwalm@phri.ca.
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RESULTS The machine-learning model achieved a substantially
better performance (area under the receiver operating characteris-
tics curve: 0.81) than existing models for predicting obstructive
coronary artery disease in patients referred for invasive angiog-
raphy. It significantly outperformed both the reference model and
current clinical practice with a net reclassification index of 27.8%
(95% confidence interval [CI]: [24.9%–30.8%], P value ,.01)
and 44.7% (95% CI: [42.4%–47.0%], P value ,.01), respectively.

CONCLUSION This prediction model, when coupled with a point-
of-care, online decision support tool to be used by referring
physicians, could improve the diagnostic yield of invasive coronary
angiography in stable, elective outpatients, thus improving patient
safety and reducing healthcare costs.

KEYWORDS Coronary artery disease; Machine learning; Coronary
angiography; Coronary computed tomographic angiography; Pre-
diction model
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Background
Coronary artery disease (CAD) is the leading cause of death
worldwide. The gold-standard test used to diagnose CAD is
invasive coronary angiography. However, the low diagnostic
yield of invasive angiography performed in elective patients
has gained attention. Patel and associates1 performed an anal-
ysis of the American College of Cardiology National Cardio-
vascular Data Registry that included nearly 400,000 patients
undergoing elective angiography at 663 hospitals, without
prior known CAD. This study showed that nearly 60% of an-
giograms had results showing,50% stenosis or normal find-
ings.1 Despite lower population rates of angiography in
Canada, rates of normal (0% stenosis in major epicardial ar-
teries) approaches 42%.2 Current rates of nonobstructive
CAD in Ontario, Canada (defined as,70% stenosis in major
epicardial vessels or,50% stenosis of the left main artery) in
patients undergoing elective angiography are approximately
53% (CorHealth QPMM Quarterly Reports, unpublished
data, 2020). Wide variation in the frequency of nonobstruc-
tive CAD in patients undergoing invasive angiography sug-
gests that there are opportunities to optimize referral
practices.2

Obtaining the results of an angiogram with normal or
nonsignificant findings may offer some important benefits
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KEY FINDINGS

� A machine-learning model used to analyze multicenter
administrative and clinical databases can accurately
predict obstructive coronary artery disease in outpa-
tients referred for coronary angiography compared to
current strategies.

� This machine-based model has the potential to improve
patient safety and decrease healthcare costs by opti-
mizing referral for outpatient invasive coronary angiog-
raphies.

� While this machine learning–enabled predictive model
achieves better performance than existing clinical risk
scores, it does require external validation and local
adaptation before being applied in other health
regions.
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to patients by definitively excluding obstructive CAD as a
cause of symptoms and providing valuable prognostic
insight. A retrospective analysis of patients referred for an
invasive angiography demonstrated that ,11% of referrals
were deemed “inappropriate” for this test by current practice
standards.3 However, there are some drawbacks to having a
high proportion of patients with negative invasive angiog-
raphy results, despite being “indicated” to undergo this inva-
sive procedure. First, these patients undergo the risk of the
procedure (stroke death, myocardial infarction, vascular
complications, and bleeding) without any potential to benefit
from revascularization. Second, they consume resources bet-
ter allocated to alternate patients, particularly in a value-
based healthcare delivery model or a resource-constrained
universal healthcare system. It is preferable for such patients
to undergo a noninvasive assessment if similar diagnostic
certainty can be achieved.

Conventional clinical risk scores and diagnostic algo-
rithms are proving to be suboptimal in the prediction of
obstructive CAD, contributing to a lack of efficiencies in
referral practices and the identified low diagnostic yield of
invasive angiography.4 Novel research strategies that
harness the powers of artificial intelligence and machine
learning could help better predict patients that would benefit
from invasive angiography vs other noninvasive diagnostic
modalities like coronary computed tomographic angiog-
raphy (CCTA).

The overarching goal of this project is to reduce patient
risk and cost to the healthcare system by improving the diag-
nostic yield of invasive coronary angiography through opti-
mized patient selection based on a Learning Health System
environment. Specifically, we have developed a contempo-
rary prediction tool using machine learning, trained on data
from an established multicenter, regional registry, that could
be integrated into diagnostic algorithms in order to improve
the diagnostic yield of invasive coronary angiography. Our
intention is that this clinical model will provide physicians
with clinical decision support to optimize referrals to angiog-
raphy vs noninvasive modalities.
Methods
Study design, data source, and study cohort
We retrospectively analyzed referral data from the CorHealth
(Ontario, Canada) cardiac registry of 2 regional referral hos-
pitals, spanning years 2008–2019. The CorHealth database is
a prospectively collected registry that includes all patients
referred for invasive angiography in the province of Ontario,
Canada. This registry has been previously used in other
observational and interventional studies.5–7 This study was
approved by Hamilton Health Sciences Research Ethics
Board 4697.

Stable outpatients undergoing coronary angiography at
the 2 hospitals during the study period were included in the
analysis. Outpatients who met any of the following criteria
were excluded: (1) with previous percutaneous coronary
intervention, (2) with previous coronary artery bypass graft-
ing, (3) with cardiogenic shock, (4) on glycoprotein IIb/IIIa
inhibitors, and (5) with prior acute coronary syndromes.

The outcome of interest was obstructive CAD, defined as
�70% stenosis in major epicardial vessels of .2 mm in
diameter or�50% stenosis of the left main artery (as defined
in CorHealth, Data Dictionary, unpublished). The predictors
for model development were all the routinely collected vari-
ables in the provincial registry. Specifically, the predictors
included demographic characteristics, patient referral infor-
mation, anthropometric measures, clinical symptoms and
risk factors, medical history, and tobacco habits. We were
also able to include socioeconomic variables as a predictor,
by linking to the 2016 Ontario Marginalization Index using
postal codes of patient residence. The Ontario Marginaliza-
tion Index is a validated data tool that combines a wide range
of demographic indicators to characterize 4 dimensions of
marginalization: residential instability, material deprivation,
ethnic concentration, and dependency.8 Lower scores on
each dimension correspond to areas that are the least margin-
alized; higher scores on each dimension correspond to areas
that are the most marginalized.
Statistical analysis
On the training set (80% random sample, n 5 23,750), we
developed 8 models to predict the probability of significant
CAD. First, as the reference model, we fit a logistic regres-
sion model with 7 predictors derived from the dataset,
including high-risk exercise stress testing/imaging, age
.65 years, diabetes, previous myocardial infarction (MI),
left ventricular ejection fraction,35%, Canadian Cardiovas-
cular Society (CCS)/New York Heart Association (NYHA)
class 5 3 or 4, and creatinine .180 mmol/L. The reference
model was a clinical model with predictors and was origi-
nally developed to predict the probability of high-risk CAD
(eg, 3-vessel disease).9 In our dataset, .2 of beta blockers /
calcium channel blockers /nitrates was not available.



Figure 1 Study population profile.
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Next, using all variables available in our dataset, we
developed 7 machine-learning models, including logistic
regression, logistic regression with Lasso regularization,10

random forests,11 gradient boosted decision trees,12,13 Light
Gradient Boosting Machine (LightGBM),14 eXtreme
Gradient Boosting (XGBoost),15 and a multilayer perception
deep neural network.16 Fivefold cross-validation was used to
find a set of optimal hyperparameters for each machine-
learning algorithm. Python (version 2.7.17) was used for
model development.

On the test set (20% random sample, n5 5938), we eval-
uated the discrimination performance of each model using
area under the receiver operating characteristics curve
(AUROC) as the primary evaluation metric and area under
the precision-recall curve, accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value as
secondary evaluation metrics. The model with highest
AUROC was selected as the final model. We then compared
the reclassification performance of the final model against the
reference model and current clinical practice as observed in
our data using net reclassification improvement (NRI).17

For model interpretation purposes, we used permutation
importance to assess the global importance of each predictor
in predicting the probability of significant CAD.18 Since
machine-learning analyses include higher-order interactions
between multiple predictors and capture nonlinear relation-
ships between predictors and outcome, we used partial
dependence plots to uncover and visualize such relation-
ships.19

At the patient level, we used Shapley values to understand
the magnitude and direction of each predictor’s effect on pre-
dictions for individual patients.20,21 To improve clinical
utility of the model, we applied the local interpretable
model-agnostic explanations framework to the final model
and generated an explanation for each prediction result,22

including the predicted probabilities of nonsignificant and
significant CAD, as well as the contribution of each predictor
to the prediction result. Since some categorical predictors
have high cardinality, which makes the explanations difficult
to interpret, we collapsed levels within a categorical predictor
by summing the contribution of each level and used the sum
score to approximate the contribution of the categorical pre-
dictor to the prediction result.
Results
Study population
During 2008–2019, the registry recorded 85,620 patients un-
dergoing coronary angiography at the 2 hospitals. Of these, a
total of 29,688 outpatients who met the inclusion criteria
were included in the analysis, including 13,576 (45.72%)
with nonsignificant CAD and 16,112 (54.27%) with signifi-
cant CAD (Figure 1). Baseline characteristics for the whole
study cohort and for patients according to different outcomes
are presented in Table 1.

Discrimination performance
Table 2 presents the discrimination performance of different
models. While all machine-learning models achieved better
performance than the reference model, the LightGBMmodel
showed the best discrimination performance (AUROC 5
0.81) and was selected as the final model.

Reclassification performance
Reclassification performance of the selected LightGBM
model against the reference model is shown in Table 3.



Table 1 Baseline characteristics of patients in the study cohort

Characteristics

Overall Nonsignificant CAD Significant CAD

P value Missing(N = 29,688) (N = 13,576) (N = 16,112)

Demographic characteristics
Sex, n (%) ,.001 1
Female 11,678 (39.3) 6610 (48.7) 5068 (31.5)

Age (years), mean (SD) 65.6 (11.4) 64.2 (11.5) 66.8 (11.1) ,.001 0
Ethnicity, n (%) .290 26,002
White 3478 (94.4) 1875 (94.7) 1603 (94.0)
South Asian 68 (1.8) 29 (1.5) 39 (2.3)
Asian 38 (1.0) 17 (0.9) 21 (1.2)
Aboriginal 34 (0.9) 19 (1.0) 15 (0.9)
Black 21 (0.6) 14 (0.7) 7 (0.4)

Socioeconomic status
Residential instability, mean (SD) 0.1 (1.0) 0.1 (1.0) 0.1 (1.0) .026 530
Material deprivation, mean (SD) 0.1 (1.0) 0.1 (1.0) 0.1 (1.0) .419 530
Ethnic concentration, mean (SD) -0.4 (0.6) -0.4 (0.6) -0.4 (0.6) .622 530
Dependency, mean (SD) 0.4 (1.2) 0.4 (1.2) 0.4 (1.2) .002 530

Patient referral information
Primary reason, n (%) ,.001 0
Coronary disease 25,856 (87.1) 11,739 (86.5) 14,117 (87.6)
Other 3832 (12.9) 1837 (13.5) 1995 (12.4)

Primary reason type, n (%) ,.001 3052
Elective, stable coronary disease 13779 (51.7) 5082 (42.2) 8697 (59.6)
Rule out CAD 9150 (34.4) 5560 (46.2) 3590 (24.6)
Other 3707 (13.9) 1396 (11.6) 2311 (15.8)

Translator required, n (%) .554 7780
Yes 161 (0.7) 71 (0.7) 90 (0.8)

Dye allergy, n (%) .002 1353
Yes 315 (1.1) 170 (1.3) 145 (0.9)

Anthropometric measures
Height (cm), mean (SD) 169.5 (11.2) 169.0 (11.4) 170.0 (10.9) ,.001 289
Weight (kg), mean (SD) 86.2 (21.3) 86.6 (21.5) 85.9 (21.1) .005 212
Clinical symptoms and risk factors
Ischemic change, n (%) ,.001 1864
Persistent 2841 (10.2) 1012 (8.0) 1829 (12.0)
Transient with pain 336 (1.2) 105 (0.8) 231 (1.5)
Transient without pain 127 (0.5) 48 (0.4) 79 (0.5)

Exercise ECG risk, n (%) ,.001 0
High 6294 (21.2) 2178 (16.0) 4116 (25.5)
Low 5531 (18.6) 2886 (21.3) 2645 (16.4)

Functional imaging risk, n (%) ,.001 384
High 8358 (28.5) 3147 (23.6) 5211 (32.7)
Low 5878 (20.1) 3137 (23.5) 2741 (17.2)

LV method, n (%) ,.001 1378
Echo 22,416 (79.2) 10,792 (80.6) 11,624 (77.9)
Other 3029 (10.7) 1185 (8.9) 1844 (12.4)
Not done 2865 (10.1) 1407 (10.5) 1458 (9.8)

LV function, n (%) ,.001 3054
�50% 19,773 (74.2) 9577 (79.4) 10,196 (70.0)
35%–49% 3472 (13.0) 1374 (11.4) 2098 (14.4)
�34% 2013 (7.6) 915 (7.6) 1098 (7.5)

LV function value, mean (SD) 53.7 (12.9) 53.9 (13.2) 53.5 (12.5) .219 23,904
Creatinine, n (%) .985 279
Known 29,360 (99.8) 13,442 (99.8) 15,918 (99.8)

Creatinine (μmol/L), mean (SD) 100.2 (117.2) 96.9 (112.8) 103.1 (120.7) ,.001 458
CCS class, n (%) ,.001 0
0 8990 (30.3) 4736 (34.9) 4254 (26.4)
1 4568 (15.4) 2274 (16.8) 2294 (14.2)
2 8805 (29.7) 3873 (28.5) 4932 (30.6)
3 6189 (20.8) 2261 (16.7) 3928 (24.4)
4 1136 (3.8) 432 (3.2) 704 (4.4)

NYHA class, n (%) ,.001 16
1 19,008 (64.1) 8375 (61.7) 10,633 (66.0)
2 6433 (21.7) 3073 (22.7) 3360 (20.9)
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Table 1 (Continued )

Characteristics

Overall Nonsignificant CAD Significant CAD

P value Missing(N = 29,688) (N = 13,576) (N = 16,112)

3 2706 (9.1) 1326 (9.8) 1380 (8.6)
4 371 (1.3) 181 (1.3) 190 (1.2)

Medical history
History of MI, n (%) ,.001 0
Yes 3282 (11.1) 848 (6.2) 2434 (15.1)

Recent MI, n (%) .694 0
Yes 144 (0.5) 63 (0.5) 81 (0.5)

History of cerebrovascular disease, n (%) ,.001 590
Yes 2184 (7.5) 818 (6.2) 1366 (8.6)

History of peripheral vascular disease, n
(%)

,.001 13

Yes 1618 (5.5) 472 (3.5) 1146 (7.1)
Possible intracardiac thrombus, n (%) .94 557
Yes 50 (0.2) 22 (0.2) 28 (0.2)

History of infective endocarditis, n (%) .005 51
Yes 32 (0.1) 23 (0.2) 9 (0.1)

Active endocarditis, n (%) .076 29,656
Yes 7 (21.9) 3 (13.0) 4 (44.4)

(n = 29,688) (n = 13,576) (n = 16,112)
Congenital heart disease, n (%) .133 7787
Yes 112 (0.5) 70 (0.6) 42 (0.4)

History of congestive heart failure, n (%) .003 33
Yes 2759 (9.3) 1336 (9.8) 1423 (8.8)

Anticoagulant, n (%) ,.001 0
None 26,092 (87.9) 11,645 (85.8) 14,447 (89.7)

Dialysis, n (%) .436 5
Yes 790 (2.7) 350 (2.6) 440 (2.7)

Diabetes, n (%) ,.001 3
Yes 8671 (29.2) 3506 (25.8) 5165 (32.1)

Diabetes control, n (%) ,.001 21,010
On oral hypoglycemics 4970 (57.3) 1950 (56.2) 3020 (58.0)
Insulin treatment 2506 (28.9) 1036 (29.9) 1470 (28.2)
Managed by diet only 906 (10.4) 409 (11.8) 497 (9.5)
No treatment 296 (3.4) 72 (2.1) 224 (4.3)

Hypertension, n (%) ,.001 2
Yes 20,165 (67.9) 8656 (63.8) 11,509 (71.4)

Hyperlipidemia, n (%) ,.001 6
Yes 20,431 (68.8) 8470 (62.4) 11,961 (74.3)

COPD, n (%) ,.001 14
Yes 1863 (6.3) 942 (6.9) 921 (5.7)

Tobacco habits
History of smoking, n (%) ,.001 1070
Never 13,363 (46.7) 6385 (49.4) 6978 (44.5)
Former 9252 (32.3) 4084 (31.6) 5168 (32.9)
Current 6003 (21.0) 2455 (19.0) 3548 (22.6)

CAD = coronary artery disease; CCS = Canadian Cardiovascular Society; COPD = chronic obstructive pulmonary disease; ECG = electrocardiogram; LV = left ven-
tricular; MI = myocardial infarction; NYHA = New York Heart Association.
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The LightGBM model significantly outperformed the
reference model with an NRI of 27.84% (95% confidence
interval [CI]: [24.85%–30.83%], P value ,.001). Of the
2715 patients with nonsignificant CAD, 738 were correctly
reclassified to the nonsignificant CAD category and 287
were reclassified to the significant CAD category. Of the
3223 patients with significant CAD, 742 were correctly
reclassified to the significant CAD category and 380 were
reclassified to the nonsignificant CAD category. The
LightGBM model also significantly outperformed current
clinical practice with an NRI of 44.70% (95% CI:
[42.41%–46.98%], P value ,.001).
Variable importance
To gain insights into the contribution of each predictor to the
model, we estimated the importance of each predictor accord-
ing to the selected final model using permutation importance
(Figure 2). While traditional variables used in existing pre-
diction models are ranked important (ie, sex, age, functional



Table 2 Discrimination performance of the reference model and machine learning models

Model

Primary metric Secondary metrics

AUROC AUPRC Accuracy Sensitivity Specificity PPV NPV

LightGBM 0.81 0.84 0.73 0.75 0.71 0.75 0.70
XGBoost 0.79 0.82 0.72 0.75 0.69 0.74 0.70
Gradient boosted Decision trees 0.79 0.82 0.72 0.75 0.69 0.74 0.70
Random forests 0.79 0.81 0.71 0.76 0.66 0.73 0.70
Logistic regression (Lasso) 0.78 0.81 0.72 0.75 0.69 0.74 0.70
Logistic regression 0.78 0.80 0.71 0.74 0.68 0.73 0.69
Deep neural network 0.77 0.79 0.70 0.75 0.64 0.71 0.68
Reference model 0.62 0.65 0.58 0.63 0.53 0.61 0.55

AUPRC5 area under the precision-recall curve; AUROC5 area under the receiver operating characteristics curve; LightGBM5 Light Gradient Boosting Ma-
chine; NPV 5 negative predictive value; PPV 5 positive predictive value; XGBoost 5 eXtreme Gradient Boosting.
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imaging risk), other nontraditional variables also prove to be
important, including congenital heart disease, need for a
translator, referring physician, and the month in which the pa-
tient is referred for invasive coronary angiogram.
Variable effects and interactions
We visualized the relationship between predictors and signif-
icant CAD captured by the LightGBM model using a partial
dependence plot (Supplemental Appendix 1), which shows
the marginal effect 1 predictor has on the predicted probabil-
ity of significant CAD according to the LightGBM model.

We observed complex relationships between continuous
predictors and significant CAD in the partial dependence
plots. For example, for the predictor age for patients under
40 years, the probability of significant CAD is low, and it de-
creases as age increases, whereas for patients aged over 40
years, as age increases, the probability of significant CAD in-
creases. Similarly, for the predictor creatinine level under 75
mmol/L, the probability of significant CAD increases rapidly
with creatinine level, whereas when creatinine level is over
75 mmol/L, the probability of significant CAD increases
slowly with creatinine level. For socioeconomic variables,
the relationships between the probability of significant
CAD and marginalization dimensions (eg, dependency and
residential instability) are complex and nonlinear. However,
from the plots we can see an overall trend that patients who
are more marginalized have higher probabilities of significant
CAD.

We also used 2-way partial dependence plots to uncover
and visualize feature interactions between predictors
Table 3 Reclassification performance of the LightGBM model against t

Reference model

LightGBM model

Nonsignificant CAD

Nonsignificant CAD
Nonsignificant CAD 1168
Significant CAD 738

Significant CAD
Nonsignificant CAD 442
Significant CAD 380

CAD 5 coronary artery disease; LightGBM 5 Light Gradient Boosting Machine.
(Supplemental Appendix 2). As shown on the left plot,
when creatinine level is.120 mmol/L, the probability of sig-
nificant CAD shows strong dependence on CCS class and is
almost independent of creatinine level; however, when creat-
inine level is ,120 mmol/L, the probability of significant
CAD is dependent on the values of both predictors. Similarly,
we observed an interaction between weight and NYHA class
when weight is .70 kg.

At the patient level, we used a Shapley value summary
plot (Supplemental Appendix 3) to understand the magnitude
and direction of each predictor’s effect on individual patients,
according to the XGBoost model. In the summary plot, each
point is a Shapley value for a predictor and a patient. The
position on the y-axis is determined by the variable and on
the x-axis by the Shapley value. For numerical variables,
color represents the value of the variable from low (blue) to
high (pink); for categorical variables, the blue color repre-
sents 0 and red represents 1.

In this plot, we observed that the directions of most predic-
tors’ effect are mostly the same for all patients, but the mag-
nitudes of effect vary. For example, for categorical predictor
history of MI, having previous MI is associated with higher
risk for significant CAD for all patients, but the magnitudes
of the effect are different for different patients.
Local explanations
We applied the local interpretable model-agnostic explana-
tions framework to the LightGBM model and generated an
explanation for each prediction result, including the predicted
probability and the contribution of each predictor to the
he reference model

Net correctly reclassifiedSignificant CAD

287 16.61%
522

742 11.23%
1659



Figure 2 Estimated of the importance of each predictor according to the selected final model using permutation importance.
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prediction result. For instance, in Figure 3 we present a true-
negative case (ie, label and prediction result are both nonsig-
nificant CAD). According to the LightGBM model, the
predicted probability of nonsignificant CAD is 0.63. Congen-
ital heart disease, sex, and referring physician are the predic-
tors that contribute most to this prediction result. In this
figure, green indicates a positive correlation and red indicates
a negative correlation (analogous to positive and negative co-
efficients in a logistic regression).
Discussion
We present the first report of a machine learning–based
model trained on existing administrative and clinical
registries across 2 cardiac centers and 8 referring hospital cor-
porations in Ontario, Canada. This model achieves substan-
tially better performance than a baseline model for
predicting obstructive CAD in patients referred for invasive
angiography.

This model is unique for several reasons. First, this ma-
chine learning–based predictive model was generated based
on a large, diverse cohort including all patients referred for
invasive coronary angiography over 12 years from 8 hospital
corporations covering a catchment population of more than
1.4 million. This large cohort lends significant power to
this predictive model. The baseline demographics of all
referred patients are cross-referenced against referring inter-
nist and cardiologist consultation letters. This registry of
baseline demographics and coronary angiogram outcomes
has been used in multiple observational and interventional
studies.5–7

Second, the predictive model generated from this project
can directly influence healthcare processes, potentially result-
ing in improved patient safety and reduced costs to the system.
Implementing this model as part of a point-of-care decision



Figure 3 Example of a true negative case (i.e. label and prediction result are both non-significant for CAD) by applying the LIME framework to the LightGBM
model to generate an explanation for each prediction result, including the predicted probability and the contribution of each predictor to the prediction result.
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support program available to referring physicians and/or triage
staff of cardiac catheterization laboratories could optimize the
patient population undergoing expensive and invasive cardiac
investigations. If a patient is deemed to be “low risk” as per the
prediction model, then an invasive coronary angiogram may
not be the ideal next step in the diagnostic algorithm. Triage
staff and/or referring physicians could then be directed to a
more appropriate test (ie, CCTA or functional imaging)
depending on patient eligibility. Implementation of this pre-
dictive model into the routine triage of patients referred for
invasive angiograms could significantly reduce costs to the
healthcare system and improve patient safety. As an example,
review of the registry data used to train our model demon-
strates that there are about 2474 elective outpatient invasive
angiograms undertaken annually that would be eligible for
application of this predictive model. Within this population,
the rate of nonobstructive disease is 45.72%. Based on the
predictive model’s NRI of 44.70% compared to current clin-
ical practice, implementation of this model could result in an
absolute reduction of up to 794 “potentially” unnecessary
invasive angiograms in our region. This would result in 1
less death, stroke, or MI per year based on the cited risks of
invasive angiography.23 Furthermore, this strategy would
offer an estimated cost savings of US$1,149,712 even if all
794 patients underwent a CCTA as an alternative test (direct
cost difference is US$1448 less for CCTA compared to inva-
sive angiogram) every year in this health region.24 Given that
all 794 patients may not be candidates for CCTA (ie, atrial
fibrillation as a contraindication in approximately 10%) or
may have an inadequate assessment (ie, high calcium score),
the real-world benefits may be more modest but still signifi-
cant. External validation of this predictive model, incorpora-
tion into a user-friendly decision support program, and
evaluation of implementation are required next steps prior to
scale and spread of this model.

Finally, no available variable was discounted. Traditional
clinical risk scores or prediction models use a finite number
of explanatory variables owing to cohort size and statistical
limitations.25 However, the strength of the machine-
learning model is that it can incorporate a large number of
variables, including highly correlated ones. We have been
able to include variables that have been previously dis-
counted regarding their importance as a predictor of obstruc-
tive CAD. Our analysis reveals that several nontraditional
variables (including congenital heart disease, need for a
translator, referring physician, and the month in which a pa-
tient is referred) are important in successfully predicting
obstructive vs nonobstructive CAD. Clinically it makes sense
that patients referred for invasive angiography with a suspi-
cion or known congenital heart disease are less likely to
have obstructive CAD. These patients are often younger
and in need of structural interventions rather than coronary
revascularization. The variable “need for a translator” indi-
cates a person who experiences a language barrier when ac-
cessing health care, which in Canada frequently indicates
the individual is of indigenous heritage, an immigrant, or a
refugee, all 3 of which can face significant marginalization
and barriers in accessing health care, which in turn have
long been associated with negative health outcomes.26 The
predictive power of referring physician is a result of practice
variation among physicians in this study’s catchment area.
Practice variation is well documented in medicine and a
descriptive analysis of our data confirms that some physi-
cians refer patients with nonobstructive CAD for an angio-
gram at a higher rate than their colleagues. This model was
able to learn these referral patterns from the data. Finally,
the month of referral is a predictor of obstructive CAD.
This variable has likely been recognized by healthcare pro-
viders practicing in high-volume centers. As an example, it
is more common for patients with obstructive CAD (ie, con-
cerning symptom profile, whether reported or not) to present
during months of the year associated with the holidays.
Therefore, given reduced referrals and clinical “slowdowns”
during the months of December, July, and August, the rate of
significant disease identified increases.

Furthermore, this model can account for complex interac-
tions between and within included variables, as outlined in
Supplemental Appendix 2. As an example, when creatinine
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level is beyond 120 mmol/L, the probability of obstructive
CAD shows strong dependence on CCS class and is almost
independent of creatinine level; however, when creatinine
level is below 120 mmol/L, the probability of significant
CAD is dependent on the values of both predictors. Such
an interaction could not be determined using traditional sta-
tistical modeling.

While this machine learning–enabled predictive model
achieves better performance than existing clinical risk
scores, it does have a number of limitations. First, this
model requires external validation before being imple-
mented clinically. Further, the model could not necessarily
be applied in other health regions without some local adap-
tation, since the model must learn physician referral patterns
from local data (ie, the model would need to be retrained in
each new jurisdiction to accurately model local practice
variation). Moreover, although social deprivation variables
are important predictors in our model, such variables may
not be available in every region (though other indexes of
social deprivation, such as the CDC’s Social Vulnerability
Index, may provide an adequate analogue). Second, given
the number of variables included, this prediction model is
not ideal as a “bedside” risk assessment, limiting its deploy-
ment to regions able to implement an online referral pro-
gram for invasive testing. The outputs from this proposed
model could help inform point-of-care, online decision sup-
port regarding invasive vs noninvasive testing in the work-
up of stable outpatients with possible obstructive CAD.
Third, the social deprivation index we relied upon provides
area-level measure of deprivation and so is only a proxy for
individual-level measures. However, we addressed this lim-
itation, at least in part, by using full 6-digit postal codes to
link to the smallest area unit possible (dissemination area),
minimizing the risk that measurement error could result in
an ecological fallacy. Finally, if the model were to be de-
ployed clinically, it would require some level of updating
over time. This is because the model might contribute to
reducing factors like practice variation, which would alter
the predictive power of the referring physician variable,
potentially generating predictions influenced by a previous
state that no longer holds. Addressing this limitation will
require either manual retraining of the model once a change
in practice variation has been detected or the implementa-
tion of an incremental learning approach,27 though such ap-
proaches are not without their challenges.28
Conclusion
A novel prediction tool, using machine learning to analyze an
established regional cardiac registry, is more accurate than
traditional risk scores at predicting the presence of obstruc-
tive CAD in outpatients referred for invasive coronary angi-
ography. This model, when coupled with point-of-care,
online decision support, could improve the diagnostic yield
of invasive coronary angiography, thus improving patient
safety and reducing healthcare costs.
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