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Evaluating the effect of 
overharvesting on genetic diversity 
and genetic population structure of 
the coconut crab
Takefumi Yorisue1,2,7,8,9 ✉, Akira Iguchi2,9 ✉, Nina Yasuda3, Yuki Yoshioka4, Taku Sato5 & 
Yoshihisa Fujita6

Birgus latro (coconut crab) is an edible crustacean that has experienced serious overharvesting 
throughout its whole habitat range; however, the negative effects of overharvesting on the genetic 
diversity within B. latro populations have not been elucidated. Here, we report sex ratio, body 
size, and genetic diversity in populations of B. latro in the Ryukyu Islands where large-male–biased 
overharvesting of B. latro has continued. In 2 of the study populations, the sex ratio was significantly 
skewed toward females, and in all of the study populations large males were rare, which we attributed 
to sex- and size-biased overharvesting. We found no differences in genetic diversity between small and 
large individuals, suggesting that genetic diversity, even among the large (i.e., old) individuals, may 
have had already been negatively affected by overharvesting. Continued monitoring of sex ratio, body 
size and genetic diversity are needed for effective management of the study populations.

Overharvesting drives loss of genetic diversity1–3. Once genetic diversity is lost from a population, it can be 
restored by genetic mutation or immigration of individuals from a population with high genetic diversity. 
However, the recovery of genetic diversity through mutation takes a long time, and although immigration from 
refugia is faster than mutation, the restoration of genetic diversity in isolated populations cannot be expected to 
occur through this means3. Therefore, conserving genetic diversity and increasing our understanding of gene flow 
patterns should be important goals for the effective management of fishery resources3–5.

Individual genetic diversity (individual heterozygosity) likely plays an important role in population sustaina-
bility because it is correlated with fitness. For example, a meta-analysis has shown that the correlation between the 
level of individual heterozygosity and fitness is small but significantly positive6, although outbreeding depression 
has been shown to cause the correlation to become negative7. In addition, many papers have reported signifi-
cant positive relationships between individual heterozygosity of allozyme or neutral microsatellite markers and 
fitness-related traits in taxa such as fish8–12, mollusks13,14, crustaceans15, marine and terrestrial mammals16–19, and 
terrestrial plants20. It is therefore important to investigate genetic diversity to assess the sustainability of fishery 
resources.
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High, long-term harvesting pressure often causes the average body size within a population to decrease21. 
Body size is a key factor that influences fitness in many taxa22,23. In males, larger individuals are stronger competi-
tors for females24 and provide more sperm per ejaculation25, and in females, body size is positively correlated with 
number of eggs26, egg size27, and larval body size and starvation resistance28.

The coconut crab (Birgus latro) is a terrestrial hermit crab with a marine larval dispersal stage distributed in 
subtropical and tropical regions of the Indo-Pacific29,30. Recent report showed that this species predates other 
animals including birds and mammals, and can have strong impacts on prey behavior, abundance and commu-
nity composition31. However, this species has suffered severe resource depletion throughout its entire distribu-
tion range due to overharvesting and habitat destruction30–35. Therefore, B. latro is currently categorized as “data 
deficient” in the International Union for Conservation of Nature’s Red List, and “vulnerable” in the Japanese 
Ministry of the Environment’s Red Data Book36. In Japan, B. latro is an important resource not only for food but 
also for culture and tourism37. However, selective harvesting of large males has resulted in the sex ratio of local 
populations becoming skewed toward females and the average male body size becoming miniaturized in places 
that have experienced high fishery pressure38. Recent studies have revealed that large-male–biased harvesting 
negatively affects populations in several ways39: it decreases male size-dependent reproductive potential [e.g., 
number of retained sperm40, number of possible mates41, and number of ejaculated sperm42], reduces the pool of 
suitable males due to females refusing to mate with males smaller than themselves38, which results in reductions 
of number of spawned eggs43 and larval qualities44]. Thus, it is likely that decreases of average body size within a 
population will have negative impacts on the population’s genetic diversity through massive decrease of effective 
population size.

Recently, the use of multiplexed inter-simple sequence repeat (ISSR) genotyping by sequencing (MIG-seq)45 to 
analyze large numbers of genome-wide markers has become a useful tool for examining the genetic structure and 
diversity of populations at high temporal and spatial resolution46. Here, we examined sex ratio, thoracic length 
(as an index of body size), and genetic diversity (by COI gene and MIG-seq analyses) to elucidate the effects of 
overharvesting on population structure and genetic diversity as well as gene flow pattern among 8 populations 
(Fig. 1) of B. latro in the Ryukyu Islands, Japan.

Results
Sex ratio and body size.  In all study populations except Kurima (MK), the number of females was higher 
than that of males, although the difference was only significant in Ishigaki (IS) and Hatoma (HT) (Table 1). 
Female thoracic length in MK was significantly smaller than that in IE, TM, IS and HT. Male thoracic length in 
MK was significantly smaller than that in MY, TM, HT and YG (Fig. 2b; Table S1). In addition, male thoracic 
length in TM was significantly larger than that in IE, MK, IS, HT and YG (Fig. 2b; Table S1).

Correlation test with Spearman’s rank correlation coefficient showed no significant correlation between cumu-
lative human population density and, body size and proportion of female individuals (Fig. S1).

Genetic diversity and population genetic structure.  COI gene analysis.  We sequenced a 466-bp 
region of the mtDNA COI gene sequence in 154 individuals and detected 53 haplotypes. Four dominant haplo-
types were found in most of the study populations (Fig. 3a). Population pairwise PhiPT was low overall (PhiPT 
< 0.018), and no significant differences were found among the populations (Table S2). MK and TM showed low 

Figure 1.  Map showing sampling localities of B. latro in the Ryukyu Islands. (a) A map of east Asia. (b) A map 
of sampling location of the present study in the Ryukyu Islands, Japan.
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genetic diversity compared with the other populations (Table S3). No marked difference of genetic diversity was 
detected between small and large individuals for either sex (Fig. 3b; Table S3).

Correlation test with Spearman’s rank correlation coefficient showed no significant correlation between cumu-
lative human population density and, haplotype diversity and nucleotide diversity, (Fig. S1).

MIG-seq analysis.  We used 495 neutral genetic markers for the genetic analysis. TM and IS were significantly 
differentiated from both MK and YG (FST = 0.074–0.104, P < 0.01; Table S2). No significant relationship between 
genetic distance and geographic distance was detected by Mantel’s test (R2 = 0.042, P = 0.232; Fig. 4). Observed 
heterozygosity was low in TM (0.041) and I (0.042), and high in M (0.059), compared with that in the other 

Locality Code

Island 
size 
(km2)

Population 
density 
(people / 
km2)

Sampling 
month/year

Sample size

Sex 
ratio

95% 
confidence 
intervalCOI

MIG-
seq

Body 
size

Ie IE 22.8 3179 Oct 2015 23 11 36 0.56 0.38–0.72

Miyako MY 158.9 4002 Aug 2015 13 5 13 0.62 0.32–0.86

Kurima MK 2.8 1276 Aug 2015 24 14 114 0.44 0.35–0.53

Minna TM 2.2 238 Jun 2014 15 7 235 0.56 0.48–0.63

Ishigaki IS 222.3 2391 Jun 2014 17 7 50 0.66 0.51–0.79

Hatoma HT 1.0 1809 Jun 2014 24 13 54 0.65 0.51–0.77

Iriomote IR 289.6 106 Sep-Oct 2015 14 12 na na na

Yonaguni YG 29.0 1150 Aug 2015 24 14 30 0.60 0.41–0.77

Table 1.  Information of sampling locality, sampling month/year, sample size, sex ratio and 95% confidence 
interval of the sex ratio of B. latro. Population density denotes cumulated data of every 5 year from 1955 to 2015 
64. Sex ratio indicates proportion of number of female individuals in each population.

Figure 2.  Box plot showing thoracic length of female (a) and male (b) B. latro individuals in each population.

Figure 3.  Haplotype network of B. latro showing frequency of mtDNA COI haplotypes in each population (a) 
and size class of both sexes (b). FL, large female; ML, large male, FS, small female; MS, small male.
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populations (Table S3). Fixation index values were high in all populations (F = 0.294–0.532; Table S3). The direc-
tional relative migration network for the study populations indicated that IE, MK, HT, IR, and YG are core pop-
ulations that have high gene flows among each other, whereas MY, TM, and IS are peripheral populations with 
low gene flow from other populations (Fig. 5). In particular, immigration to TM and IS was suggested to be very 
limited (Fig. 5b). No significant asymmetric pattern of gene flow was detected. In both sexes, individual heterozy-
gosity did not show positive correlation with body size (Fig. 6).

Correlation test with Spearman’s rank correlation coefficient showed no significant correlation between cumu-
lative human population density and observed heterozygosity (Fig. S1).

Discussion
Body size and sex ratio.  In Japan, large males of B. latro are selectively harvested, which has caused the sex 
ratio to become skewed toward females and average male body size to become miniaturized in heavily harvested 
populations38. In the present study, sex ratio was significantly skewed toward females in populations IS and HT, 
suggesting that male-selective harvesting pressure is higher in IS and HT than in the other populations. However, 
past human population density was not correlated with body size, sex ratio and genetic diversities of B. latro 
(Fig. S1), suggesting that human population density does not simply reflect the intensity of fishery pressure on 
B. latro. Although adult male and female B. latro are expected to reach a thoracic length of 80 mm and 60 mm, 
respectively29, in the present study large males (>40 mm) were very rarely seen except for TM, even in the popu-
lations where the sex ratio was less, or not, skewed toward females. A lack of large males promotes resource reduc-
tion through negative impacts on life history parameters (e.g., decrease of mating opportunity)39. Our findings 
suggest that urgent implementation of an effective management policy is needed in Ryukyu Islands.

Genetic diversity and gene flow.  Birgus latro can live for 60 years47 or longer48. At 10 years of age, males 
and females generally have a thoracic length of around 30 mm and 25 mm, respectively49. Overharvesting of B. 
latro likely started in Japan after the end of the Second World War37, and although the need for conservation 

Figure 4.  Relationship between pairwise population genetic distance inferred from MIG-seq SNP markers and 
geographical distance in Birgus latro.

Figure 5.  Directional relative migration networks of B. latro populations constructed with divMigrate using 
Nm. Values above 0.2 (a) and 0.4 (b) are shown.
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efforts was noted as early as the 1970s, we were told by residents of Okinawa that overharvesting has contin-
ued and even become more severe in the past two decades (Fujita, personal communication). Thus, most small 
individuals analysed in the present study (male, thoracic length <30 mm; female, <25 mm) would have been 
recruited after the intensification of overharvesting, whereas some of the largest individuals could have been 
recruited before. This suggests that since overharvesting reduces genetic diversity within a population1–3, the 
genetic diversity of small B. latro individuals should be lower than that of large individuals. However, in the pres-
ent study, we did not find a correlation between thoracic length and population- or individual-level genetic diver-
sity, as estimated by using COI gene and MIG-seq data. The average thoracic length of large individuals used in 
the COI gene analysis was 40 mm and 25 mm for males and females, respectively; therefore, based on the growth 
curve of B. latro, most of these individuals were recruited in the last 15–20 years49. The thoracic length of most 
individuals used for the MIG-seq analysis was smaller than 40 mm for both sexes; therefore, based on the growth 
curve of B. latro, most of these individuals were recruited within the last 20 years for males and within the last 30 
years for females. It is therefore, suggests that not a few individuals included in the genetic analyses were likely 
recruited after the intensification of overharvesting and may have already suffered the impacts of overharvesting 
on genetic diversity. Growth rate can, however, vary among individuals based on resource availability and levels 
of social competition (e.g., growth can be slowed considerably when individuals lose a limb in combat). Further 
monitoring and analysis using more samples from each population with wide range of body size are needed to 
evaluate the effect of overharvesting on genetic diversity of B. latro.

To conserve genetic diversity, genetic mutation or immigration from other populations with high genetic 
diversity are needed3. Once genetic diversity is lost, recovery by genetic mutation takes many generations, and 
as both the coastal and oceanic environments are being rapidly changed by human activity50–52, mutation-based 
recovery is not realistic. In contrast, immigration-based recovery can occur relatively quickly3. In the COI analy-
sis, no significant genetic differentiation between the study populations was found, and in the MIG-seq analysis, 
most population pairs showed no significant genetic differentiation. The pelagic zoeal larval stage of B. latro 
lasts for 18–23 days53,54, and megalopae settle at coastal areas and find a gastropod shell for migrating to land by 
around 10 days post settlement55,56. Therefore, the whole larval period lasts 4–5 weeks, which is similar to that 
of the coral Acropora digitifera57. It has been reported that population connectivity is generally high among A. 
digitifera populations in the Ryukyu Islands58, and the sampling locations in that study were similar to those in 
the present study. This suggests that the larval period of B. latro is long enough to allow sufficient larval dispersal 
among the study populations. This assumption is supported by the results of the Mantel test, which showed a 
non-significant correlation between genetic distance and geographic distance, which suggests that migration via 
larval dispersal frequently occurs among Japanese populations of B. latro.

Although a high gene flow has been maintained in B. latro populations in the Ryukyu Islands, MIG-seq anal-
ysis detected significant genetic differentiation between four population pairs: TM–MK, TM–YG, IS–MK, and 
IS–YG. This is consistent with the divMigrate results showing that immigration to TM and IS from other pop-
ulations is limited and IE, MK, HT, YG, and IR have a role as core populations within the overall population in 
the Ryukyu Islands. Local water current can work as a dispersal barrier in Ryukyu islands59. In addition, TM is 
far from the large islands (Fig. 1). These factors may contribute to the limitation of immigration to TM and IS. 
Similarly, genetic differentiation has been shown between populations in the Indian and Pacific Oceans60,61 and 
between populations in the Ryukyu Islands and populations in Micronesia, Palau, and Indonesia62, indicating that 
immigration from the Indian Ocean, Micronesia, Palau, and Indonesia to the Ryukyu Islands is likely limited. All 
populations analyzed in the present study had high fixation index values, suggesting high rates of inbreeding and 
that a further reduction of effective population size driven by overharvesting and habitat degradation may reduce 
gene flows and drastically increase the risk of inbreeding depression.

Figure 6.  Plot showing body size and mean observed individual heterozygosity of female (a) and male (b) B. 
latro. Lines indicate linear regression.
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Here, we report COI- and MIG-seq-based genetic diversity, sex ratio and body size distributions in 8 Japanese 
populations of B. latro. We found that 5 populations (IE, MK, HT, YG, and IR) that are important for the main-
tenance of the genetic diversity of the other populations via immigration through larval dispersal. Low genetic 
diversity can affect the fitness6 and ability of individuals to survive and adapt in future environments3. To con-
serve the genetic diversity of B. latro populations in Japan, and therefore to conserve B. latro as an important 
fishery resource, we recommend long-term monitoring of genetic diversity, sex ratio, and body size composition. 
In Okinawa prefecture (the administrative division that includes the Ryukyu Islands), several municipal govern-
ments have implemented regulations that prohibit the catch of B. latro of certain sizes; we hope that such regula-
tion will be implemented soon across the whole region.

Methods
Field surveys and sample collection.  Field surveys were conducted in Ie (IE), Miyako (MY), Kurima 
(MK), Minna (TM), Ishigaki (IS), Hatoma (HT), Iriomote (IR), and Yonaguni (YG) in the Ryukyu Islands, Japan 
(Fig. 1; Table 1). Individuals of B. latro were randomly collected by hand and the sex and thoracic length (as an 
index of body size) of each individual were recorded. For DNA analysis, part of the third pereiopod was also col-
lected. Tissue samples were fixed and preserved in 99.5% ethanol. All crabs were released at the sampling site after 
tissue sampling. Field surveys and sample collection were conducted in accordance with the regulations of local 
governments in Okinawa Prefecture, Japan.

Statistical analyses.  We examined whether the sex ratio of each population is skewed toward either sex by 
using the χ2-test. In addition, we compared thoracic length among populations for each sex by using Tukey’s test. 
All analyses were performed using R v3.3.063.

We assumed that the past human population density reflects the intensity of fishery pressure on B. latro. We 
therefore tested correlation between cumulative human population densities and, sex ratio, median body size, and 
genetic diversity indexes of B. latro in each island population with Spearman’s rank correlation coefficient. Data of 
every 5 year human population densities (1955–2015) of each island was obtained from Okinawa Prefecture64. We 
cumulated the human population density of 1955–2015 (Table 1), and used for the analyses.

mtDNA COI gene sequencing.  DNA was extracted from tissue samples by using a DNeasy Blood and 
Tissue Kit (Qiagen, Hilden, Germany). Partial sequences of the mtDNA COI-encoding region were amplified by 
polymerase chain reaction (PCR) with the universal primers LCO1490 and HCO219865, as well as TaKaRa Ex Taq 
(TaKaRa, Shiga, Japan). The PCR conditions were as follows: initial denaturation at 94 °C for 2 min; 35 cycles each 
at 94 °C for 30 s, annealing at 47 °C for 30 s, and extension at 72 °C for 1 min; and a final extension step at 72 °C 
for 2 min. The PCR products were purified using Exo-SAP IT (Affymetrix, USB, Cleveland, USA) and sequenced 
using an Applied Biosystems 3730xl DNA Analyser and the same primers as used for the PCR.

MIG-seq.  Genome-wide single nucleotide polymorphisms (SNPs) were obtained using the protocol45. In 
brief, MIG-seq was used to amplify a few hundred to a few thousand genome-wide SNPs around ISSRs by using 
eight universal pairs of multiplex ISSR primers (MIG-seq primer set 1) for the first PCR. Then, DNA libraries 
with different indexes were pooled and sequenced by using a MiSeq system (sequencing control software v2.0.12, 
Illumina) and a MiSeq Reagent Kit v3 (150 cycle) (Illumina). A total of 83 individuals were analyzed in the 
MIG-seq analysis.

To eliminate low-quality reads and primer sequence reads from the raw data, we used the FASTX-Toolkit  
v0.0.14 (fastq_quality_filter) (http://hannonlab.cshl.edu/fastx_toolkit/index.html) with a fastq-quality-filter  
setting of –Q 33 –q 30 –p 40. We removed adapter sequences for the MiSeq run from both the 5′ end (GTCAGATCG 
GAAGAGCACACGTCTGAACTCCAGTCAC) and 3′ end (CAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAC) 
by using Cutadapt v1.1366, and then excluded short reads less than 80 bp. The quality-filtered sequence data were demul-
tiplexed and filtered through the software Stacks v1.4667,68. We used Stacks v1.468 to stack the reads and extract SNPs. 
First, we used the U-stacks program with the following settings: ‘minimum depth of coverage required to create a stack 
(m)’ = 3, ‘maximum distance allowed between stacks (M)’ = 1, ‘maximum distance allowed to align secondary reads to 
primary stacks (N)’ = 1, with the deleveraging and removal algorithms enabled. Then, we used the C-stacks program 
with the option ‘number of mismatches allowed between sample loci when building the catalog (n)’ = 4, followed by the 
S-stacks program. Finally, we used the Populations program in Stacks v1.4 by restricting the data analysis to the criteria 
(the minimum percentage of individuals required to process a locus across all data was set at 50% and restricting the 
data analysis to a single SNP per locus. No locus was identified as an outlier using BayScan69.

Population genetic analyses
mtDNA COI gene analysis.  Haplotype networks were constructed using the haploNet function in the 
R package ‘pegas’ v0.1170. Haplotype diversity and nucleotide diversity were calculated for each population 
by using Arlequin 3.571. In addition, we pooled all sequence data for each sex and divided them into two size 
groups, small and large, with the small group including males with thoracic length < 30 mm and females with 
thoracic length < 25 mm (i.e., individuals roughly less than 10 years old)49, and calculated genetic diversities for 
the two size classes. Mean ± standard deviation of the thoracic length of each group is 23.6 ± 4.0 mm (N = 25), 
35.1 ± 5.6 mm (N = 29), 23.2 ± 2.5 mm (N = 22), and 31.6 ± 3.9 mm (N = 62) for small male, large male, small 
female, and large female, respectively. Population pairwise PhiPT values were estimated using the Analysis of 
Molecular Variance (AMOVA) method and GenAlEx 6.572 and tested for significance based on 999 permutations. 
Statistical significance levels for all pairwise tests were 0.05 after adjusting for multiple comparisons using false 
discovery rate (FDR) correction73.
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MIG-seq.  Based on 495 SNP markers, ratio of the number of observed alleles, observed heterozygosity, 
expected heterozygosity, and fixation index were estimated using GenAlEx 6.572. Pairwise population FST values 
were estimated by using the AMOVA method and GenAlEx 6.5. Statistical significance levels for all pairwise tests 
were 0.05 after adjusting for multiple comparisons using FDR correction68. Isolation by distance was tested using 
Mantel’s test based on 9999 permutations from the comparison of all pairwise FST/(1 − FST) values with pairwise 
geographic distances in kilometers (straight-line distance) using GenAlEx 6.572. In addition, individual heterozy-
gosity was estimated using GENHET v2.374 with R v3.3.063.

The gene flow among populations was estimated by using divMigrate-online75 (https://popgen.shinyapps.io/
divMigrate-online/). This program produces a migration network graph with relative values for gene flow among 
populations scaled to the largest magnitude estimated. For the analysis, we selected 61 MIG-seq markers that 
were detected in at least 68% of the samples. We used NM as a measure of genetic distance. The significance of 
asymmetrical gene flow among populations was tested using 1000 bootstrap iterations.

Data availability
Raw data of body length and sex ratio of B. latro are available in supplementary information. mtDNA COI 
sequences (Accession nos. LC479132- LC479285) and law data of MIG-seq (Accession no. PRJDB8390) were 
deposited in DNA Data Bank of Japan (DDBJ).
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